File: chap33.html

package info (click to toggle)
gap-hap 1.74%2Bds-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 58,664 kB
  • sloc: xml: 16,678; sh: 197; javascript: 155; makefile: 121; ansic: 47; perl: 24
file content (151 lines) | stat: -rw-r--r-- 16,791 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
         "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>GAP (HAP commands) - Chapter 33:  Finite metric spaces and their filtered complexes </title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap33"  onload="jscontent()">


<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a>  <a href="chap10.html">10</a>  <a href="chap11.html">11</a>  <a href="chap12.html">12</a>  <a href="chap13.html">13</a>  <a href="chap14.html">14</a>  <a href="chap15.html">15</a>  <a href="chap16.html">16</a>  <a href="chap17.html">17</a>  <a href="chap18.html">18</a>  <a href="chap19.html">19</a>  <a href="chap20.html">20</a>  <a href="chap21.html">21</a>  <a href="chap22.html">22</a>  <a href="chap23.html">23</a>  <a href="chap24.html">24</a>  <a href="chap25.html">25</a>  <a href="chap26.html">26</a>  <a href="chap27.html">27</a>  <a href="chap28.html">28</a>  <a href="chap29.html">29</a>  <a href="chap30.html">30</a>  <a href="chap31.html">31</a>  <a href="chap32.html">32</a>  <a href="chap33.html">33</a>  <a href="chap34.html">34</a>  <a href="chap35.html">35</a>  <a href="chap36.html">36</a>  <a href="chap37.html">37</a>  <a href="chap38.html">38</a>  <a href="chap39.html">39</a>  <a href="chap40.html">40</a>  <a href="chapInd.html">Ind</a>  </div>

<div class="chlinkprevnexttop">&nbsp;<a href="chap0.html">[Top of Book]</a>&nbsp;  <a href="chap0.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap32.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap34.html">[Next Chapter]</a>&nbsp;  </div>

<p id="mathjaxlink" class="pcenter"><a href="chap33_mj.html">[MathJax on]</a></p>
<p><a id="X7988ECB7803BA915" name="X7988ECB7803BA915"></a></p>
<div class="ChapSects"><a href="chap33.html#X7988ECB7803BA915">33 <span class="Heading"> Finite metric spaces and their filtered complexes </span></a>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap33.html#X7CFDEEC07F15CF82">33.1 <span class="Heading">  </span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap33.html#X7F8113757F7DD2F4">33.1-1 CayleyMetric</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap33.html#X79DA33CB7D46CAB4">33.1-2 HammingMetric</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap33.html#X7BD62D75829F8701">33.1-3 KendallMetric</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap33.html#X789AE7CE8445A67C">33.1-4 EuclideanSquaredMetric</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap33.html#X79497F698557427E">33.1-5 EuclideanApproximatedMetric</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap33.html#X8763D1167EF519A1">33.1-6 ManhattanMetric</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap33.html#X7C86B58A7CEA5513">33.1-7 VectorsToSymmetricMatrix</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap33.html#X7895AABC7904E9CA">33.1-8 SymmetricMatDisplay</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap33.html#X79CA51F27C07435C">33.1-9 SymmetricMatrixToFilteredGraph</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap33.html#X8720F77B7ED74747">33.1-10 PermGroupToFilteredGraph</a></span>
</div></div>
</div>

<h3>33 <span class="Heading"> Finite metric spaces and their filtered complexes </span></h3>

<p><a id="X7CFDEEC07F15CF82" name="X7CFDEEC07F15CF82"></a></p>

<h4>33.1 <span class="Heading">  </span></h4>

<p><a id="X7F8113757F7DD2F4" name="X7F8113757F7DD2F4"></a></p>

<h5>33.1-1 CayleyMetric</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; CayleyMetric</code>( <var class="Arg">g</var>, <var class="Arg">h</var>, <var class="Arg">N</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; CayleyMetric</code>( <var class="Arg">g</var>, <var class="Arg">h</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs two permutations <span class="SimpleMath">g,h</span> and optionally the degree <span class="SimpleMath">N</span> of a symmetric group containing them. It returns the minimum number of transpositions needed to express <span class="SimpleMath">g*h^-1</span> as a product of transpositions.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutMetrics.html">1</a></span> </p>

