File: chap32.html

package info (click to toggle)
gap-hap 1.74%2Bds-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 58,664 kB
  • sloc: xml: 16,678; sh: 197; javascript: 155; makefile: 121; ansic: 47; perl: 24
file content (302 lines) | stat: -rw-r--r-- 28,651 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
         "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>GAP (HAP commands) - Chapter 32:  Knots and Quandles </title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap32"  onload="jscontent()">


<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a>  <a href="chap10.html">10</a>  <a href="chap11.html">11</a>  <a href="chap12.html">12</a>  <a href="chap13.html">13</a>  <a href="chap14.html">14</a>  <a href="chap15.html">15</a>  <a href="chap16.html">16</a>  <a href="chap17.html">17</a>  <a href="chap18.html">18</a>  <a href="chap19.html">19</a>  <a href="chap20.html">20</a>  <a href="chap21.html">21</a>  <a href="chap22.html">22</a>  <a href="chap23.html">23</a>  <a href="chap24.html">24</a>  <a href="chap25.html">25</a>  <a href="chap26.html">26</a>  <a href="chap27.html">27</a>  <a href="chap28.html">28</a>  <a href="chap29.html">29</a>  <a href="chap30.html">30</a>  <a href="chap31.html">31</a>  <a href="chap32.html">32</a>  <a href="chap33.html">33</a>  <a href="chap34.html">34</a>  <a href="chap35.html">35</a>  <a href="chap36.html">36</a>  <a href="chap37.html">37</a>  <a href="chap38.html">38</a>  <a href="chap39.html">39</a>  <a href="chap40.html">40</a>  <a href="chapInd.html">Ind</a>  </div>

<div class="chlinkprevnexttop">&nbsp;<a href="chap0.html">[Top of Book]</a>&nbsp;  <a href="chap0.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap31.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap33.html">[Next Chapter]</a>&nbsp;  </div>

<p id="mathjaxlink" class="pcenter"><a href="chap32_mj.html">[MathJax on]</a></p>
<p><a id="X83856E7178651841" name="X83856E7178651841"></a></p>
<div class="ChapSects"><a href="chap32.html#X83856E7178651841">32 <span class="Heading"> Knots and Quandles </span></a>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap32.html#X7CFDEEC07F15CF82">32.1 <span class="Heading">  </span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap32.html#X8110BAD17D13F62D">32.1-1 PresentationKnotQuandle</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap32.html#X7E82CBA08724AEAA">32.1-2 PD2GC</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap32.html#X81B7CD81869D5583">32.1-3 PlanarDiagramKnot</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap32.html#X7E9458058084E240">32.1-4 GaussCodeKnot</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap32.html#X8012B9B17BD20990">32.1-5 PresentationKnotQuandleKnot</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap32.html#X83DE5BA878103191">32.1-6 NumberOfHomomorphisms</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap32.html#X84A706527FE23BEB">32.1-7 PartitionedNumberOfHomomorphisms</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap32.html#X82013FC97875ADBC">32.1-8 ConjugationQuandle</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap32.html#X7F14F7B478D2BEB9">32.1-9 FirstQuandleAxiomIsSatisfied</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap32.html#X7CD0A53778B4B316">32.1-10 IsQuandle</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap32.html#X7A57441D7B508D15">32.1-11 Quandles</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap32.html#X87EF4BF57864D642">32.1-12 Quandle</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap32.html#X7BB746B478EC8B5F">32.1-13 IdQuandle</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap32.html#X7AAECD4B7A1EA8A3">32.1-14 IsLatin</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap32.html#X876784FB7A4F28AF">32.1-15 IsConnectedQuandle</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap32.html#X78C1102681E84FDC">32.1-16 ConnectedQuandles</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap32.html#X7C27E982797F6B08">32.1-17 ConnectedQuandle</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap32.html#X841BBAA87A1710E6">32.1-18 IdConnectedQuandle</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap32.html#X82D6ECA279C543B9">32.1-19 IsQuandleEnvelope</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap32.html#X87C70FD17E57A4C5">32.1-20 QuandleQuandleEnvelope</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap32.html#X7DAE45E17A191E6E">32.1-21 KnotInvariantCedric</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap32.html#X82F7689578D5EBAD">32.1-22 RightMultiplicationGroupAsPerm</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap32.html#X85EA01BD7F66DE1B">32.1-23 RightMultiplicationGroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap32.html#X7C9885CC825835FC">32.1-24 AutomorphismGroupQuandleAsPerm</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap32.html#X7B3890EB85EB004A">32.1-25 AutomorphismGroupQuandle</a></span>
</div></div>
</div>

