1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
|
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>GAP (HAP commands) - Chapter 34: Commutative diagrams and abstract categories</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap34" onload="jscontent()">
<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a> <a href="chap1.html">1</a> <a href="chap2.html">2</a> <a href="chap3.html">3</a> <a href="chap4.html">4</a> <a href="chap5.html">5</a> <a href="chap6.html">6</a> <a href="chap7.html">7</a> <a href="chap8.html">8</a> <a href="chap9.html">9</a> <a href="chap10.html">10</a> <a href="chap11.html">11</a> <a href="chap12.html">12</a> <a href="chap13.html">13</a> <a href="chap14.html">14</a> <a href="chap15.html">15</a> <a href="chap16.html">16</a> <a href="chap17.html">17</a> <a href="chap18.html">18</a> <a href="chap19.html">19</a> <a href="chap20.html">20</a> <a href="chap21.html">21</a> <a href="chap22.html">22</a> <a href="chap23.html">23</a> <a href="chap24.html">24</a> <a href="chap25.html">25</a> <a href="chap26.html">26</a> <a href="chap27.html">27</a> <a href="chap28.html">28</a> <a href="chap29.html">29</a> <a href="chap30.html">30</a> <a href="chap31.html">31</a> <a href="chap32.html">32</a> <a href="chap33.html">33</a> <a href="chap34.html">34</a> <a href="chap35.html">35</a> <a href="chap36.html">36</a> <a href="chap37.html">37</a> <a href="chap38.html">38</a> <a href="chap39.html">39</a> <a href="chap40.html">40</a> <a href="chapInd.html">Ind</a> </div>
<div class="chlinkprevnexttop"> <a href="chap0.html">[Top of Book]</a> <a href="chap0.html#contents">[Contents]</a> <a href="chap33.html">[Previous Chapter]</a> <a href="chap35.html">[Next Chapter]</a> </div>
<p id="mathjaxlink" class="pcenter"><a href="chap34_mj.html">[MathJax on]</a></p>
<p><a id="X83AAC8367CC7686F" name="X83AAC8367CC7686F"></a></p>
<div class="ChapSects"><a href="chap34.html#X83AAC8367CC7686F">34 <span class="Heading"> Commutative diagrams and abstract categories</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap34.html#X7CFDEEC07F15CF82">34.1 <span class="Heading"> </span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap34.html#X7B9157D578F3A25A">34.1-1 HomomorphismChainToCommutativeDiagram</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap34.html#X80840B51839EDEF3">34.1-2 NormalSeriesToQuotientDiagram</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap34.html#X7F433F027A1093E6">34.1-3 NerveOfCommutativeDiagram</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap34.html#X85278C6C7D2495A5">34.1-4 GroupHomologyOfCommutativeDiagram</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap34.html#X7E687DBD787A68BD">34.1-5 PersistentHomologyOfCommutativeDiagramOfPGroups</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap34.html#X7CFDEEC07F15CF82">34.2 <span class="Heading"> </span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap34.html#X806E560D7883B995">34.2-1 CategoricalEnrichment</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap34.html#X78C3228682279032">34.2-2 IdentityArrow</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap34.html#X7E5C1D4D785E20B6">34.2-3 InitialArrow</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap34.html#X7B9F14497D770AB0">34.2-4 TerminalArrow</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap34.html#X864688708741BADF">34.2-5 HasInitialObject</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap34.html#X78ED3C0778BB65FE">34.2-6 HasTerminalObject</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap34.html#X7DE8173F80E07AB1">34.2-7 Source</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap34.html#X7C76423782BA2868">34.2-8 Target</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap34.html#X81C3CA4183D53AD5">34.2-9 CategoryName</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap34.html#X80825C317FCA49E3">34.2-10 CompositionEqualityAdditionMinus</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap34.html#X829A6A767BD96D34">34.2-11 Object</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap34.html#X87F6B07083307724">34.2-12 Mapping</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap34.html#X78E3186D83B7B92B">34.2-13 IsCategoryObject</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap34.html#X792400427CBA758A">34.2-14 IsCategoryArrow</a></span>
</div></div>
</div>
<h3>34 <span class="Heading"> Commutative diagrams and abstract categories</span></h3>
<p><strong class="button">COMMUTATIVE DIAGRAMS</strong> <br /></p>
<p><a id="X7CFDEEC07F15CF82" name="X7CFDEEC07F15CF82"></a></p>
<h4>34.1 <span class="Heading"> </span></h4>
<p><a id="X7B9157D578F3A25A" name="X7B9157D578F3A25A"></a></p>
