1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
|
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>GAP (HAP commands) - Chapter 32: Knots and Quandles </title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap32" onload="jscontent()">
<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a> <a href="chap1.html">1</a> <a href="chap2.html">2</a> <a href="chap3.html">3</a> <a href="chap4.html">4</a> <a href="chap5.html">5</a> <a href="chap6.html">6</a> <a href="chap7.html">7</a> <a href="chap8.html">8</a> <a href="chap9.html">9</a> <a href="chap10.html">10</a> <a href="chap11.html">11</a> <a href="chap12.html">12</a> <a href="chap13.html">13</a> <a href="chap14.html">14</a> <a href="chap15.html">15</a> <a href="chap16.html">16</a> <a href="chap17.html">17</a> <a href="chap18.html">18</a> <a href="chap19.html">19</a> <a href="chap20.html">20</a> <a href="chap21.html">21</a> <a href="chap22.html">22</a> <a href="chap23.html">23</a> <a href="chap24.html">24</a> <a href="chap25.html">25</a> <a href="chap26.html">26</a> <a href="chap27.html">27</a> <a href="chap28.html">28</a> <a href="chap29.html">29</a> <a href="chap30.html">30</a> <a href="chap31.html">31</a> <a href="chap32.html">32</a> <a href="chap33.html">33</a> <a href="chap34.html">34</a> <a href="chap35.html">35</a> <a href="chap36.html">36</a> <a href="chap37.html">37</a> <a href="chap38.html">38</a> <a href="chap39.html">39</a> <a href="chap40.html">40</a> <a href="chapInd.html">Ind</a> </div>
<div class="chlinkprevnexttop"> <a href="chap0.html">[Top of Book]</a> <a href="chap0.html#contents">[Contents]</a> <a href="chap31.html">[Previous Chapter]</a> <a href="chap33.html">[Next Chapter]</a> </div>
<p id="mathjaxlink" class="pcenter"><a href="chap32_mj.html">[MathJax on]</a></p>
<p><a id="X83856E7178651841" name="X83856E7178651841"></a></p>
<div class="ChapSects"><a href="chap32.html#X83856E7178651841">32 <span class="Heading"> Knots and Quandles </span></a>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap32.html#X7CFDEEC07F15CF82">32.1 <span class="Heading"> </span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap32.html#X8110BAD17D13F62D">32.1-1 PresentationKnotQuandle</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap32.html#X7E82CBA08724AEAA">32.1-2 PD2GC</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap32.html#X81B7CD81869D5583">32.1-3 PlanarDiagramKnot</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap32.html#X7E9458058084E240">32.1-4 GaussCodeKnot</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap32.html#X8012B9B17BD20990">32.1-5 PresentationKnotQuandleKnot</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap32.html#X83DE5BA878103191">32.1-6 NumberOfHomomorphisms</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap32.html#X84A706527FE23BEB">32.1-7 PartitionedNumberOfHomomorphisms</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap32.html#X82013FC97875ADBC">32.1-8 ConjugationQuandle</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap32.html#X7F14F7B478D2BEB9">32.1-9 FirstQuandleAxiomIsSatisfied</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap32.html#X7CD0A53778B4B316">32.1-10 IsQuandle</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap32.html#X7A57441D7B508D15">32.1-11 Quandles</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap32.html#X87EF4BF57864D642">32.1-12 Quandle</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap32.html#X7BB746B478EC8B5F">32.1-13 IdQuandle</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap32.html#X7AAECD4B7A1EA8A3">32.1-14 IsLatin</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap32.html#X876784FB7A4F28AF">32.1-15 IsConnectedQuandle</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap32.html#X78C1102681E84FDC">32.1-16 ConnectedQuandles</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap32.html#X7C27E982797F6B08">32.1-17 ConnectedQuandle</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap32.html#X841BBAA87A1710E6">32.1-18 IdConnectedQuandle</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap32.html#X82D6ECA279C543B9">32.1-19 IsQuandleEnvelope</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap32.html#X87C70FD17E57A4C5">32.1-20 QuandleQuandleEnvelope</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap32.html#X7DAE45E17A191E6E">32.1-21 KnotInvariantCedric</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap32.html#X82F7689578D5EBAD">32.1-22 RightMultiplicationGroupAsPerm</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap32.html#X85EA01BD7F66DE1B">32.1-23 RightMultiplicationGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap32.html#X7C9885CC825835FC">32.1-24 AutomorphismGroupQuandleAsPerm</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap32.html#X7B3890EB85EB004A">32.1-25 AutomorphismGroupQuandle</a></span>
