File: chap30.html

package info (click to toggle)
gap-hap 1.74%2Bds-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 58,664 kB
  • sloc: xml: 16,678; sh: 197; javascript: 155; makefile: 121; ansic: 47; perl: 24
file content (113 lines) | stat: -rw-r--r-- 13,768 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
         "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>GAP (HAP commands) - Chapter 30: Regular CW-Complexes</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap30"  onload="jscontent()">


<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a>  <a href="chap10.html">10</a>  <a href="chap11.html">11</a>  <a href="chap12.html">12</a>  <a href="chap13.html">13</a>  <a href="chap14.html">14</a>  <a href="chap15.html">15</a>  <a href="chap16.html">16</a>  <a href="chap17.html">17</a>  <a href="chap18.html">18</a>  <a href="chap19.html">19</a>  <a href="chap20.html">20</a>  <a href="chap21.html">21</a>  <a href="chap22.html">22</a>  <a href="chap23.html">23</a>  <a href="chap24.html">24</a>  <a href="chap25.html">25</a>  <a href="chap26.html">26</a>  <a href="chap27.html">27</a>  <a href="chap28.html">28</a>  <a href="chap29.html">29</a>  <a href="chap30.html">30</a>  <a href="chap31.html">31</a>  <a href="chap32.html">32</a>  <a href="chap33.html">33</a>  <a href="chap34.html">34</a>  <a href="chap35.html">35</a>  <a href="chap36.html">36</a>  <a href="chap37.html">37</a>  <a href="chap38.html">38</a>  <a href="chap39.html">39</a>  <a href="chap40.html">40</a>  <a href="chapInd.html">Ind</a>  </div>

<div class="chlinkprevnexttop">&nbsp;<a href="chap0.html">[Top of Book]</a>&nbsp;  <a href="chap0.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap29.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap31.html">[Next Chapter]</a>&nbsp;  </div>

<p id="mathjaxlink" class="pcenter"><a href="chap30_mj.html">[MathJax on]</a></p>
<p><a id="X855CD0808058727D" name="X855CD0808058727D"></a></p>
<div class="ChapSects"><a href="chap30.html#X855CD0808058727D">30 <span class="Heading">Regular CW-Complexes</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap30.html#X7CFDEEC07F15CF82">30.1 <span class="Heading">  </span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap30.html#X825EF11A86624E44">30.1-1 SimplicialComplexToRegularCWComplex</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap30.html#X8723DF8A7AA8AE9E">30.1-2 CubicalComplexToRegularCWComplex</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap30.html#X802E1927807969C1">30.1-3 CriticalCellsOfRegularCWComplex</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap30.html#X7A1C427578108B7E">30.1-4 ChainComplex</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap30.html#X8307D5A57EFAC8EE">30.1-5 ChainComplexOfRegularCWComplex</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap30.html#X7EAE7E4181546C17">30.1-6 FundamentalGroup</a></span>
</div></div>
</div>

<h3>30 <span class="Heading">Regular CW-Complexes</span></h3>

<p><a id="X7CFDEEC07F15CF82" name="X7CFDEEC07F15CF82"></a></p>

<h4>30.1 <span class="Heading">  </span></h4>

<p><a id="X825EF11A86624E44" name="X825EF11A86624E44"></a></p>

<h5>30.1-1 SimplicialComplexToRegularCWComplex</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SimplicialComplexToRegularCWComplex</code>( <var class="Arg">K</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a simplicial complex <span class="SimpleMath">K</span> and returns the corresponding regular CW-complex.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutMetrics.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutRandomComplexes.html">2</a></span> </p>

<p><a id="X8723DF8A7AA8AE9E" name="X8723DF8A7AA8AE9E"></a></p>

<h5>30.1-2 CubicalComplexToRegularCWComplex</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; CubicalComplexToRegularCWComplex</code>( <var class="Arg">K</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; CubicalComplexToRegularCWComplex</code>( <var class="Arg">K</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a pure cubical complex (or cubical complex) <span class="SimpleMath">K</span> and returns the corresponding regular CW-complex. If a positive integer <span class="SimpleMath">n</span> is entered as an optional second argument, then just the <span class="SimpleMath">n</span>-skeleton of <span class="SimpleMath">K</span> is returned.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutKnots.html">1</a></span> </p>

<p><a id="X802E1927807969C1" name="X802E1927807969C1"></a></p>

<h5>30.1-3 CriticalCellsOfRegularCWComplex</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; CriticalCellsOfRegularCWComplex</code>( <var class="Arg">Y</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; CriticalCellsOfRegularCWComplex</code>( <var class="Arg">Y</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a regular CW-complex <span class="SimpleMath">Y</span> and returns the critical cells of <span class="SimpleMath">Y</span> with respect to some discrete vector field. If <span class="SimpleMath">Y</span> does not initially have a discrete vector field then one is constructed.</p>