<h5>34.1-1 HomomorphismChainToCommutativeDiagram</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ HomomorphismChainToCommutativeDiagram</code>( <var class="Arg">H</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a list <span class="SimpleMath">H=[h_1,h_2,...,h_n]</span> of mappings such that the composite <span class="SimpleMath">h_1h_2...h_n</span> is defined. It returns the list of composable homomorphism as a commutative diagram.</p>
<p><strong class="button">Examples:</strong></p>
<p><a id="X80840B51839EDEF3" name="X80840B51839EDEF3"></a></p>
<h5>34.1-2 NormalSeriesToQuotientDiagram</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ NormalSeriesToQuotientDiagram</code>( <var class="Arg">L</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ NormalSeriesToQuotientDiagram</code>( <var class="Arg">L</var>, <var class="Arg">M</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs an increasing (or decreasing) list <span class="SimpleMath">L=[L_1,L_2,...,L_n]</span> of normal subgroups of a group <span class="SimpleMath">G</span> with <span class="SimpleMath">G=L_n</span>. It returns the chain of quotient homomorphisms <span class="SimpleMath">G/L_i → G/L_i+1</span> as a commutative diagram.</p>
<p>Optionally a subseries <span class="SimpleMath">M</span> of <span class="SimpleMath">L</span> can be entered as a second variable. Then the resulting diagram of quotient groups has two rows of horizontal arrows and one row of vertical arrows.</p>
<p><strong class="button">Examples:</strong></p>
<p><a id="X7F433F027A1093E6" name="X7F433F027A1093E6"></a></p>
<h5>34.1-3 NerveOfCommutativeDiagram</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ NerveOfCommutativeDiagram</code>( <var class="Arg">D</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a commutative diagram <span class="SimpleMath">D</span> and returns the commutative diagram <span class="SimpleMath">ND</span> consisting of all possible composites of the arrows in <span class="SimpleMath">D</span>.</p>
<p><strong class="button">Examples:</strong></p>
<p><a id="X85278C6C7D2495A5" name="X85278C6C7D2495A5"></a></p>
<h5>34.1-4 GroupHomologyOfCommutativeDiagram</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ GroupHomologyOfCommutativeDiagram</code>( <var class="Arg">D</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ GroupHomologyOfCommutativeDiagram</code>( <var class="Arg">D</var>, <var class="Arg">n</var>, <var class="Arg">prime</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ GroupHomologyOfCommutativeDiagram</code>( <var class="Arg">D</var>, <var class="Arg">n</var>, <var class="Arg">prime</var>, <var class="Arg">Resolution_Algorithm</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a commutative diagram <span class="SimpleMath">D</span> of <span class="SimpleMath">p</span>-groups and positive integer <span class="SimpleMath">n</span>. It returns the commutative diagram of vector spaces obtained by applying mod p homology.</p>
<p>Non-prime power groups can also be handled if a prime <span class="SimpleMath">p</span> is entered as the third argument. Integral homology can be obtained by setting <span class="SimpleMath">p=0</span>. For <span class="SimpleMath">p=0</span> the result is a diagram of groups.</p>
<p>A particular resolution algorithm, such as ResolutionNilpotentGroup, can be entered as a fourth argument. For positive <span class="SimpleMath">p</span> the default is ResolutionPrimePowerGroup. For <span class="SimpleMath">p=0</span> the default is ResolutionFiniteGroup.</p>
<p><strong class="button">Examples:</strong></p>
<p><a id="X7E687DBD787A68BD" name="X7E687DBD787A68BD"></a></p>
<h5>34.1-5 PersistentHomologyOfCommutativeDiagramOfPGroups</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PersistentHomologyOfCommutativeDiagramOfPGroups</code>( <var class="Arg">D</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a commutative diagram <span class="SimpleMath">D</span> of finite <span class="SimpleMath">p</span>-groups and a positive integer <span class="SimpleMath">n</span>. It returns a list containing, for each homomorphism in the nerve of <span class="SimpleMath">D</span>, a triple <span class="SimpleMath">[k,l,m]</span> where <span class="SimpleMath">k</span> is the dimension of the source of the induced mod <span class="SimpleMath">p</span> homology map in degree <span class="SimpleMath">n</span>, <span class="SimpleMath">l</span> is the dimension of the image, and <span class="SimpleMath">m</span> is the dimension of the cokernel.</p>
<p><strong class="button">Examples:</strong></p>
<p><strong class="button">ABSTRACT CATEGORIES</strong> <br /> <br /></p>
<p><a id="X7CFDEEC07F15CF82" name="X7CFDEEC07F15CF82"></a></p>
<h4>34.2 <span class="Heading"> </span></h4>
<p><a id="X806E560D7883B995" name="X806E560D7883B995"></a></p>
