1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
|
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>GAP (HAP commands) - Chapter 3: Basic functionality for homological group theory</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap3" onload="jscontent()">
<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a> <a href="chap1.html">1</a> <a href="chap2.html">2</a> <a href="chap3.html">3</a> <a href="chap4.html">4</a> <a href="chap5.html">5</a> <a href="chap6.html">6</a> <a href="chap7.html">7</a> <a href="chap8.html">8</a> <a href="chap9.html">9</a> <a href="chap10.html">10</a> <a href="chap11.html">11</a> <a href="chap12.html">12</a> <a href="chap13.html">13</a> <a href="chap14.html">14</a> <a href="chap15.html">15</a> <a href="chap16.html">16</a> <a href="chap17.html">17</a> <a href="chap18.html">18</a> <a href="chap19.html">19</a> <a href="chap20.html">20</a> <a href="chap21.html">21</a> <a href="chap22.html">22</a> <a href="chap23.html">23</a> <a href="chap24.html">24</a> <a href="chap25.html">25</a> <a href="chap26.html">26</a> <a href="chap27.html">27</a> <a href="chap28.html">28</a> <a href="chap29.html">29</a> <a href="chap30.html">30</a> <a href="chap31.html">31</a> <a href="chap32.html">32</a> <a href="chap33.html">33</a> <a href="chap34.html">34</a> <a href="chap35.html">35</a> <a href="chap36.html">36</a> <a href="chap37.html">37</a> <a href="chap38.html">38</a> <a href="chap39.html">39</a> <a href="chap40.html">40</a> <a href="chapInd.html">Ind</a> </div>
<div class="chlinkprevnexttop"> <a href="chap0.html">[Top of Book]</a> <a href="chap0.html#contents">[Contents]</a> <a href="chap2.html">[Previous Chapter]</a> <a href="chap4.html">[Next Chapter]</a> </div>
<p id="mathjaxlink" class="pcenter"><a href="chap3_mj.html">[MathJax on]</a></p>
<p><a id="X7F52C4747A402789" name="X7F52C4747A402789"></a></p>
<div class="ChapSects"><a href="chap3.html#X7F52C4747A402789">3 <span class="Heading">Basic functionality for homological group theory</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap3.html#X85A9B66278AF63D9">3.1 <span class="Heading"> Cocycles</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap3.html#X8343D6CA811C1E50">3.1-1 CcGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap3.html#X7C4C64EE864B04D5">3.1-2 CocycleCondition</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap3.html#X7A69F5007F07F478">3.1-3 StandardCocycle</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap3.html#X7D02CE0A83211FB7">3.2 <span class="Heading"> G-Outer Groups</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap3.html#X787C8FD6879771D9">3.2-1 ActedGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap3.html#X8115386782214B38">3.2-2 ActingGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap3.html#X847ABE6F781C7FE8">3.2-3 Centre</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap3.html#X842035BD7E0B81EF">3.2-4 GOuterGroup</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap3.html#X7C2A5A4F84DC70CB">3.3 <span class="Heading"> <span class="SimpleMath">G</span>-cocomplexes</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap3.html#X7D5E7FB97BF38DF1">3.3-1 CohomologyModule</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap3.html#X7CF7B8A3842D498B">3.3-2 HomToGModule</a></span>
</div></div>
</div>
<h3>3 <span class="Heading">Basic functionality for homological group theory</span></h3>
<p>This page covers the functions used in chapter 4 of the book <span class="URL"><a href="https://global.oup.com/academic/product/an-invitation-to-computational-homotopy-9780198832980">An Invitation to Computational Homotopy</a></span>.</p>
<p><a id="X85A9B66278AF63D9" name="X85A9B66278AF63D9"></a></p>
<h4>3.1 <span class="Heading"> Cocycles</span></h4>
<p><a id="X8343D6CA811C1E50" name="X8343D6CA811C1E50"></a></p>
<h5>3.1-1 CcGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ CcGroup</code>( <var class="Arg">N</var>, <var class="Arg">f</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a <span class="SimpleMath">G</span>-outer group <span class="SimpleMath">N</span> with nonabelian cocycle describing some extension <span class="SimpleMath">N ↣ E ↠ G</span> together with standard 2-cocycle <span class="SimpleMath">f: G × G → A</span> where <span class="SimpleMath">A=Z(N)</span>. It returns the extension group determined by the cocycle <span class="SimpleMath">f</span>. The group is returned as a cocyclic group.</p>
<p>This function is part of the HAPcocyclic package of functions implemented by Robert F. Morse.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap6.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutGouter.html">2</a></span> </p>
<p><a id="X7C4C64EE864B04D5" name="X7C4C64EE864B04D5"></a></p>
