1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
|
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>GAP (HAP commands) - Chapter 5: Resolutions of the ground ring</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap5" onload="jscontent()">
<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a> <a href="chap1.html">1</a> <a href="chap2.html">2</a> <a href="chap3.html">3</a> <a href="chap4.html">4</a> <a href="chap5.html">5</a> <a href="chap6.html">6</a> <a href="chap7.html">7</a> <a href="chap8.html">8</a> <a href="chap9.html">9</a> <a href="chap10.html">10</a> <a href="chap11.html">11</a> <a href="chap12.html">12</a> <a href="chap13.html">13</a> <a href="chap14.html">14</a> <a href="chap15.html">15</a> <a href="chap16.html">16</a> <a href="chap17.html">17</a> <a href="chap18.html">18</a> <a href="chap19.html">19</a> <a href="chap20.html">20</a> <a href="chap21.html">21</a> <a href="chap22.html">22</a> <a href="chap23.html">23</a> <a href="chap24.html">24</a> <a href="chap25.html">25</a> <a href="chap26.html">26</a> <a href="chap27.html">27</a> <a href="chap28.html">28</a> <a href="chap29.html">29</a> <a href="chap30.html">30</a> <a href="chap31.html">31</a> <a href="chap32.html">32</a> <a href="chap33.html">33</a> <a href="chap34.html">34</a> <a href="chap35.html">35</a> <a href="chap36.html">36</a> <a href="chap37.html">37</a> <a href="chap38.html">38</a> <a href="chap39.html">39</a> <a href="chap40.html">40</a> <a href="chapInd.html">Ind</a> </div>
<div class="chlinkprevnexttop"> <a href="chap0.html">[Top of Book]</a> <a href="chap0.html#contents">[Contents]</a> <a href="chap4.html">[Previous Chapter]</a> <a href="chap6.html">[Next Chapter]</a> </div>
<p id="mathjaxlink" class="pcenter"><a href="chap5_mj.html">[MathJax on]</a></p>
<p><a id="X8735FC5E7BB5CE3A" name="X8735FC5E7BB5CE3A"></a></p>
<div class="ChapSects"><a href="chap5.html#X8735FC5E7BB5CE3A">5 <span class="Heading">Resolutions of the ground ring</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap5.html#X7CFDEEC07F15CF82">5.1 <span class="Heading"> </span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X7D8875C87BC9C379">5.1-1 TietzeReducedResolution</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X808535C3851CA4D4">5.1-2 ResolutionArithmeticGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X79EA11238403019D">5.1-3 FreeGResolution</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X8108E1047C31A058">5.1-4 ResolutionGTree</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X7E4556B078B209CE">5.1-5 ResolutionSL2Z</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X79CB82D77A1FAE9D">5.1-6 ResolutionAbelianGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X79107B5F857DC27B">5.1-7 ResolutionAlmostCrystalGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X839D1B3B78B672BB">5.1-8 ResolutionAlmostCrystalQuotient</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X82A0D2B986724BB1">5.1-9 ResolutionArtinGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X87DABAF98575DC13">5.1-10 ResolutionAsphericalPresentation</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X7CA87AA478007468">5.1-11 ResolutionBieberbachGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X7A20180E7D45038F">5.1-12 ResolutionCoxeterGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X7FCE801781AD83E1">5.1-13 ResolutionDirectProduct</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X79C83C4881B6A656">5.1-14 ResolutionExtension</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X87C346747F3B7C8C">5.1-15 ResolutionFiniteDirectProduct</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X79EDB1D584C2776F">5.1-16 ResolutionFiniteExtension</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X789B3E7C7CBB3751">5.1-17 ResolutionFiniteGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X7AF48FA77F677E75">5.1-18 ResolutionFiniteSubgroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X78E504557FD75664">5.1-19 ResolutionGraphOfGroups</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X7CBE6BDA7DB5AD7D">5.1-20 ResolutionNilpotentGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X8574D76D7C891A04">5.1-21 ResolutionNormalSeries</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X86934BE9858F7199">5.1-22 ResolutionPrimePowerGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X8521359A87D46462">5.1-23 ResolutionSmallFpGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X79A0221B7E96B642">5.1-24 ResolutionSubgroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X80CE971A7C2C538B">5.1-25 ResolutionSubnormalSeries</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X7A8E03D57895D04A">5.1-26 TwistedTensorProduct</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X864044D679AE4E25">5.1-27 ConjugatedResolution</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X82646B64875E5560">5.1-28 RecalculateIncidenceNumbers</a></span>
