File: chap34.html

package info (click to toggle)
gap-hap 1.74%2Bds-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 58,664 kB
  • sloc: xml: 16,678; sh: 197; javascript: 155; makefile: 121; ansic: 47; perl: 24
file content (261 lines) | stat: -rw-r--r-- 23,907 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
         "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>GAP (HAP commands) - Chapter 34:  Commutative diagrams and abstract categories</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap34"  onload="jscontent()">


<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a>  <a href="chap10.html">10</a>  <a href="chap11.html">11</a>  <a href="chap12.html">12</a>  <a href="chap13.html">13</a>  <a href="chap14.html">14</a>  <a href="chap15.html">15</a>  <a href="chap16.html">16</a>  <a href="chap17.html">17</a>  <a href="chap18.html">18</a>  <a href="chap19.html">19</a>  <a href="chap20.html">20</a>  <a href="chap21.html">21</a>  <a href="chap22.html">22</a>  <a href="chap23.html">23</a>  <a href="chap24.html">24</a>  <a href="chap25.html">25</a>  <a href="chap26.html">26</a>  <a href="chap27.html">27</a>  <a href="chap28.html">28</a>  <a href="chap29.html">29</a>  <a href="chap30.html">30</a>  <a href="chap31.html">31</a>  <a href="chap32.html">32</a>  <a href="chap33.html">33</a>  <a href="chap34.html">34</a>  <a href="chap35.html">35</a>  <a href="chap36.html">36</a>  <a href="chap37.html">37</a>  <a href="chap38.html">38</a>  <a href="chap39.html">39</a>  <a href="chap40.html">40</a>  <a href="chapInd.html">Ind</a>  </div>

<div class="chlinkprevnexttop">&nbsp;<a href="chap0.html">[Top of Book]</a>&nbsp;  <a href="chap0.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap33.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap35.html">[Next Chapter]</a>&nbsp;  </div>

<p id="mathjaxlink" class="pcenter"><a href="chap34_mj.html">[MathJax on]</a></p>
<p><a id="X83AAC8367CC7686F" name="X83AAC8367CC7686F"></a></p>
<div class="ChapSects"><a href="chap34.html#X83AAC8367CC7686F">34 <span class="Heading"> Commutative diagrams and abstract categories</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap34.html#X7CFDEEC07F15CF82">34.1 <span class="Heading">  </span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap34.html#X7B9157D578F3A25A">34.1-1 HomomorphismChainToCommutativeDiagram</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap34.html#X80840B51839EDEF3">34.1-2 NormalSeriesToQuotientDiagram</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap34.html#X7F433F027A1093E6">34.1-3 NerveOfCommutativeDiagram</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap34.html#X85278C6C7D2495A5">34.1-4 GroupHomologyOfCommutativeDiagram</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap34.html#X7E687DBD787A68BD">34.1-5 PersistentHomologyOfCommutativeDiagramOfPGroups</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap34.html#X7CFDEEC07F15CF82">34.2 <span class="Heading">  </span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap34.html#X806E560D7883B995">34.2-1 CategoricalEnrichment</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap34.html#X78C3228682279032">34.2-2 IdentityArrow</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap34.html#X7E5C1D4D785E20B6">34.2-3 InitialArrow</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap34.html#X7B9F14497D770AB0">34.2-4 TerminalArrow</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap34.html#X864688708741BADF">34.2-5 HasInitialObject</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap34.html#X78ED3C0778BB65FE">34.2-6 HasTerminalObject</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap34.html#X7DE8173F80E07AB1">34.2-7 Source</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap34.html#X7C76423782BA2868">34.2-8 Target</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap34.html#X81C3CA4183D53AD5">34.2-9 CategoryName</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap34.html#X80825C317FCA49E3">34.2-10 CompositionEqualityAdditionMinus</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap34.html#X829A6A767BD96D34">34.2-11 Object</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap34.html#X87F6B07083307724">34.2-12 Mapping</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap34.html#X78E3186D83B7B92B">34.2-13 IsCategoryObject</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap34.html#X792400427CBA758A">34.2-14 IsCategoryArrow</a></span>
</div></div>
</div>

<h3>34 <span class="Heading"> Commutative diagrams and abstract categories</span></h3>