<h5>3.1-2 CocycleCondition</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ CocycleCondition</code>( <var class="Arg">R</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a free <span class="SimpleMath">ZG</span>-resolution <span class="SimpleMath">R</span> of <span class="SimpleMath">Z</span> and an integer <span class="SimpleMath">n ≥ 1</span>. It returns an integer matrix <span class="SimpleMath">M</span> with the following property. Let <span class="SimpleMath">d</span> be the <span class="SimpleMath">ZG</span>-rank of <span class="SimpleMath">R_n</span>. An integer vector <span class="SimpleMath">f=[f_1, ... , f_d]</span> then represents a <span class="SimpleMath">ZG</span>-homomorphism <span class="SimpleMath">R_n → Z_q</span> which sends the <span class="SimpleMath">i</span>th generator of <span class="SimpleMath">R_n</span> to the integer <span class="SimpleMath">f_i</span> in the trivial <span class="SimpleMath">ZG</span>-module <span class="SimpleMath">Z_q= Z/q Z</span> (where possibly <span class="SimpleMath">q=0</span>). The homomorphism <span class="SimpleMath">f</span> is a cocycle if and only if <span class="SimpleMath">M^tf=0</span> mod <span class="SimpleMath">q</span>.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap7.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCocycles.html">2</a></span> </p>
<p><a id="X7A69F5007F07F478" name="X7A69F5007F07F478"></a></p>
<h5>3.1-3 StandardCocycle</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ StandardCocycle</code>( <var class="Arg">R</var>, <var class="Arg">f</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ StandardCocycle</code>( <var class="Arg">R</var>, <var class="Arg">f</var>, <var class="Arg">n</var>, <var class="Arg">q</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a free <span class="SimpleMath">ZG</span>-resolution <span class="SimpleMath">R</span> (with contracting homotopy), a positive integer <span class="SimpleMath">n</span> and an integer vector <span class="SimpleMath">f</span> representing an <span class="SimpleMath">n</span>-cocycle <span class="SimpleMath">R_n → Z_q= Z/q Z</span> where <span class="SimpleMath">G</span> acts trivially on <span class="SimpleMath">Z_q</span>. It is assumed <span class="SimpleMath">q=0</span> unless a value for <span class="SimpleMath">q</span> is entered. The command returns a function <span class="SimpleMath">F(g_1, ..., g_n)</span> which is the standard cocycle <span class="SimpleMath">G^n → Z_q</span> corresponding to <span class="SimpleMath">f</span>. At present the command is implemented only for <span class="SimpleMath">n=2</span> or <span class="SimpleMath">3</span>.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap7.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCocycles.html">2</a></span> </p>
<p><a id="X7D02CE0A83211FB7" name="X7D02CE0A83211FB7"></a></p>
<h4>3.2 <span class="Heading"> G-Outer Groups</span></h4>
<p><a id="X787C8FD6879771D9" name="X787C8FD6879771D9"></a></p>
<h5>3.2-1 ActedGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ActedGroup</code>( <var class="Arg">M</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a <span class="SimpleMath">G</span>-outer group <span class="SimpleMath">M</span> corresponding to a homomorphism <span class="SimpleMath">α: G→ Out(N)</span> and returns the group <span class="SimpleMath">N</span>.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap6.html">1</a></span> , <span class="URL"><a href="../tutorial/chap7.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCrossedMods.html">3</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutGouter.html">4</a></span> </p>
<p><a id="X8115386782214B38" name="X8115386782214B38"></a></p>
<h5>3.2-2 ActingGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ActingGroup</code>( <var class="Arg">M</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a <span class="SimpleMath">G</span>-outer group <span class="SimpleMath">M</span> corresponding to a homomorphism <span class="SimpleMath">α: G→ Out(N)</span> and returns the group <span class="SimpleMath">G</span>.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap6.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutGouter.html">2</a></span> </p>
<p><a id="X847ABE6F781C7FE8" name="X847ABE6F781C7FE8"></a></p>
<h5>3.2-3 Centre</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Centre</code>( <var class="Arg">M</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a <span class="SimpleMath">G</span>-outer group <span class="SimpleMath">M</span> and returns its group-theoretic centre as a <span class="SimpleMath">G</span>-outer group.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap6.html">1</a></span> , <span class="URL"><a href="../tutorial/chap7.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutParallel.html">3</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutSchurMultiplier.html">4</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutGouter.html">5</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutLieCovers.html">6</a></span> </p>
<p><a id="X842035BD7E0B81EF" name="X842035BD7E0B81EF"></a></p>