<h5>34.2-1 CategoricalEnrichment</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ CategoricalEnrichment</code>( <var class="Arg">X</var>, <var class="Arg">Name</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a structure <span class="SimpleMath">X</span> such as a group or group homomorphism, together with the name of some existing category such as Name:=Category_of_Groups or Category_of_Abelian_Groups. It returns, as appropriate, an object or arrow in the named category.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutAbelianCategories.html">1</a></span> </p>
<p><a id="X78C3228682279032" name="X78C3228682279032"></a></p>
<h5>34.2-2 IdentityArrow</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IdentityArrow</code>( <var class="Arg">X</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs an object <span class="SimpleMath">X</span> in some category, and returns the identity arrow on the object <span class="SimpleMath">X</span>.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutAbelianCategories.html">1</a></span> </p>
<p><a id="X7E5C1D4D785E20B6" name="X7E5C1D4D785E20B6"></a></p>
<h5>34.2-3 InitialArrow</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ InitialArrow</code>( <var class="Arg">X</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs an object <span class="SimpleMath">X</span> in some category, and returns the arrow from the initial object in the category to <span class="SimpleMath">X</span>.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutAbelianCategories.html">1</a></span> </p>
<p><a id="X7B9F14497D770AB0" name="X7B9F14497D770AB0"></a></p>
<h5>34.2-4 TerminalArrow</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ TerminalArrow</code>( <var class="Arg">X</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs an object <span class="SimpleMath">X</span> in some category, and returns the arrow from <span class="SimpleMath">X</span> to the terminal object in the category.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutAbelianCategories.html">1</a></span> </p>
<p><a id="X864688708741BADF" name="X864688708741BADF"></a></p>
<h5>34.2-5 HasInitialObject</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ HasInitialObject</code>( <var class="Arg">Name</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs the name of a category and returns true or false depending on whether the category has an initial object.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutAbelianCategories.html">1</a></span> </p>
<p><a id="X78ED3C0778BB65FE" name="X78ED3C0778BB65FE"></a></p>
<h5>34.2-6 HasTerminalObject</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ HasTerminalObject</code>( <var class="Arg">Name</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs the name of a category and returns true or false depending on whether the category has a terminal object.</p>
<p><strong class="button">Examples:</strong></p>
<p><a id="X7DE8173F80E07AB1" name="X7DE8173F80E07AB1"></a></p>
<h5>34.2-7 Source</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Source</code>( <var class="Arg">f</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs an arrow <span class="SimpleMath">f</span> in some category, and returns its source.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap2.html">1</a></span> , <span class="URL"><a href="../tutorial/chap4.html">2</a></span> , <span class="URL"><a href="../tutorial/chap7.html">3</a></span> , <span class="URL"><a href="../tutorial/chap8.html">4</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutAbelianCategories.html">5</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutNonabelian.html">6</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoefficientSequence.html">7</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoveringSpaces.html">8</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoverinSpaces.html">9</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutFunctorial.html">10</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutLieCovers.html">11</a></span> </p>
<p><a id="X7C76423782BA2868" name="X7C76423782BA2868"></a></p>
<h5>34.2-8 Target</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Target</code>( <var class="Arg">f</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs an arrow <span class="SimpleMath">f</span> in some category, and returns its target.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> , <span class="URL"><a href="../tutorial/chap2.html">2</a></span> , <span class="URL"><a href="../tutorial/chap7.html">3</a></span> , <span class="URL"><a href="../tutorial/chap8.html">4</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutAbelianCategories.html">5</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoefficientSequence.html">6</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoveringSpaces.html">7</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoverinSpaces.html">8</a></span> </p>
<p><a id="X81C3CA4183D53AD5" name="X81C3CA4183D53AD5"></a></p>