</div></div>
</div>
<h3>5 <span class="Heading">Resolutions of the ground ring</span></h3>
<p><a id="X7CFDEEC07F15CF82" name="X7CFDEEC07F15CF82"></a></p>
<h4>5.1 <span class="Heading"> </span></h4>
<p><a id="X7D8875C87BC9C379" name="X7D8875C87BC9C379"></a></p>
<h5>5.1-1 TietzeReducedResolution</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ TietzeReducedResolution</code>( <var class="Arg">R</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a <span class="SimpleMath">ZG</span>-resolution <span class="SimpleMath">R</span> and returns a <span class="SimpleMath">ZG</span>-resolution <span class="SimpleMath">S</span> which is obtained from <span class="SimpleMath">R</span> by applying "Tietze like operations" in each dimension. The hope is that <span class="SimpleMath">S</span> has fewer free generators than <span class="SimpleMath">R</span>.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap13.html">1</a></span> </p>
<p><a id="X808535C3851CA4D4" name="X808535C3851CA4D4"></a></p>
<h5>5.1-2 ResolutionArithmeticGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ResolutionArithmeticGroup</code>( <var class="Arg">P</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a positive integer <span class="SimpleMath">n</span> and a string <span class="SimpleMath">P</span> equal to one of the following: <br /> <br /> "SL(2,Z)" , "SL(3,Z)" , "PGL(3,Z[i])" , "PGL(3,Eisenstein_Integers)" , "PSL(4,Z)" , "PSL(4,Z)_b" , "PSL(4,Z)_c" , "PSL(4,Z)_d" , "Sp(4,Z)" <br /> <br /> or the string <br /> <br /> "GL(2,O(-d))" <br /> <br /> for d=1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 43 <br /> <br /> or the string <br /> <br /> "SL(2,O(-d))" <br /> <br /> for d=2, 3, 5, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 43, 67, 163 <br /> <br /> or the string <br /> <br /> "SL(2,O(-d))_a" <br /> <br /> for d=2, 7, 11, 19. <br /> <br /> It returns <span class="SimpleMath">n</span> terms of a free ZG-resolution for the group <span class="SimpleMath">G</span> described by the string. Here O(-d) denotes the ring of integers of Q(sqrt(-d)) and subscripts _a, _b , _c , _d denote alternative non-free ZG-resolutions for a given group G.<br /> <br /> Data for the first list of resolutions was provided provided by <strong class="button">Mathieu Dutour</strong>. Data for GL(2,O(-d)) was provided by <strong class="button">Sebastian Schoenennbeck</strong>. Data for SL(2,O(-d)) was provided by<strong class="button">Sebastian Schoennenbeck</strong> for d <= 26 and by <strong class="button">Alexander Rahm</strong> for d>26 and for the alternative complexes.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap13.html">1</a></span> </p>
<p><a id="X79EA11238403019D" name="X79EA11238403019D"></a></p>
<h5>5.1-3 FreeGResolution</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ FreeGResolution</code>( <var class="Arg">P</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ FreeGResolution</code>( <var class="Arg">P</var>, <var class="Arg">n</var>, <var class="Arg">p</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a non-free <span class="SimpleMath">ZG</span>-resolution <span class="SimpleMath">P</span> with finite stabilizer groups, and a positive integer <span class="SimpleMath">n</span>. It returns a free <span class="SimpleMath">ZG</span>-resolution of length equal to the minimum of n and the length of <span class="SimpleMath">P</span>. If one requires only a mod <span class="SimpleMath">p</span> resolution then the prime <span class="SimpleMath">p</span> can be entered as an optional third argument.</p>