<p>If a positive integer <span class="SimpleMath">n</span> is given as a second optional input, then just the critical cells in dimensions up to and including <span class="SimpleMath">n</span> are returned.</p>

<p>The function <span class="SimpleMath">CriticalCellsOfRegularCWComplex(Y)</span> works by homotopy reducing cells starting at the top dimension. The function <span class="SimpleMath">CriticalCellsOfRegularCWComplex(Y,n)</span> works by homotopy coreducing cells starting at dimension 0. The two methods may well return different numbers of cells.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutPeripheral.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutRandomComplexes.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutKnots.html">3</a></span> </p>

<p><a id="X7A1C427578108B7E" name="X7A1C427578108B7E"></a></p>

<h5>30.1-4 ChainComplex</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ChainComplex</code>( <var class="Arg">Y</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a regular CW-complex <span class="SimpleMath">Y</span> and returns the cellular chain complex of a CW-complex W whose cells correspond to the critical cells of <span class="SimpleMath">Y</span> with respect to some discrete vector field. If <span class="SimpleMath">Y</span> does not initially have a discrete vector field then one is constructed.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> , <span class="URL"><a href="../tutorial/chap3.html">2</a></span> , <span class="URL"><a href="../tutorial/chap4.html">3</a></span> , <span class="URL"><a href="../tutorial/chap10.html">4</a></span> , <span class="URL"><a href="../tutorial/chap12.html">5</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutMetrics.html">6</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutBredon.html">7</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPersistent.html">8</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoveringSpaces.html">9</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoverinSpaces.html">10</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCubical.html">11</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutSimplicialGroups.html">12</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutIntro.html">13</a></span> </p>

<p><a id="X8307D5A57EFAC8EE" name="X8307D5A57EFAC8EE"></a></p>

<h5>30.1-5 ChainComplexOfRegularCWComplex</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ChainComplexOfRegularCWComplex</code>( <var class="Arg">Y</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a regular CW-complex <span class="SimpleMath">Y</span> and returns the cellular chain complex of <span class="SimpleMath">Y</span>.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> , <span class="URL"><a href="../tutorial/chap10.html">2</a></span> </p>

<p><a id="X7EAE7E4181546C17" name="X7EAE7E4181546C17"></a></p>

<h5>30.1-6 FundamentalGroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; FundamentalGroup</code>( <var class="Arg">Y</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; FundamentalGroup</code>( <var class="Arg">Y</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a regular CW-complex <span class="SimpleMath">Y</span> and, optionally, the number of some 0-cell. It returns the fundamental group of <span class="SimpleMath">Y</span> based at the 0-cell <span class="SimpleMath">n</span>. The group is returned as a finitely presented group. If <span class="SimpleMath">n</span> is not specified then it is set <span class="SimpleMath">n=1</span>. The algorithm requires a discrete vector field on <span class="SimpleMath">Y</span>. If <span class="SimpleMath">Y</span> does not initially have a discrete vector field then one is constructed.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> , <span class="URL"><a href="../tutorial/chap2.html">2</a></span> , <span class="URL"><a href="../tutorial/chap3.html">3</a></span> , <span class="URL"><a href="../tutorial/chap4.html">4</a></span> , <span class="URL"><a href="../tutorial/chap5.html">5</a></span> , <span class="URL"><a href="../tutorial/chap11.html">6</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutLinks.html">7</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPeripheral.html">8</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoveringSpaces.html">9</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoverinSpaces.html">10</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutQuandles.html">11</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutRandomComplexes.html">12</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutKnots.html">13</a></span> </p>


<div class="chlinkprevnextbot">&nbsp;<a href="chap0.html">[Top of Book]</a>&nbsp;  <a href="chap0.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap29.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap31.html">[Next Chapter]</a>&nbsp;  </div>


<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a>  <a href="chap10.html">10</a>  <a href="chap11.html">11</a>  <a href="chap12.html">12</a>  <a href="chap13.html">13</a>  <a href="chap14.html">14</a>  <a href="chap15.html">15</a>  <a href="chap16.html">16</a>  <a href="chap17.html">17</a>  <a href="chap18.html">18</a>  <a href="chap19.html">19</a>  <a href="chap20.html">20</a>  <a href="chap21.html">21</a>  <a href="chap22.html">22</a>  <a href="chap23.html">23</a>  <a href="chap24.html">24</a>  <a href="chap25.html">25</a>  <a href="chap26.html">26</a>  <a href="chap27.html">27</a>  <a href="chap28.html">28</a>  <a href="chap29.html">29</a>  <a href="chap30.html">30</a>  <a href="chap31.html">31</a>  <a href="chap32.html">32</a>  <a href="chap33.html">33</a>  <a href="chap34.html">34</a>  <a href="chap35.html">35</a>  <a href="chap36.html">36</a>  <a href="chap37.html">37</a>  <a href="chap38.html">38</a>  <a href="chap39.html">39</a>  <a href="chap40.html">40</a>  <a href="chapInd.html">Ind</a>  </div>

<hr />
<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>