<h3>32 <span class="Heading"> Knots and Quandles </span></h3>

<p><a id="X7CFDEEC07F15CF82" name="X7CFDEEC07F15CF82"></a></p>

<h4>32.1 <span class="Heading">  </span></h4>

<p>Knots</p>

<p><a id="X8110BAD17D13F62D" name="X8110BAD17D13F62D"></a></p>

<h5>32.1-1 PresentationKnotQuandle</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PresentationKnotQuandle</code>( <var class="Arg">gaussCode</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a Gauss Code of a knot (with the orientations; see <span class="SimpleMath">GaussCodeOfPureCubicalKnot</span> in HAP package) and outputs the generators and relators of the knot quandle associated (in the form of a record).</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap6.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutQuandles2.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutQuandles.html">3</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutKnotsQuandles.html">4</a></span> </p>

<p><a id="X7E82CBA08724AEAA" name="X7E82CBA08724AEAA"></a></p>

<h5>32.1-2 PD2GC</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PD2GC</code>( <var class="Arg">PD</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a Planar Diagram of a knot; outputs the Gauss Code associated (with the orientations).</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutQuandles2.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutQuandles.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutKnotsQuandles.html">3</a></span> </p>

<p><a id="X81B7CD81869D5583" name="X81B7CD81869D5583"></a></p>

<h5>32.1-3 PlanarDiagramKnot</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PlanarDiagramKnot</code>( <var class="Arg">n</var>, <var class="Arg">k</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Returns a Planar Diagram for the <span class="SimpleMath">k</span>-th knot with <span class="SimpleMath">n</span> crossings (<span class="SimpleMath">n ≤ 12</span>) if it exists; fail otherwise.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutQuandles2.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutQuandles.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutKnotsQuandles.html">3</a></span> </p>

<p><a id="X7E9458058084E240" name="X7E9458058084E240"></a></p>

<h5>32.1-4 GaussCodeKnot</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; GaussCodeKnot</code>( <var class="Arg">n</var>, <var class="Arg">k</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Returns a Gauss Code (with orientations) for the <span class="SimpleMath">k</span>-th knot with <span class="SimpleMath">n</span> crossings (<span class="SimpleMath">n ≤ 12</span>) if it exists; fail otherwise.</p>

<p><strong class="button">Examples:</strong></p>

<p><a id="X8012B9B17BD20990" name="X8012B9B17BD20990"></a></p>

<h5>32.1-5 PresentationKnotQuandleKnot</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PresentationKnotQuandleKnot</code>( <var class="Arg">n</var>, <var class="Arg">k</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Returns generators and relators (in the form of a record) for the <span class="SimpleMath">k</span>-th knot with <span class="SimpleMath">n</span> crossings (<span class="SimpleMath">n ≤ 12</span>) if it exists; fail otherwise.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutQuandles2.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutQuandles.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutKnotsQuandles.html">3</a></span> </p>

<p><a id="X83DE5BA878103191" name="X83DE5BA878103191"></a></p>

<h5>32.1-6 NumberOfHomomorphisms</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; NumberOfHomomorphisms</code>( <var class="Arg">genRelQ</var>, <var class="Arg">finiteQ</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs generators and relators <span class="SimpleMath">genRelQ</span> of a knot quandle (in the form of a record, see above) and a finite quandle <span class="SimpleMath">finiteQ</span>; outputs the number of homomorphisms from the former to the latter.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap6.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutQuandles2.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutQuandles.html">3</a></span> </p>