<p>The free resolution is returned without a contracting homotopy.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> , <span class="URL"><a href="../tutorial/chap6.html">2</a></span> , <span class="URL"><a href="../tutorial/chap7.html">3</a></span> , <span class="URL"><a href="../tutorial/chap11.html">4</a></span> , <span class="URL"><a href="../tutorial/chap13.html">5</a></span> , <span class="URL"><a href="../tutorial/chap14.html">6</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutArithmetic.html">7</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPolytopes.html">8</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutDavisComplex.html">9</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutIntro.html">10</a></span> </p>
<p><a id="X8108E1047C31A058" name="X8108E1047C31A058"></a></p>
<h5>5.1-4 ResolutionGTree</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ResolutionGTree</code>( <var class="Arg">P</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a non-free <span class="SimpleMath">ZG</span>-resolution <span class="SimpleMath">P</span> of dimension 1 (i.e. a G-tree) with finite stabilizer groups, and a positive integer <span class="SimpleMath">n</span>. It returns a free <span class="SimpleMath">ZG</span>-resolution of length equal to n.</p>
<p>If <span class="SimpleMath">P</span> has a contracting homotopy then the free resolution is returned with a contracting homotopy.</p>
<p>This function was written by <strong class="button"> Bui Anh Tuan</strong>.</p>
<p><strong class="button">Examples:</strong></p>
<p><a id="X7E4556B078B209CE" name="X7E4556B078B209CE"></a></p>
<h5>5.1-5 ResolutionSL2Z</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ResolutionSL2Z</code>( <var class="Arg">p</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs positive integers <span class="SimpleMath">m, n</span> and returns <span class="SimpleMath">n</span> terms of a <span class="SimpleMath">ZG</span>-resolution for the group <span class="SimpleMath">G=SL(2,Z[1/m])</span> .</p>
<p>This function is joint work with <strong class="button">Bui Anh Tuan</strong>.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap11.html">1</a></span> , <span class="URL"><a href="../tutorial/chap13.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutArithmetic.html">3</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutIntro.html">4</a></span> </p>
<p><a id="X79CB82D77A1FAE9D" name="X79CB82D77A1FAE9D"></a></p>
<h5>5.1-6 ResolutionAbelianGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ResolutionAbelianGroup</code>( <var class="Arg">L</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ResolutionAbelianGroup</code>( <var class="Arg">G</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a list <span class="SimpleMath">L:=[m_1,m_2, ..., m_d]</span> of nonnegative integers, and a positive integer <span class="SimpleMath">n</span>. It returns <span class="SimpleMath">n</span> terms of a <span class="SimpleMath">ZG</span>-resolution for the abelian group <span class="SimpleMath">G=Z_L[1]+Z_L[2]+···+Z_L[d]</span> .</p>
<p>If <span class="SimpleMath">G</span> is finite then the first argument can also be the abelian group <span class="SimpleMath">G</span> itself.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap11.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutExtensions.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutSpaceGroup.html">3</a></span> </p>
<p><a id="X79107B5F857DC27B" name="X79107B5F857DC27B"></a></p>
<h5>5.1-7 ResolutionAlmostCrystalGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ResolutionAlmostCrystalGroup</code>( <var class="Arg">G</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a positive integer <span class="SimpleMath">n</span> and an almost crystallographic pcp group <span class="SimpleMath">G</span>. It returns <span class="SimpleMath">n</span> terms of a free <span class="SimpleMath">ZG</span>-resolution. (A group is almost crystallographic if it is nilpotent-by-finite and has no non-trivial finite normal subgroup. Such groups can be constructed using the ACLIB package.)</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap11.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutSpaceGroup.html">2</a></span> </p>
<p><a id="X839D1B3B78B672BB" name="X839D1B3B78B672BB"></a></p>