<p><strong class="button">COMMUTATIVE DIAGRAMS</strong> <br /></p>

<p><a id="X7CFDEEC07F15CF82" name="X7CFDEEC07F15CF82"></a></p>

<h4>34.1 <span class="Heading">  </span></h4>

<p><a id="X7B9157D578F3A25A" name="X7B9157D578F3A25A"></a></p>

<h5>34.1-1 HomomorphismChainToCommutativeDiagram</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; HomomorphismChainToCommutativeDiagram</code>( <var class="Arg">H</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a list <span class="SimpleMath">H=[h_1,h_2,...,h_n]</span> of mappings such that the composite <span class="SimpleMath">h_1h_2...h_n</span> is defined. It returns the list of composable homomorphism as a commutative diagram.</p>

<p><strong class="button">Examples:</strong></p>

<p><a id="X80840B51839EDEF3" name="X80840B51839EDEF3"></a></p>

<h5>34.1-2 NormalSeriesToQuotientDiagram</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; NormalSeriesToQuotientDiagram</code>( <var class="Arg">L</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; NormalSeriesToQuotientDiagram</code>( <var class="Arg">L</var>, <var class="Arg">M</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs an increasing (or decreasing) list <span class="SimpleMath">L=[L_1,L_2,...,L_n]</span> of normal subgroups of a group <span class="SimpleMath">G</span> with <span class="SimpleMath">G=L_n</span>. It returns the chain of quotient homomorphisms <span class="SimpleMath">G/L_i → G/L_i+1</span> as a commutative diagram.</p>

<p>Optionally a subseries <span class="SimpleMath">M</span> of <span class="SimpleMath">L</span> can be entered as a second variable. Then the resulting diagram of quotient groups has two rows of horizontal arrows and one row of vertical arrows.</p>

<p><strong class="button">Examples:</strong></p>

<p><a id="X7F433F027A1093E6" name="X7F433F027A1093E6"></a></p>

<h5>34.1-3 NerveOfCommutativeDiagram</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; NerveOfCommutativeDiagram</code>( <var class="Arg">D</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a commutative diagram <span class="SimpleMath">D</span> and returns the commutative diagram <span class="SimpleMath">ND</span> consisting of all possible composites of the arrows in <span class="SimpleMath">D</span>.</p>

<p><strong class="button">Examples:</strong></p>

<p><a id="X85278C6C7D2495A5" name="X85278C6C7D2495A5"></a></p>

<h5>34.1-4 GroupHomologyOfCommutativeDiagram</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; GroupHomologyOfCommutativeDiagram</code>( <var class="Arg">D</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; GroupHomologyOfCommutativeDiagram</code>( <var class="Arg">D</var>, <var class="Arg">n</var>, <var class="Arg">prime</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; GroupHomologyOfCommutativeDiagram</code>( <var class="Arg">D</var>, <var class="Arg">n</var>, <var class="Arg">prime</var>, <var class="Arg">Resolution_Algorithm</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a commutative diagram <span class="SimpleMath">D</span> of <span class="SimpleMath">p</span>-groups and positive integer <span class="SimpleMath">n</span>. It returns the commutative diagram of vector spaces obtained by applying mod p homology.</p>

<p>Non-prime power groups can also be handled if a prime <span class="SimpleMath">p</span> is entered as the third argument. Integral homology can be obtained by setting <span class="SimpleMath">p=0</span>. For <span class="SimpleMath">p=0</span> the result is a diagram of groups.</p>

<p>A particular resolution algorithm, such as ResolutionNilpotentGroup, can be entered as a fourth argument. For positive <span class="SimpleMath">p</span> the default is ResolutionPrimePowerGroup. For <span class="SimpleMath">p=0</span> the default is ResolutionFiniteGroup.</p>

<p><strong class="button">Examples:</strong></p>

<p><a id="X7E687DBD787A68BD" name="X7E687DBD787A68BD"></a></p>

<h5>34.1-5 PersistentHomologyOfCommutativeDiagramOfPGroups</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PersistentHomologyOfCommutativeDiagramOfPGroups</code>( <var class="Arg">D</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a commutative diagram <span class="SimpleMath">D</span> of finite <span class="SimpleMath">p</span>-groups and a positive integer <span class="SimpleMath">n</span>. It returns a list containing, for each homomorphism in the nerve of <span class="SimpleMath">D</span>, a triple <span class="SimpleMath">[k,l,m]</span> where <span class="SimpleMath">k</span> is the dimension of the source of the induced mod <span class="SimpleMath">p</span> homology map in degree <span class="SimpleMath">n</span>, <span class="SimpleMath">l</span> is the dimension of the image, and <span class="SimpleMath">m</span> is the dimension of the cokernel.</p>