<p><a id="X79DA33CB7D46CAB4" name="X79DA33CB7D46CAB4"></a></p>

<h5>33.1-2 HammingMetric</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; HammingMetric</code>( <var class="Arg">g</var>, <var class="Arg">h</var>, <var class="Arg">N</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; HammingMetric</code>( <var class="Arg">g</var>, <var class="Arg">h</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs two permutations <span class="SimpleMath">g,h</span> and optionally the degree <span class="SimpleMath">N</span> of a symmetric group containing them. It returns the number of integers moved by the permutation <span class="SimpleMath">g*h^-1</span>.</p>

<p><strong class="button">Examples:</strong></p>

<p><a id="X7BD62D75829F8701" name="X7BD62D75829F8701"></a></p>

<h5>33.1-3 KendallMetric</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; KendallMetric</code>( <var class="Arg">g</var>, <var class="Arg">h</var>, <var class="Arg">N</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; KendallMetric</code>( <var class="Arg">g</var>, <var class="Arg">h</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs two permutations <span class="SimpleMath">g,h</span> and optionally the degree <span class="SimpleMath">N</span> of a symmetric group containing them. It returns the minimum number of adjacent transpositions needed to express <span class="SimpleMath">g^-1*h</span> as a product of adjacent transpositions. An adjacent transposition has the form <span class="SimpleMath">(i,i+1)</span>.</p>

<p><strong class="button">Examples:</strong></p>

<p><a id="X789AE7CE8445A67C" name="X789AE7CE8445A67C"></a></p>

<h5>33.1-4 EuclideanSquaredMetric</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; EuclideanSquaredMetric</code>( <var class="Arg">v</var>, <var class="Arg">w</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs two vectors <span class="SimpleMath">v,w</span> of equal length and returns the sum of the squares of the components of <span class="SimpleMath">v-w</span>. In other words, it returns the square of the Euclidean distance between <span class="SimpleMath">v</span> and <span class="SimpleMath">w</span>.</p>

<p><strong class="button">Examples:</strong></p>

<p><a id="X79497F698557427E" name="X79497F698557427E"></a></p>

<h5>33.1-5 EuclideanApproximatedMetric</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; EuclideanApproximatedMetric</code>( <var class="Arg">v</var>, <var class="Arg">w</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs two vectors <span class="SimpleMath">v,w</span> of equal length and returns a rational approximation to the square root of the sum of the squares of the components of <span class="SimpleMath">v-w</span>. In other words, it returns an approximation to the Euclidean distance between <span class="SimpleMath">v</span> and <span class="SimpleMath">w</span>.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap5.html">1</a></span> , <span class="URL"><a href="../tutorial/chap10.html">2</a></span> </p>

<p><a id="X8763D1167EF519A1" name="X8763D1167EF519A1"></a></p>

<h5>33.1-6 ManhattanMetric</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ManhattanMetric</code>( <var class="Arg">v</var>, <var class="Arg">w</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs two vectors <span class="SimpleMath">v,w</span> of equal length and returns the sum of the absolute values of the components of <span class="SimpleMath">v-w</span>. This is often referred to as the taxi-cab distance between <span class="SimpleMath">v</span> and <span class="SimpleMath">w</span>.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutMetrics.html">1</a></span> </p>

<p><a id="X7C86B58A7CEA5513" name="X7C86B58A7CEA5513"></a></p>

<h5>33.1-7 VectorsToSymmetricMatrix</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; VectorsToSymmetricMatrix</code>( <var class="Arg">L</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; VectorsToSymmetricMatrix</code>( <var class="Arg">L</var>, <var class="Arg">D</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a list <span class="SimpleMath">L</span> of vectors and optionally a metric <span class="SimpleMath">D</span>. The default is <span class="SimpleMath">D=ManhattanMetric</span>. It returns the symmetric matrix whose i-j-entry is <span class="SimpleMath">S[i][j]=D(L[i],L[j])</span>.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap5.html">1</a></span> , <span class="URL"><a href="../tutorial/chap10.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutMetrics.html">3</a></span> </p>