<h5>5.1-8 ResolutionAlmostCrystalQuotient</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ResolutionAlmostCrystalQuotient</code>( <var class="Arg">G</var>, <var class="Arg">n</var>, <var class="Arg">c</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ResolutionAlmostCrystalQuotient</code>( <var class="Arg">G</var>, <var class="Arg">n</var>, <var class="Arg">c</var>, <var class="Arg">false</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>An almost crystallographic group <span class="SimpleMath">G</span> is an extension of a finite group <span class="SimpleMath">P</span> by a nilpotent group <span class="SimpleMath">T</span>, and has no non-trivial finite normal subgroup. We define the relative lower central series by setting <span class="SimpleMath">T_1=T</span> and <span class="SimpleMath">T_i+1=[T_i,G]</span>.</p>
<p>This function inputs an almost crystallographic group <span class="SimpleMath">G</span> together with positive integers <span class="SimpleMath">n</span> and <span class="SimpleMath">c</span>. It returns <span class="SimpleMath">n</span> terms of a free <span class="SimpleMath">ZQ</span>-resolution <span class="SimpleMath">R</span> for the group <span class="SimpleMath">Q=G/T_c</span> .</p>
<p>In addition to the usual components, the resolution <span class="SimpleMath">R</span> has the component <span class="SimpleMath">R.quotientHomomorphism</span> which gives the quotient homomorphism <span class="SimpleMath">G ⟶ Q</span>.</p>
<p>If a fourth optional variable is set equal to "false" then the function omits to test whether <span class="SimpleMath">Q</span> is finite and a "more canonical" resolution is constructed.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutSpaceGroup.html">1</a></span> </p>
<p><a id="X82A0D2B986724BB1" name="X82A0D2B986724BB1"></a></p>
<h5>5.1-9 ResolutionArtinGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ResolutionArtinGroup</code>( <var class="Arg">D</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a Coxeter diagram <span class="SimpleMath">D</span> and an integer <span class="SimpleMath">n>1</span>. It returns <span class="SimpleMath">n</span> terms of a free <span class="SimpleMath">ZG</span>-resolution <span class="SimpleMath">R</span> where <span class="SimpleMath">G</span> is the Artin monoid associated to <span class="SimpleMath">D</span>. It is conjectured that <span class="SimpleMath">R</span> is also a free resolution for the Artin group <span class="SimpleMath">G</span>. The conjecture is known to hold in <span class="URL"><a href="../www/SideLinks/About/aboutArtinGroups.html">certain cases</a></span>.</p>
<p><span class="SimpleMath">G=R.group</span> is infinite and returned as a finitely presented group. The list <span class="SimpleMath">R.elts</span> is a partial listing of the elements of <span class="SimpleMath">G</span> which grows as <span class="SimpleMath">R</span> is used. Initially <span class="SimpleMath">R.elts</span> is empty and then, any time the boundary of a resolution generator is called, <span class="SimpleMath">R.elts</span> is updated to include elements of <span class="SimpleMath">G</span> involved in the boundary.</p>
<p>The contracting homotopy on <span class="SimpleMath">R</span> has not yet been implemented! Furthermore, the group <span class="SimpleMath">G</span> is currently returned only as a finitely presented group (without any method for solving the word problem).</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap7.html">1</a></span> , <span class="URL"><a href="../tutorial/chap11.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutArtinGroups.html">3</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCohomologyRings.html">4</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutTwistedCoefficients.html">5</a></span> </p>
<p><a id="X87DABAF98575DC13" name="X87DABAF98575DC13"></a></p>
<h5>5.1-10 ResolutionAsphericalPresentation</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ResolutionAsphericalPresentation</code>( <var class="Arg">F</var>, <var class="Arg">R</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a free group <span class="SimpleMath">F</span>, a set <span class="SimpleMath">R</span> of words in <span class="SimpleMath">F</span> which constitute an aspherical presentation for a group <span class="SimpleMath">G</span>, and a positive integer <span class="SimpleMath">n</span>. (Asphericity can be a difficult property to verify. The function <span class="SimpleMath">IsAspherical(F,R)</span> could be of help.)</p>