<p><strong class="button">Examples:</strong></p>

<p><strong class="button">ABSTRACT CATEGORIES</strong> <br /> <br /></p>

<p><a id="X7CFDEEC07F15CF82" name="X7CFDEEC07F15CF82"></a></p>

<h4>34.2 <span class="Heading">  </span></h4>

<p><a id="X806E560D7883B995" name="X806E560D7883B995"></a></p>

<h5>34.2-1 CategoricalEnrichment</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; CategoricalEnrichment</code>( <var class="Arg">X</var>, <var class="Arg">Name</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a structure <span class="SimpleMath">X</span> such as a group or group homomorphism, together with the name of some existing category such as Name:=Category_of_Groups or Category_of_Abelian_Groups. It returns, as appropriate, an object or arrow in the named category.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutAbelianCategories.html">1</a></span> </p>

<p><a id="X78C3228682279032" name="X78C3228682279032"></a></p>

<h5>34.2-2 IdentityArrow</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IdentityArrow</code>( <var class="Arg">X</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs an object <span class="SimpleMath">X</span> in some category, and returns the identity arrow on the object <span class="SimpleMath">X</span>.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutAbelianCategories.html">1</a></span> </p>

<p><a id="X7E5C1D4D785E20B6" name="X7E5C1D4D785E20B6"></a></p>

<h5>34.2-3 InitialArrow</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; InitialArrow</code>( <var class="Arg">X</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs an object <span class="SimpleMath">X</span> in some category, and returns the arrow from the initial object in the category to <span class="SimpleMath">X</span>.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutAbelianCategories.html">1</a></span> </p>

<p><a id="X7B9F14497D770AB0" name="X7B9F14497D770AB0"></a></p>

<h5>34.2-4 TerminalArrow</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; TerminalArrow</code>( <var class="Arg">X</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs an object <span class="SimpleMath">X</span> in some category, and returns the arrow from <span class="SimpleMath">X</span> to the terminal object in the category.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutAbelianCategories.html">1</a></span> </p>

<p><a id="X864688708741BADF" name="X864688708741BADF"></a></p>

<h5>34.2-5 HasInitialObject</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; HasInitialObject</code>( <var class="Arg">Name</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs the name of a category and returns true or false depending on whether the category has an initial object.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutAbelianCategories.html">1</a></span> </p>

<p><a id="X78ED3C0778BB65FE" name="X78ED3C0778BB65FE"></a></p>

<h5>34.2-6 HasTerminalObject</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; HasTerminalObject</code>( <var class="Arg">Name</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs the name of a category and returns true or false depending on whether the category has a terminal object.</p>

<p><strong class="button">Examples:</strong></p>

<p><a id="X7DE8173F80E07AB1" name="X7DE8173F80E07AB1"></a></p>

<h5>34.2-7 Source</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Source</code>( <var class="Arg">f</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs an arrow <span class="SimpleMath">f</span> in some category, and returns its source.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap2.html">1</a></span> , <span class="URL"><a href="../tutorial/chap4.html">2</a></span> , <span class="URL"><a href="../tutorial/chap7.html">3</a></span> , <span class="URL"><a href="../tutorial/chap8.html">4</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutAbelianCategories.html">5</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutNonabelian.html">6</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoefficientSequence.html">7</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoveringSpaces.html">8</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoverinSpaces.html">9</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutFunctorial.html">10</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutLieCovers.html">11</a></span> </p>

<p><a id="X7C76423782BA2868" name="X7C76423782BA2868"></a></p>

<h5>34.2-8 Target</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Target</code>( <var class="Arg">f</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs an arrow <span class="SimpleMath">f</span> in some category, and returns its target.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> , <span class="URL"><a href="../tutorial/chap2.html">2</a></span> , <span class="URL"><a href="../tutorial/chap7.html">3</a></span> , <span class="URL"><a href="../tutorial/chap8.html">4</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutAbelianCategories.html">5</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoefficientSequence.html">6</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoveringSpaces.html">7</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoverinSpaces.html">8</a></span> </p>

<p><a id="X81C3CA4183D53AD5" name="X81C3CA4183D53AD5"></a></p>

<h5>34.2-9 CategoryName</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; CategoryName</code>( <var class="Arg">X</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs an object or arrow <span class="SimpleMath">X</span> in some category, and returns the name of the category.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutAbelianCategories.html">1</a></span> </p>