<p><a id="X84A706527FE23BEB" name="X84A706527FE23BEB"></a></p>

<h5>32.1-7 PartitionedNumberOfHomomorphisms</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PartitionedNumberOfHomomorphisms</code>( <var class="Arg">genRelQ</var>, <var class="Arg">finiteQ</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs generators and relators <span class="SimpleMath">genRelQ</span> of a knot quandle (in the form of a record, see above) and a finite connected quandle <span class="SimpleMath">finiteQ</span>; outputs a partition of the number of homomorphisms from the former to the latter.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutQuandles.html">1</a></span> </p>

<p>Quandles</p>

<p><a id="X82013FC97875ADBC" name="X82013FC97875ADBC"></a></p>

<h5>32.1-8 ConjugationQuandle</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ConjugationQuandle</code>( <var class="Arg">G</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a finite group <span class="SimpleMath">G</span> and an integer <span class="SimpleMath">n</span>; outputs the associated <span class="SimpleMath">n</span>-fold conjugation quandle.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutQuandles2.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutQuandles.html">2</a></span> </p>

<p><a id="X7F14F7B478D2BEB9" name="X7F14F7B478D2BEB9"></a></p>

<h5>32.1-9 FirstQuandleAxiomIsSatisfied</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; FirstQuandleAxiomIsSatisfied</code>( <var class="Arg">M</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SecondQuandleAxiomIsSatisfied</code>( <var class="Arg">M</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ThirdQuandleAxiomIsSatisfied</code>( <var class="Arg">M</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a finite magma <span class="SimpleMath">M</span>; returns true if <span class="SimpleMath">M</span> satisfy the first/second/third axiom of a quandle, false otherwise.</p>

<p><strong class="button">Examples:</strong></p>

<p><a id="X7CD0A53778B4B316" name="X7CD0A53778B4B316"></a></p>

<h5>32.1-10 IsQuandle</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsQuandle</code>( <var class="Arg">M</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a finite magma <span class="SimpleMath">M</span>; returns true if <span class="SimpleMath">M</span> is a quandle, false otherwise.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutQuandles2.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutQuandles.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutKnotsQuandles.html">3</a></span> </p>

<p><a id="X7A57441D7B508D15" name="X7A57441D7B508D15"></a></p>

<h5>32.1-11 Quandles</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Quandles</code>( <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Returns a list of all quandles of size <span class="SimpleMath">n</span>, <span class="SimpleMath">n ≤ 6</span>. If <span class="SimpleMath">n ≥ 7</span>, it returns fail.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutPersistent.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoveringSpaces.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoverinSpaces.html">3</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutQuandles2.html">4</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutQuandles.html">5</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutKnotsQuandles.html">6</a></span> </p>

<p><a id="X87EF4BF57864D642" name="X87EF4BF57864D642"></a></p>

<h5>32.1-12 Quandle</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Quandle</code>( <var class="Arg">n</var>, <var class="Arg">k</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Returns the <span class="SimpleMath">k</span>-th quandle of size <span class="SimpleMath">n</span> (<span class="SimpleMath">n ≤ 6</span>) if such a quandle exists, fail otherwise.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap6.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPersistent.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoveringSpaces.html">3</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoverinSpaces.html">4</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutQuandles2.html">5</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutQuandles.html">6</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutKnotsQuandles.html">7</a></span> </p>

<p><a id="X7BB746B478EC8B5F" name="X7BB746B478EC8B5F"></a></p>

<h5>32.1-13 IdQuandle</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IdQuandle</code>( <var class="Arg">Q</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a quandle <span class="SimpleMath">Q</span>; and outputs a list of integers [<span class="SimpleMath">n</span>,<span class="SimpleMath">k</span>] such that <span class="SimpleMath">Q</span> is isomorphic to <span class="SimpleMath">Quandle(n,k)</span>. If <span class="SimpleMath">n ≥ 7</span>, then it returns [<span class="SimpleMath">n</span>,fail] (where <span class="SimpleMath">n</span> is the size of <span class="SimpleMath">Q</span>).</p>