<p>The function returns n terms of a free <span class="SimpleMath">ZG</span>-resolution <span class="SimpleMath">R</span> which has generators in dimensions < 3 only. No contracting homotopy on <span class="SimpleMath">R</span> will be returned.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap3.html">1</a></span> , <span class="URL"><a href="../tutorial/chap11.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutAspherical.html">3</a></span> </p>
<p><a id="X7CA87AA478007468" name="X7CA87AA478007468"></a></p>
<h5>5.1-11 ResolutionBieberbachGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ResolutionBieberbachGroup</code>( <var class="Arg">G</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ResolutionBieberbachGroup</code>( <var class="Arg">G</var>, <var class="Arg">v</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a torsion free crystallographic group <span class="SimpleMath">G</span>, also known as a Bieberbach group, represented using AffineCrystGroupOnRight as in the GAP package Cryst. It also optionally inputs a choice of vector <span class="SimpleMath">v</span> in the euclidean space <span class="SimpleMath">R^n</span> on which <span class="SimpleMath">G</span> acts freely. The function returns <span class="SimpleMath">n+1</span> terms of the free <span class="SimpleMath">ZG</span>-resolution of <span class="SimpleMath">Z</span> arising as the cellular chain complex of the tesselation of <span class="SimpleMath">R^n</span> by the Dirichlet-Voronoi fundamental domain determined by <span class="SimpleMath">v</span>.</p>
<p>This function is part of the HAPcryst package written by <strong class="button">Marc Roeder</strong> and thus requires the HAPcryst package to be loaded.</p>
<p>The function requires the use of Polymake software.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap11.html">1</a></span> </p>
<p><a id="X7A20180E7D45038F" name="X7A20180E7D45038F"></a></p>
<h5>5.1-12 ResolutionCoxeterGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ResolutionCoxeterGroup</code>( <var class="Arg">D</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a Coxeter diagram <span class="SimpleMath">D</span> and an integer <span class="SimpleMath">n>1</span>. It returns <span class="SimpleMath">k</span> terms of a free <span class="SimpleMath">ZG</span>-resolution <span class="SimpleMath">R</span> where <span class="SimpleMath">G</span> is the Coxeter group associated to <span class="SimpleMath">D</span>. Here <span class="SimpleMath">k</span> is the maximum of n and the number of vertices in the Coxeter diagram. At present the implementation is only for finite Coxeter groups and the group <span class="SimpleMath">G</span> is returned as a permutation group. The contracting homotopy on <span class="SimpleMath">R</span> has not yet been implemented!</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap11.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPolytopes.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoxeter.html">3</a></span> </p>
<p><a id="X7FCE801781AD83E1" name="X7FCE801781AD83E1"></a></p>
<h5>5.1-13 ResolutionDirectProduct</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ResolutionDirectProduct</code>( <var class="Arg">R</var>, <var class="Arg">S</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ResolutionDirectProduct</code>( <var class="Arg">R</var>, <var class="Arg">S</var>, <var class="Arg">str</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a <span class="SimpleMath">ZG</span>-resolution <span class="SimpleMath">R</span> and <span class="SimpleMath">ZH</span>-resolution <span class="SimpleMath">S</span>. It outputs a <span class="SimpleMath">ZD</span>-resolution for the direct product <span class="SimpleMath">D=G x H</span>.</p>
<p>If <span class="SimpleMath">G</span> and <span class="SimpleMath">H</span> lie in a common group <span class="SimpleMath">K</span>, and if they commute and have trivial intersection, then an optional third variable <span class="SimpleMath">str</span>="internal" can be used. This will force <span class="SimpleMath">D</span> to be the subgroup <span class="SimpleMath">GH</span> in <span class="SimpleMath">K</span>.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutExtensions.html">1</a></span> </p>
<p><a id="X79C83C4881B6A656" name="X79C83C4881B6A656"></a></p>