<h5>3.2-4 GOuterGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ GOuterGroup</code>( <var class="Arg">E</var>, <var class="Arg">N</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ GOuterGroup</code>( )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a group <span class="SimpleMath">E</span> and normal subgroup <span class="SimpleMath">N</span>. It returns <span class="SimpleMath">N</span> as a <span class="SimpleMath">G</span>-outer group where <span class="SimpleMath">G=E/N</span>. A nonabelian cocycle <span class="SimpleMath">f: G× G→ N</span> is attached as a component of the <span class="SimpleMath">G</span>-Outer group.</p>
<p>The function can be used without an argument. In this case an empty outer group <span class="SimpleMath">C</span> is returned. The components must be set using <strong class="button">SetActingGroup(C,G)</strong>, <strong class="button">SetActedGroup(C,N)</strong> and <strong class="button">SetOuterAction(C,alpha)</strong>.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap6.html">1</a></span> , <span class="URL"><a href="../tutorial/chap7.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoefficientSequence.html">3</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutGouter.html">4</a></span> </p>
<p><a id="X7C2A5A4F84DC70CB" name="X7C2A5A4F84DC70CB"></a></p>
<h4>3.3 <span class="Heading"> <span class="SimpleMath">G</span>-cocomplexes</span></h4>
<p><a id="X7D5E7FB97BF38DF1" name="X7D5E7FB97BF38DF1"></a></p>
<h5>3.3-1 CohomologyModule</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ CohomologyModule</code>( <var class="Arg">C</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a <span class="SimpleMath">G</span>-cocomplex <span class="SimpleMath">C</span> together with a non-negative integer <span class="SimpleMath">n</span>. It returns the cohomology <span class="SimpleMath">H^n(C)</span> as a <span class="SimpleMath">G</span>-outer group. If <span class="SimpleMath">C</span> was constructed from a <span class="SimpleMath">ZG</span>-resolution <span class="SimpleMath">R</span> by homing to an abelian <span class="SimpleMath">G</span>-outer group <span class="SimpleMath">A</span> then, for each <span class="SimpleMath">x</span> in <span class="SimpleMath">H:=CohomologyModule(C,n)</span>, there is a function <span class="SimpleMath">f:=H!.representativeCocycle(x)</span> which is a standard <span class="SimpleMath">n</span>-cocycle corresponding to the cohomology class <span class="SimpleMath">x</span>. (At present this is implemented only for <span class="SimpleMath">n=1,2,3</span>.)</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap6.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCrossedMods.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutGouter.html">3</a></span> </p>
<p><a id="X7CF7B8A3842D498B" name="X7CF7B8A3842D498B"></a></p>
<h5>3.3-2 HomToGModule</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ HomToGModule</code>( <var class="Arg">R</var>, <var class="Arg">A</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a <span class="SimpleMath">ZG</span>-resolution <span class="SimpleMath">R</span> and an abelian <span class="SimpleMath">G</span>-outer group <span class="SimpleMath">A</span>. It returns the <span class="SimpleMath">G</span>-cocomplex obtained by applying <span class="SimpleMath">HomZG( _ , A)</span>. (At present this function does not handle equivariant chain maps.)</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap6.html">1</a></span> , <span class="URL"><a href="../tutorial/chap7.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCrossedMods.html">3</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutGouter.html">4</a></span> </p>
<div class="chlinkprevnextbot"> <a href="chap0.html">[Top of Book]</a> <a href="chap0.html#contents">[Contents]</a> <a href="chap2.html">[Previous Chapter]</a> <a href="chap4.html">[Next Chapter]</a> </div>
<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a> <a href="chap1.html">1</a> <a href="chap2.html">2</a> <a href="chap3.html">3</a> <a href="chap4.html">4</a> <a href="chap5.html">5</a> <a href="chap6.html">6</a> <a href="chap7.html">7</a> <a href="chap8.html">8</a> <a href="chap9.html">9</a> <a href="chap10.html">10</a> <a href="chap11.html">11</a> <a href="chap12.html">12</a> <a href="chap13.html">13</a> <a href="chap14.html">14</a> <a href="chap15.html">15</a> <a href="chap16.html">16</a> <a href="chap17.html">17</a> <a href="chap18.html">18</a> <a href="chap19.html">19</a> <a href="chap20.html">20</a> <a href="chap21.html">21</a> <a href="chap22.html">22</a> <a href="chap23.html">23</a> <a href="chap24.html">24</a> <a href="chap25.html">25</a> <a href="chap26.html">26</a> <a href="chap27.html">27</a> <a href="chap28.html">28</a> <a href="chap29.html">29</a> <a href="chap30.html">30</a> <a href="chap31.html">31</a> <a href="chap32.html">32</a> <a href="chap33.html">33</a> <a href="chap34.html">34</a> <a href="chap35.html">35</a> <a href="chap36.html">36</a> <a href="chap37.html">37</a> <a href="chap38.html">38</a> <a href="chap39.html">39</a> <a href="chap40.html">40</a> <a href="chapInd.html">Ind</a> </div>
<hr />
<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>
|