<p><strong class="button">Examples:</strong></p>

<p><a id="X7AAECD4B7A1EA8A3" name="X7AAECD4B7A1EA8A3"></a></p>

<h5>32.1-14 IsLatin</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsLatin</code></td><td class="tdright">(&nbsp;global variable&nbsp;)</td></tr></table></div>
<p>Inputs a finite quandle <span class="SimpleMath">Q</span>; returns true if <span class="SimpleMath">Q</span> is latin, false otherwise.</p>

<p><strong class="button">Examples:</strong></p>

<p><a id="X876784FB7A4F28AF" name="X876784FB7A4F28AF"></a></p>

<h5>32.1-15 IsConnectedQuandle</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsConnectedQuandle</code></td><td class="tdright">(&nbsp;global variable&nbsp;)</td></tr></table></div>
<p>Inputs a finite quandle <span class="SimpleMath">Q</span>; returns true if <span class="SimpleMath">Q</span> is connected, false otherwise.</p>

<p><strong class="button">Examples:</strong></p>

<p><a id="X78C1102681E84FDC" name="X78C1102681E84FDC"></a></p>

<h5>32.1-16 ConnectedQuandles</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ConnectedQuandles</code>( <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Returns a list of all connected quandles of size <span class="SimpleMath">n</span>.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutQuandles2.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutQuandles.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutKnotsQuandles.html">3</a></span> </p>

<p><a id="X7C27E982797F6B08" name="X7C27E982797F6B08"></a></p>

<h5>32.1-17 ConnectedQuandle</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ConnectedQuandle</code>( <var class="Arg">n</var>, <var class="Arg">k</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Returns the <span class="SimpleMath">k</span>-th quandle of size <span class="SimpleMath">n</span> if such a quandle exists, fail otherwise.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap6.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutQuandles2.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutQuandles.html">3</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutKnotsQuandles.html">4</a></span> </p>

<p><a id="X841BBAA87A1710E6" name="X841BBAA87A1710E6"></a></p>

<h5>32.1-18 IdConnectedQuandle</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IdConnectedQuandle</code>( <var class="Arg">Q</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a connected quandle <span class="SimpleMath">Q</span>; and outputs a list of integers [<span class="SimpleMath">n</span>,<span class="SimpleMath">k</span>] such that <span class="SimpleMath">Q</span> is isomorphic to <span class="SimpleMath">ConnectedQuandle(n,k)</span>.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutQuandles.html">1</a></span> </p>

<p><a id="X82D6ECA279C543B9" name="X82D6ECA279C543B9"></a></p>

<h5>32.1-19 IsQuandleEnvelope</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsQuandleEnvelope</code>( <var class="Arg">Q</var>, <var class="Arg">G</var>, <var class="Arg">e</var>, <var class="Arg">stigma</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a set <span class="SimpleMath">Q</span>, a permutation group <span class="SimpleMath">G</span>, an element <span class="SimpleMath">e ∈ Q</span> and an element <span class="SimpleMath">stigma ∈ G</span>; returns true if this structure describes a quandle envelope, false otherwise.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutQuandles2.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutQuandles.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutKnotsQuandles.html">3</a></span> </p>

<p><a id="X87C70FD17E57A4C5" name="X87C70FD17E57A4C5"></a></p>

<h5>32.1-20 QuandleQuandleEnvelope</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; QuandleQuandleEnvelope</code>( <var class="Arg">Q</var>, <var class="Arg">G</var>, <var class="Arg">e</var>, <var class="Arg">stigma</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a set <span class="SimpleMath">Q</span>, a permutation group <span class="SimpleMath">G</span>, an element <span class="SimpleMath">e ∈ Q</span> and an element <span class="SimpleMath">stigma ∈ G</span>. If this structure describes a quandle envelope, the function returns the quandle from this quandle envelope; and fail otherwise. Nb: this quandle is a connected quandle.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutQuandles2.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutQuandles.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutKnotsQuandles.html">3</a></span> </p>