<h5>5.1-14 ResolutionExtension</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ResolutionExtension</code>( <var class="Arg">g</var>, <var class="Arg">R</var>, <var class="Arg">S</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ResolutionExtension</code>( <var class="Arg">g</var>, <var class="Arg">R</var>, <var class="Arg">S</var>, <var class="Arg">str</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ResolutionExtension</code>( <var class="Arg">g</var>, <var class="Arg">R</var>, <var class="Arg">S</var>, <var class="Arg">str</var>, <var class="Arg">GmapE</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a surjective group homomorphism <span class="SimpleMath">g:E ⟶ G</span> with kernel <span class="SimpleMath">N</span>. It also inputs a <span class="SimpleMath">ZN</span>-resolution <span class="SimpleMath">R</span> and a <span class="SimpleMath">ZG</span>-resolution <span class="SimpleMath">S</span>. It returns a <span class="SimpleMath">ZE</span>-resolution. The groups <span class="SimpleMath">E</span> and <span class="SimpleMath">G</span> can be infinite.</p>
<p>If an optional fourth argument <span class="SimpleMath">str</span>is set equal to "TestFiniteness" then the groups <span class="SimpleMath">N</span> and <span class="SimpleMath">G</span> will be tested to see if they are finite. If they are finite then some speed saving routines will be invoked. One can also set <span class="SimpleMath">str</span>="NoTest".</p>
<p>If the homomorphism <span class="SimpleMath">g</span> is such that the GAP function <span class="SimpleMath">PreImagesElement(g,x)</span> doesn't work, then a function <span class="SimpleMath">GmapE()</span> should be included as a fifth input. For any <span class="SimpleMath">x</span> in <span class="SimpleMath">G</span> this function should return an element <span class="SimpleMath">GmapE(x)</span> in <span class="SimpleMath">E</span> which gets mapped onto <span class="SimpleMath">x</span> by <span class="SimpleMath">g</span>.</p>
<p>The contracting homotopy on the <span class="SimpleMath">ZE</span>-resolution has not yet been fully implemented for infinite groups!</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutRosenbergerMonster.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutSpaceGroup.html">2</a></span> </p>
<p><a id="X87C346747F3B7C8C" name="X87C346747F3B7C8C"></a></p>
<h5>5.1-15 ResolutionFiniteDirectProduct</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ResolutionFiniteDirectProduct</code>( <var class="Arg">R</var>, <var class="Arg">S</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ResolutionFiniteDirectProduct</code>( <var class="Arg">R</var>, <var class="Arg">S</var>, <var class="Arg">str</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a <span class="SimpleMath">ZG</span>-resolution <span class="SimpleMath">R</span> and <span class="SimpleMath">ZH</span>-resolution <span class="SimpleMath">S</span> where <span class="SimpleMath">G</span> and <span class="SimpleMath">H</span> are finite groups. It outputs a <span class="SimpleMath">ZD</span>-resolution for the direct product <span class="SimpleMath">D=G×H</span>.</p>
<p>If <span class="SimpleMath">G</span> and <span class="SimpleMath">H</span> lie in a common group <span class="SimpleMath">K</span>, and if they commute and have trivial intersection, then an optional third variable <span class="SimpleMath">str</span>="internal" can be used. This will force <span class="SimpleMath">D</span> to be the subgroup <span class="SimpleMath">GH</span> in <span class="SimpleMath">K</span>.</p>
<p><strong class="button">Examples:</strong></p>
<p><a id="X79EDB1D584C2776F" name="X79EDB1D584C2776F"></a></p>
<h5>5.1-16 ResolutionFiniteExtension</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ResolutionFiniteExtension</code>( <var class="Arg">gensE</var>, <var class="Arg">gensG</var>, <var class="Arg">R</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ResolutionFiniteExtension</code>( <var class="Arg">gensE</var>, <var class="Arg">gensG</var>, <var class="Arg">R</var>, <var class="Arg">n</var>, <var class="Arg">true</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ResolutionFiniteExtension</code>( <var class="Arg">gensE</var>, <var class="Arg">gensG</var>, <var class="Arg">R</var>, <var class="Arg">n</var>, <var class="Arg">false</var>, <var class="Arg">S</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs: a set <span class="SimpleMath">gensE</span> of generators for a finite group <span class="SimpleMath">E</span>; a set <span class="SimpleMath">gensG</span> equal to the image of <span class="SimpleMath">gensE</span> in a quotient group <span class="SimpleMath">G</span> of <span class="SimpleMath">E</span>; a <span class="SimpleMath">ZG</span>-resolution <span class="SimpleMath">R</span> up to dimension at least <span class="SimpleMath">n</span>; a positive integer <span class="SimpleMath">n</span>. It uses the <span class="SimpleMath">TwistedTensorProduct()</span> construction to return <span class="SimpleMath">n</span> terms of a <span class="SimpleMath">ZE</span>-resolution.</p>