</div></div>
</div>
<h3>32 <span class="Heading"> Knots and Quandles </span></h3>
<p><a id="X7CFDEEC07F15CF82" name="X7CFDEEC07F15CF82"></a></p>
<h4>32.1 <span class="Heading"> </span></h4>
<p>Knots</p>
<p><a id="X8110BAD17D13F62D" name="X8110BAD17D13F62D"></a></p>
<h5>32.1-1 PresentationKnotQuandle</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PresentationKnotQuandle</code>( <var class="Arg">gaussCode</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a Gauss Code of a knot (with the orientations; see <span class="SimpleMath">GaussCodeOfPureCubicalKnot</span> in HAP package) and outputs the generators and relators of the knot quandle associated (in the form of a record).</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap6.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutQuandles2.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutQuandles.html">3</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutKnotsQuandles.html">4</a></span> </p>
<p><a id="X7E82CBA08724AEAA" name="X7E82CBA08724AEAA"></a></p>
<h5>32.1-2 PD2GC</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PD2GC</code>( <var class="Arg">PD</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a Planar Diagram of a knot; outputs the Gauss Code associated (with the orientations).</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutQuandles2.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutQuandles.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutKnotsQuandles.html">3</a></span> </p>
<p><a id="X81B7CD81869D5583" name="X81B7CD81869D5583"></a></p>
<h5>32.1-3 PlanarDiagramKnot</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PlanarDiagramKnot</code>( <var class="Arg">n</var>, <var class="Arg">k</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Returns a Planar Diagram for the <span class="SimpleMath">k</span>-th knot with <span class="SimpleMath">n</span> crossings (<span class="SimpleMath">n ≤ 12</span>) if it exists; fail otherwise.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutQuandles2.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutQuandles.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutKnotsQuandles.html">3</a></span> </p>
<p><a id="X7E9458058084E240" name="X7E9458058084E240"></a></p>
<h5>32.1-4 GaussCodeKnot</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ GaussCodeKnot</code>( <var class="Arg">n</var>, <var class="Arg">k</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Returns a Gauss Code (with orientations) for the <span class="SimpleMath">k</span>-th knot with <span class="SimpleMath">n</span> crossings (<span class="SimpleMath">n ≤ 12</span>) if it exists; fail otherwise.</p>
<p><strong class="button">Examples:</strong></p>
<p><a id="X8012B9B17BD20990" name="X8012B9B17BD20990"></a></p>
<h5>32.1-5 PresentationKnotQuandleKnot</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PresentationKnotQuandleKnot</code>( <var class="Arg">n</var>, <var class="Arg">k</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Returns generators and relators (in the form of a record) for the <span class="SimpleMath">k</span>-th knot with <span class="SimpleMath">n</span> crossings (<span class="SimpleMath">n ≤ 12</span>) if it exists; fail otherwise.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutQuandles2.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutQuandles.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutKnotsQuandles.html">3</a></span> </p>
<p><a id="X83DE5BA878103191" name="X83DE5BA878103191"></a></p>
<h5>32.1-6 NumberOfHomomorphisms</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ NumberOfHomomorphisms</code>( <var class="Arg">genRelQ</var>, <var class="Arg">finiteQ</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs generators and relators <span class="SimpleMath">genRelQ</span> of a knot quandle (in the form of a record, see above) and a finite quandle <span class="SimpleMath">finiteQ</span>; outputs the number of homomorphisms from the former to the latter.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap6.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutQuandles2.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutQuandles.html">3</a></span> </p>
<p><a id="X84A706527FE23BEB" name="X84A706527FE23BEB"></a></p>