<p><a id="X7895AABC7904E9CA" name="X7895AABC7904E9CA"></a></p>

<h5>33.1-8 SymmetricMatDisplay</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SymmetricMatDisplay</code>( <var class="Arg">S</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SymmetricMatDisplay</code>( <var class="Arg">L</var>, <var class="Arg">V</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs an <span class="SimpleMath">n × n</span> symmetric matrix <span class="SimpleMath">S</span> of non-negative integers and an integer <span class="SimpleMath">t</span> in <span class="SimpleMath">[0 .. 100]</span>. Optionally it inputs a list <span class="SimpleMath">V=[V_1, ... , V_k]</span> of disjoint subsets of <span class="SimpleMath">[1 .. n]</span>. It displays the graph with vertex set <span class="SimpleMath">[1 .. n]</span> and with an edge between <span class="SimpleMath">i</span> and <span class="SimpleMath">j</span> if <span class="SimpleMath">S[i][j] &lt; t</span>. If the optional list <span class="SimpleMath">V</span> is input then the vertices in <span class="SimpleMath">V_i</span> will be given a common colour distinct from other vertices.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutMetrics.html">1</a></span> </p>

<p><a id="X79CA51F27C07435C" name="X79CA51F27C07435C"></a></p>

<h5>33.1-9 SymmetricMatrixToFilteredGraph</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SymmetricMatrixToFilteredGraph</code>( <var class="Arg">S</var>, <var class="Arg">t</var>, <var class="Arg">m</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs an integer symmetric matrix <span class="SimpleMath">S</span>, a positive integer <span class="SimpleMath">t</span> and a positive integer <span class="SimpleMath">m</span>. The function returns a filtered graph of filtration length <span class="SimpleMath">t</span>. The <span class="SimpleMath">k</span>-th term of the filtration is a graph with one vertex for each row of <span class="SimpleMath">S</span>. There is an edge in this graph between the <span class="SimpleMath">i</span>-th and <span class="SimpleMath">j</span>-th vertices if the entry <span class="SimpleMath">S[i][j]</span> is less than or equal to <span class="SimpleMath">k*m/t</span>.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap5.html">1</a></span> , <span class="URL"><a href="../tutorial/chap10.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPersistent.html">3</a></span> </p>

<p><a id="X8720F77B7ED74747" name="X8720F77B7ED74747"></a></p>

<h5>33.1-10 PermGroupToFilteredGraph</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PermGroupToFilteredGraph</code>( <var class="Arg">S</var>, <var class="Arg">D</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a permutation group <span class="SimpleMath">G</span> and a metric <span class="SimpleMath">D</span> defined on permutations. The function returns a filtered graph. The <span class="SimpleMath">k</span>-th term of the filtration is a graph with one vertex for each element of the group <span class="SimpleMath">G</span>. There is an edge in this graph between vertices <span class="SimpleMath">g</span> and <span class="SimpleMath">h</span> if <span class="SimpleMath">D(g,h)</span> is less than some integer threshold <span class="SimpleMath">t_k</span>. The thresholds <span class="SimpleMath">t_1 &lt; t_2 &lt; ... &lt; t_N</span> are chosen to form as long a sequence as possible subject to each term of the filtration being a distinct graph.</p>

<p><strong class="button">Examples:</strong></p>


<div class="chlinkprevnextbot">&nbsp;<a href="chap0.html">[Top of Book]</a>&nbsp;  <a href="chap0.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap32.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap34.html">[Next Chapter]</a>&nbsp;  </div>


<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a>  <a href="chap10.html">10</a>  <a href="chap11.html">11</a>  <a href="chap12.html">12</a>  <a href="chap13.html">13</a>  <a href="chap14.html">14</a>  <a href="chap15.html">15</a>  <a href="chap16.html">16</a>  <a href="chap17.html">17</a>  <a href="chap18.html">18</a>  <a href="chap19.html">19</a>  <a href="chap20.html">20</a>  <a href="chap21.html">21</a>  <a href="chap22.html">22</a>  <a href="chap23.html">23</a>  <a href="chap24.html">24</a>  <a href="chap25.html">25</a>  <a href="chap26.html">26</a>  <a href="chap27.html">27</a>  <a href="chap28.html">28</a>  <a href="chap29.html">29</a>  <a href="chap30.html">30</a>  <a href="chap31.html">31</a>  <a href="chap32.html">32</a>  <a href="chap33.html">33</a>  <a href="chap34.html">34</a>  <a href="chap35.html">35</a>  <a href="chap36.html">36</a>  <a href="chap37.html">37</a>  <a href="chap38.html">38</a>  <a href="chap39.html">39</a>  <a href="chap40.html">40</a>  <a href="chapInd.html">Ind</a>  </div>

<hr />
<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>