<p><a id="X80825C317FCA49E3" name="X80825C317FCA49E3"></a></p>

<h5>34.2-10 CompositionEqualityAdditionMinus</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; CompositionEqualityAdditionMinus</code></td><td class="tdright">(&nbsp;global variable&nbsp;)</td></tr></table></div>
<p>Composition of suitable arrows <span class="SimpleMath">f,g</span> is given by <span class="SimpleMath">f*g</span> when the source of <span class="SimpleMath">f</span> equals the target of <span class="SimpleMath">g</span>. (Warning: this differes to the standard GAP convention.)</p>

<p>Equality is tested using <span class="SimpleMath">f=g</span>.</p>

<p>In an additive category the sum and difference of suitable arrows is given by <span class="SimpleMath">f+g</span> and <span class="SimpleMath">f-g</span>.</p>

<p><strong class="button">Examples:</strong></p>

<p><a id="X829A6A767BD96D34" name="X829A6A767BD96D34"></a></p>

<h5>34.2-11 Object</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Object</code>( <var class="Arg">X</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs an object <span class="SimpleMath">X</span> in some category, and returns the GAP structure <span class="SimpleMath">Y</span> such that <span class="SimpleMath">X=CategoricalEnrichment(Y,CategoryName(X))</span>.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap10.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutAbelianCategories.html">2</a></span> </p>

<p><a id="X87F6B07083307724" name="X87F6B07083307724"></a></p>

<h5>34.2-12 Mapping</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Mapping</code>( <var class="Arg">X</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs an arrow <span class="SimpleMath">f</span> in some category, and returns the GAP structure <span class="SimpleMath">Y</span> such that <span class="SimpleMath">f=CategoricalEnrichment(Y,CategoryName(X))</span>.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap6.html">1</a></span> , <span class="URL"><a href="../tutorial/chap7.html">2</a></span> , <span class="URL"><a href="../tutorial/chap13.html">3</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutAbelianCategories.html">4</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoefficientSequence.html">5</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutGouter.html">6</a></span> </p>

<p><a id="X78E3186D83B7B92B" name="X78E3186D83B7B92B"></a></p>

<h5>34.2-13 IsCategoryObject</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsCategoryObject</code>( <var class="Arg">X</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs <span class="SimpleMath">X</span> and returns true if <span class="SimpleMath">X</span> is an object in some category.</p>

<p><strong class="button">Examples:</strong></p>

<p><a id="X792400427CBA758A" name="X792400427CBA758A"></a></p>

<h5>34.2-14 IsCategoryArrow</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsCategoryArrow</code>( <var class="Arg">X</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs <span class="SimpleMath">X</span> and returns true if <span class="SimpleMath">X</span> is an arrow in some category.</p>

<p><strong class="button">Examples:</strong></p>


<div class="chlinkprevnextbot">&nbsp;<a href="chap0.html">[Top of Book]</a>&nbsp;  <a href="chap0.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap33.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap35.html">[Next Chapter]</a>&nbsp;  </div>


<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a>  <a href="chap10.html">10</a>  <a href="chap11.html">11</a>  <a href="chap12.html">12</a>  <a href="chap13.html">13</a>  <a href="chap14.html">14</a>  <a href="chap15.html">15</a>  <a href="chap16.html">16</a>  <a href="chap17.html">17</a>  <a href="chap18.html">18</a>  <a href="chap19.html">19</a>  <a href="chap20.html">20</a>  <a href="chap21.html">21</a>  <a href="chap22.html">22</a>  <a href="chap23.html">23</a>  <a href="chap24.html">24</a>  <a href="chap25.html">25</a>  <a href="chap26.html">26</a>  <a href="chap27.html">27</a>  <a href="chap28.html">28</a>  <a href="chap29.html">29</a>  <a href="chap30.html">30</a>  <a href="chap31.html">31</a>  <a href="chap32.html">32</a>  <a href="chap33.html">33</a>  <a href="chap34.html">34</a>  <a href="chap35.html">35</a>  <a href="chap36.html">36</a>  <a href="chap37.html">37</a>  <a href="chap38.html">38</a>  <a href="chap39.html">39</a>  <a href="chap40.html">40</a>  <a href="chapInd.html">Ind</a>  </div>

<hr />
<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>