<h5>32.1-7 PartitionedNumberOfHomomorphisms</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PartitionedNumberOfHomomorphisms</code>( <var class="Arg">genRelQ</var>, <var class="Arg">finiteQ</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs generators and relators <span class="SimpleMath">genRelQ</span> of a knot quandle (in the form of a record, see above) and a finite connected quandle <span class="SimpleMath">finiteQ</span>; outputs a partition of the number of homomorphisms from the former to the latter.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutQuandles.html">1</a></span> </p>
<p>Quandles</p>
<p><a id="X82013FC97875ADBC" name="X82013FC97875ADBC"></a></p>
<h5>32.1-8 ConjugationQuandle</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ConjugationQuandle</code>( <var class="Arg">G</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a finite group <span class="SimpleMath">G</span> and an integer <span class="SimpleMath">n</span>; outputs the associated <span class="SimpleMath">n</span>-fold conjugation quandle.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutQuandles2.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutQuandles.html">2</a></span> </p>
<p><a id="X7F14F7B478D2BEB9" name="X7F14F7B478D2BEB9"></a></p>
<h5>32.1-9 FirstQuandleAxiomIsSatisfied</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ FirstQuandleAxiomIsSatisfied</code>( <var class="Arg">M</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SecondQuandleAxiomIsSatisfied</code>( <var class="Arg">M</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ThirdQuandleAxiomIsSatisfied</code>( <var class="Arg">M</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a finite magma <span class="SimpleMath">M</span>; returns true if <span class="SimpleMath">M</span> satisfy the first/second/third axiom of a quandle, false otherwise.</p>
<p><strong class="button">Examples:</strong></p>
<p><a id="X7CD0A53778B4B316" name="X7CD0A53778B4B316"></a></p>
<h5>32.1-10 IsQuandle</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsQuandle</code>( <var class="Arg">M</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a finite magma <span class="SimpleMath">M</span>; returns true if <span class="SimpleMath">M</span> is a quandle, false otherwise.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutQuandles2.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutQuandles.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutKnotsQuandles.html">3</a></span> </p>
<p><a id="X7A57441D7B508D15" name="X7A57441D7B508D15"></a></p>
<h5>32.1-11 Quandles</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Quandles</code>( <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Returns a list of all quandles of size <span class="SimpleMath">n</span>, <span class="SimpleMath">n ≤ 6</span>. If <span class="SimpleMath">n ≥ 7</span>, it returns fail.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutPersistent.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoveringSpaces.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoverinSpaces.html">3</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutQuandles2.html">4</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutQuandles.html">5</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutKnotsQuandles.html">6</a></span> </p>
<p><a id="X87EF4BF57864D642" name="X87EF4BF57864D642"></a></p>
<h5>32.1-12 Quandle</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Quandle</code>( <var class="Arg">n</var>, <var class="Arg">k</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Returns the <span class="SimpleMath">k</span>-th quandle of size <span class="SimpleMath">n</span> (<span class="SimpleMath">n ≤ 6</span>) if such a quandle exists, fail otherwise.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap6.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPersistent.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoveringSpaces.html">3</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoverinSpaces.html">4</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutQuandles2.html">5</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutQuandles.html">6</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutKnotsQuandles.html">7</a></span> </p>
<p><a id="X7BB746B478EC8B5F" name="X7BB746B478EC8B5F"></a></p>
<h5>32.1-13 IdQuandle</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IdQuandle</code>( <var class="Arg">Q</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a quandle <span class="SimpleMath">Q</span>; and outputs a list of integers [<span class="SimpleMath">n</span>,<span class="SimpleMath">k</span>] such that <span class="SimpleMath">Q</span> is isomorphic to <span class="SimpleMath">Quandle(n,k)</span>. If <span class="SimpleMath">n ≥ 7</span>, then it returns [<span class="SimpleMath">n</span>,fail] (where <span class="SimpleMath">n</span> is the size of <span class="SimpleMath">Q</span>).</p>