<h5>34.2-9 CategoryName</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ CategoryName</code>( <var class="Arg">X</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs an object or arrow <span class="SimpleMath">X</span> in some category, and returns the name of the category.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutAbelianCategories.html">1</a></span> </p>
<p><a id="X80825C317FCA49E3" name="X80825C317FCA49E3"></a></p>
<h5>34.2-10 CompositionEqualityAdditionMinus</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ CompositionEqualityAdditionMinus</code></td><td class="tdright">( global variable )</td></tr></table></div>
<p>Composition of suitable arrows <span class="SimpleMath">f,g</span> is given by <span class="SimpleMath">f*g</span> when the source of <span class="SimpleMath">f</span> equals the target of <span class="SimpleMath">g</span>. (Warning: this differes to the standard GAP convention.)</p>
<p>Equality is tested using <span class="SimpleMath">f=g</span>.</p>
<p>In an additive category the sum and difference of suitable arrows is given by <span class="SimpleMath">f+g</span> and <span class="SimpleMath">f-g</span>.</p>
<p><strong class="button">Examples:</strong></p>
<p><a id="X829A6A767BD96D34" name="X829A6A767BD96D34"></a></p>
<h5>34.2-11 Object</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Object</code>( <var class="Arg">X</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs an object <span class="SimpleMath">X</span> in some category, and returns the GAP structure <span class="SimpleMath">Y</span> such that <span class="SimpleMath">X=CategoricalEnrichment(Y,CategoryName(X))</span>.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap10.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutAbelianCategories.html">2</a></span> </p>
<p><a id="X87F6B07083307724" name="X87F6B07083307724"></a></p>
<h5>34.2-12 Mapping</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Mapping</code>( <var class="Arg">X</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs an arrow <span class="SimpleMath">f</span> in some category, and returns the GAP structure <span class="SimpleMath">Y</span> such that <span class="SimpleMath">f=CategoricalEnrichment(Y,CategoryName(X))</span>.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap6.html">1</a></span> , <span class="URL"><a href="../tutorial/chap7.html">2</a></span> , <span class="URL"><a href="../tutorial/chap13.html">3</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutAbelianCategories.html">4</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoefficientSequence.html">5</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutGouter.html">6</a></span> </p>
<p><a id="X78E3186D83B7B92B" name="X78E3186D83B7B92B"></a></p>
<h5>34.2-13 IsCategoryObject</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsCategoryObject</code>( <var class="Arg">X</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs <span class="SimpleMath">X</span> and returns true if <span class="SimpleMath">X</span> is an object in some category.</p>
<p><strong class="button">Examples:</strong></p>
<p><a id="X792400427CBA758A" name="X792400427CBA758A"></a></p>
<h5>34.2-14 IsCategoryArrow</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsCategoryArrow</code>( <var class="Arg">X</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs <span class="SimpleMath">X</span> and returns true if <span class="SimpleMath">X</span> is an arrow in some category.</p>
<p><strong class="button">Examples:</strong></p>
<div class="chlinkprevnextbot"> <a href="chap0.html">[Top of Book]</a> <a href="chap0.html#contents">[Contents]</a> <a href="chap33.html">[Previous Chapter]</a> <a href="chap35.html">[Next Chapter]</a> </div>
<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a> <a href="chap1.html">1</a> <a href="chap2.html">2</a> <a href="chap3.html">3</a> <a href="chap4.html">4</a> <a href="chap5.html">5</a> <a href="chap6.html">6</a> <a href="chap7.html">7</a> <a href="chap8.html">8</a> <a href="chap9.html">9</a> <a href="chap10.html">10</a> <a href="chap11.html">11</a> <a href="chap12.html">12</a> <a href="chap13.html">13</a> <a href="chap14.html">14</a> <a href="chap15.html">15</a> <a href="chap16.html">16</a> <a href="chap17.html">17</a> <a href="chap18.html">18</a> <a href="chap19.html">19</a> <a href="chap20.html">20</a> <a href="chap21.html">21</a> <a href="chap22.html">22</a> <a href="chap23.html">23</a> <a href="chap24.html">24</a> <a href="chap25.html">25</a> <a href="chap26.html">26</a> <a href="chap27.html">27</a> <a href="chap28.html">28</a> <a href="chap29.html">29</a> <a href="chap30.html">30</a> <a href="chap31.html">31</a> <a href="chap32.html">32</a> <a href="chap33.html">33</a> <a href="chap34.html">34</a> <a href="chap35.html">35</a> <a href="chap36.html">36</a> <a href="chap37.html">37</a> <a href="chap38.html">38</a> <a href="chap39.html">39</a> <a href="chap40.html">40</a> <a href="chapInd.html">Ind</a> </div>
<hr />
<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>
|