<p><a id="X7DAE45E17A191E6E" name="X7DAE45E17A191E6E"></a></p>

<h5>32.1-21 KnotInvariantCedric</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; KnotInvariantCedric</code>( <var class="Arg">genRelQ</var>, <var class="Arg">n</var>, <var class="Arg">m</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs generators and relators of a knot quandle (in the form of a record, see above) and two integers <span class="SimpleMath">n</span> and <span class="SimpleMath">m</span>; outputs a list [<span class="SimpleMath">n</span>1,<span class="SimpleMath">n</span>2,...,<span class="SimpleMath">n</span>k] where <span class="SimpleMath">n</span>j is a partition of the number of homomorphisms from the considered knot quandle to the <span class="SimpleMath">j</span>-th connected quandle of size <span class="SimpleMath">n ≤ i ≤ m</span>.</p>

<p><strong class="button">Examples:</strong></p>

<p><a id="X82F7689578D5EBAD" name="X82F7689578D5EBAD"></a></p>

<h5>32.1-22 RightMultiplicationGroupAsPerm</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RightMultiplicationGroupAsPerm</code></td><td class="tdright">(&nbsp;global variable&nbsp;)</td></tr></table></div>
<p>Inputs a connected quandle <span class="SimpleMath">Q</span>; output its right multiplication group whose elements are permutations.</p>

<p><strong class="button">Examples:</strong></p>

<p><a id="X85EA01BD7F66DE1B" name="X85EA01BD7F66DE1B"></a></p>

<h5>32.1-23 RightMultiplicationGroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RightMultiplicationGroup</code></td><td class="tdright">(&nbsp;global variable&nbsp;)</td></tr></table></div>
<p>Inputs a connected quandle <span class="SimpleMath">Q</span>; output its right multiplication group whose elements are mappings from <span class="SimpleMath">Q</span> to <span class="SimpleMath">Q</span>.</p>

<p><strong class="button">Examples:</strong></p>

<p><a id="X7C9885CC825835FC" name="X7C9885CC825835FC"></a></p>

<h5>32.1-24 AutomorphismGroupQuandleAsPerm</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; AutomorphismGroupQuandleAsPerm</code>( <var class="Arg">Q</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a connected quandle <span class="SimpleMath">Q</span>; outputs its automorphism group whose elements are permutations.</p>

<p><strong class="button">Examples:</strong></p>

<p><a id="X7B3890EB85EB004A" name="X7B3890EB85EB004A"></a></p>

<h5>32.1-25 AutomorphismGroupQuandle</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; AutomorphismGroupQuandle</code>( <var class="Arg">Q</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a connected quandle <span class="SimpleMath">Q</span>; outputs its automorphism group whose elements are mappings from <span class="SimpleMath">Q</span> to <span class="SimpleMath">Q</span>.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutQuandles2.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutQuandles.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutKnotsQuandles.html">3</a></span> </p>


<div class="chlinkprevnextbot">&nbsp;<a href="chap0.html">[Top of Book]</a>&nbsp;  <a href="chap0.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap31.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap33.html">[Next Chapter]</a>&nbsp;  </div>


<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a>  <a href="chap10.html">10</a>  <a href="chap11.html">11</a>  <a href="chap12.html">12</a>  <a href="chap13.html">13</a>  <a href="chap14.html">14</a>  <a href="chap15.html">15</a>  <a href="chap16.html">16</a>  <a href="chap17.html">17</a>  <a href="chap18.html">18</a>  <a href="chap19.html">19</a>  <a href="chap20.html">20</a>  <a href="chap21.html">21</a>  <a href="chap22.html">22</a>  <a href="chap23.html">23</a>  <a href="chap24.html">24</a>  <a href="chap25.html">25</a>  <a href="chap26.html">26</a>  <a href="chap27.html">27</a>  <a href="chap28.html">28</a>  <a href="chap29.html">29</a>  <a href="chap30.html">30</a>  <a href="chap31.html">31</a>  <a href="chap32.html">32</a>  <a href="chap33.html">33</a>  <a href="chap34.html">34</a>  <a href="chap35.html">35</a>  <a href="chap36.html">36</a>  <a href="chap37.html">37</a>  <a href="chap38.html">38</a>  <a href="chap39.html">39</a>  <a href="chap40.html">40</a>  <a href="chapInd.html">Ind</a>  </div>

<hr />
<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>