<p><strong class="button">Examples:</strong></p>
<p><a id="X7AAECD4B7A1EA8A3" name="X7AAECD4B7A1EA8A3"></a></p>
<h5>32.1-14 IsLatin</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsLatin</code></td><td class="tdright">( global variable )</td></tr></table></div>
<p>Inputs a finite quandle <span class="SimpleMath">Q</span>; returns true if <span class="SimpleMath">Q</span> is latin, false otherwise.</p>
<p><strong class="button">Examples:</strong></p>
<p><a id="X876784FB7A4F28AF" name="X876784FB7A4F28AF"></a></p>
<h5>32.1-15 IsConnectedQuandle</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsConnectedQuandle</code></td><td class="tdright">( global variable )</td></tr></table></div>
<p>Inputs a finite quandle <span class="SimpleMath">Q</span>; returns true if <span class="SimpleMath">Q</span> is connected, false otherwise.</p>
<p><strong class="button">Examples:</strong></p>
<p><a id="X78C1102681E84FDC" name="X78C1102681E84FDC"></a></p>
<h5>32.1-16 ConnectedQuandles</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ConnectedQuandles</code>( <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Returns a list of all connected quandles of size <span class="SimpleMath">n</span>.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutQuandles2.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutQuandles.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutKnotsQuandles.html">3</a></span> </p>
<p><a id="X7C27E982797F6B08" name="X7C27E982797F6B08"></a></p>
<h5>32.1-17 ConnectedQuandle</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ConnectedQuandle</code>( <var class="Arg">n</var>, <var class="Arg">k</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Returns the <span class="SimpleMath">k</span>-th quandle of size <span class="SimpleMath">n</span> if such a quandle exists, fail otherwise.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap6.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutQuandles2.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutQuandles.html">3</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutKnotsQuandles.html">4</a></span> </p>
<p><a id="X841BBAA87A1710E6" name="X841BBAA87A1710E6"></a></p>
<h5>32.1-18 IdConnectedQuandle</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IdConnectedQuandle</code>( <var class="Arg">Q</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a connected quandle <span class="SimpleMath">Q</span>; and outputs a list of integers [<span class="SimpleMath">n</span>,<span class="SimpleMath">k</span>] such that <span class="SimpleMath">Q</span> is isomorphic to <span class="SimpleMath">ConnectedQuandle(n,k)</span>.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutQuandles.html">1</a></span> </p>
<p><a id="X82D6ECA279C543B9" name="X82D6ECA279C543B9"></a></p>
<h5>32.1-19 IsQuandleEnvelope</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsQuandleEnvelope</code>( <var class="Arg">Q</var>, <var class="Arg">G</var>, <var class="Arg">e</var>, <var class="Arg">stigma</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a set <span class="SimpleMath">Q</span>, a permutation group <span class="SimpleMath">G</span>, an element <span class="SimpleMath">e ∈ Q</span> and an element <span class="SimpleMath">stigma ∈ G</span>; returns true if this structure describes a quandle envelope, false otherwise.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutQuandles2.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutQuandles.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutKnotsQuandles.html">3</a></span> </p>
<p><a id="X87C70FD17E57A4C5" name="X87C70FD17E57A4C5"></a></p>
<h5>32.1-20 QuandleQuandleEnvelope</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ QuandleQuandleEnvelope</code>( <var class="Arg">Q</var>, <var class="Arg">G</var>, <var class="Arg">e</var>, <var class="Arg">stigma</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a set <span class="SimpleMath">Q</span>, a permutation group <span class="SimpleMath">G</span>, an element <span class="SimpleMath">e ∈ Q</span> and an element <span class="SimpleMath">stigma ∈ G</span>. If this structure describes a quandle envelope, the function returns the quandle from this quandle envelope; and fail otherwise. Nb: this quandle is a connected quandle.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutQuandles2.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutQuandles.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutKnotsQuandles.html">3</a></span> </p>
<p><a id="X7DAE45E17A191E6E" name="X7DAE45E17A191E6E"></a></p>
<h5>32.1-21 KnotInvariantCedric</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ KnotInvariantCedric</code>( <var class="Arg">genRelQ</var>, <var class="Arg">n</var>, <var class="Arg">m</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs generators and relators of a knot quandle (in the form of a record, see above) and two integers <span class="SimpleMath">n</span> and <span class="SimpleMath">m</span>; outputs a list [<span class="SimpleMath">n</span>1,<span class="SimpleMath">n</span>2,...,<span class="SimpleMath">n</span>k] where <span class="SimpleMath">n</span>j is a partition of the number of homomorphisms from the considered knot quandle to the <span class="SimpleMath">j</span>-th connected quandle of size <span class="SimpleMath">n ≤ i ≤ m</span>.</p>
<p><strong class="button">Examples:</strong></p>
<p><a id="X82F7689578D5EBAD" name="X82F7689578D5EBAD"></a></p>
<h5>32.1-22 RightMultiplicationGroupAsPerm</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ RightMultiplicationGroupAsPerm</code></td><td class="tdright">( global variable )</td></tr></table></div>
<p>Inputs a connected quandle <span class="SimpleMath">Q</span>; output its right multiplication group whose elements are permutations.</p>
<p><strong class="button">Examples:</strong></p>
<p><a id="X85EA01BD7F66DE1B" name="X85EA01BD7F66DE1B"></a></p>
<h5>32.1-23 RightMultiplicationGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ RightMultiplicationGroup</code></td><td class="tdright">( global variable )</td></tr></table></div>
<p>Inputs a connected quandle <span class="SimpleMath">Q</span>; output its right multiplication group whose elements are mappings from <span class="SimpleMath">Q</span> to <span class="SimpleMath">Q</span>.</p>
<p><strong class="button">Examples:</strong></p>
<p><a id="X7C9885CC825835FC" name="X7C9885CC825835FC"></a></p>
<h5>32.1-24 AutomorphismGroupQuandleAsPerm</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ AutomorphismGroupQuandleAsPerm</code>( <var class="Arg">Q</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a connected quandle <span class="SimpleMath">Q</span>; outputs its automorphism group whose elements are permutations.</p>
<p><strong class="button">Examples:</strong></p>
<p><a id="X7B3890EB85EB004A" name="X7B3890EB85EB004A"></a></p>
<h5>32.1-25 AutomorphismGroupQuandle</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ AutomorphismGroupQuandle</code>( <var class="Arg">Q</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a connected quandle <span class="SimpleMath">Q</span>; outputs its automorphism group whose elements are mappings from <span class="SimpleMath">Q</span> to <span class="SimpleMath">Q</span>.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutQuandles2.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutQuandles.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutKnotsQuandles.html">3</a></span> </p>
<div class="chlinkprevnextbot"> <a href="chap0.html">[Top of Book]</a> <a href="chap0.html#contents">[Contents]</a> <a href="chap31.html">[Previous Chapter]</a> <a href="chap33.html">[Next Chapter]</a> </div>
<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a> <a href="chap1.html">1</a> <a href="chap2.html">2</a> <a href="chap3.html">3</a> <a href="chap4.html">4</a> <a href="chap5.html">5</a> <a href="chap6.html">6</a> <a href="chap7.html">7</a> <a href="chap8.html">8</a> <a href="chap9.html">9</a> <a href="chap10.html">10</a> <a href="chap11.html">11</a> <a href="chap12.html">12</a> <a href="chap13.html">13</a> <a href="chap14.html">14</a> <a href="chap15.html">15</a> <a href="chap16.html">16</a> <a href="chap17.html">17</a> <a href="chap18.html">18</a> <a href="chap19.html">19</a> <a href="chap20.html">20</a> <a href="chap21.html">21</a> <a href="chap22.html">22</a> <a href="chap23.html">23</a> <a href="chap24.html">24</a> <a href="chap25.html">25</a> <a href="chap26.html">26</a> <a href="chap27.html">27</a> <a href="chap28.html">28</a> <a href="chap29.html">29</a> <a href="chap30.html">30</a> <a href="chap31.html">31</a> <a href="chap32.html">32</a> <a href="chap33.html">33</a> <a href="chap34.html">34</a> <a href="chap35.html">35</a> <a href="chap36.html">36</a> <a href="chap37.html">37</a> <a href="chap38.html">38</a> <a href="chap39.html">39</a> <a href="chap40.html">40</a> <a href="chapInd.html">Ind</a> </div>
<hr />
<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>
|