<p>The function has an optional fourth argument which, when set equal to "true", invokes tietze reductions in the construction of a resolution for the kernel of <span class="SimpleMath">E ⟶ G</span>.</p>
<p>If a <span class="SimpleMath">ZN</span>-resolution <span class="SimpleMath">S</span> is available, where <span class="SimpleMath">N</span> is the kernel of the quotient <span class="SimpleMath">E ⟶ G</span>, then this can be incorporated into the computations using an optional fifth argument.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutParallel.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutExtensions.html">2</a></span> </p>
<p><a id="X789B3E7C7CBB3751" name="X789B3E7C7CBB3751"></a></p>
<h5>5.1-17 ResolutionFiniteGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ResolutionFiniteGroup</code>( <var class="Arg">gens</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ResolutionFiniteGroup</code>( <var class="Arg">gens</var>, <var class="Arg">n</var>, <var class="Arg">true</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ResolutionFiniteGroup</code>( <var class="Arg">gens</var>, <var class="Arg">n</var>, <var class="Arg">false</var>, <var class="Arg">p</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ResolutionFiniteGroup</code>( <var class="Arg">gens</var>, <var class="Arg">n</var>, <var class="Arg">false</var>, <var class="Arg">0</var>, <var class="Arg">str</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a set <span class="SimpleMath">gens</span> of generators for a finite group <span class="SimpleMath">G</span> and a positive integer <span class="SimpleMath">n</span>. It outputs <span class="SimpleMath">n</span> terms of a <span class="SimpleMath">ZG</span>-resolution.</p>
<p>The function has an optional third argument which, when set equal to <span class="SimpleMath">true</span>, invokes tietze reductions in the construction of the resolution.</p>
<p>The function has an optional fourth argument which, when set equal to a prime <span class="SimpleMath">p</span>, records the fact that the resolution will only be used for mod <span class="SimpleMath">p</span> calculations. This could speed up subsequent constructions.</p>
<p>The function has an optional fifth argument <span class="SimpleMath">str</span> which, when set equal to "extendible", returns a resolution whose length can be increased using the command R!.extend() .</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap6.html">1</a></span> , <span class="URL"><a href="../tutorial/chap7.html">2</a></span> , <span class="URL"><a href="../tutorial/chap8.html">3</a></span> , <span class="URL"><a href="../tutorial/chap10.html">4</a></span> , <span class="URL"><a href="../tutorial/chap11.html">5</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutParallel.html">6</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPerformance.html">7</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCocycles.html">8</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPeriodic.html">9</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCohomologyRings.html">10</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPoincareSeries.html">11</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCrossedMods.html">12</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutDefinitions.html">13</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutSimplicialGroups.html">14</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutExtensions.html">15</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutSpaceGroup.html">16</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutFunctorial.html">17</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutGouter.html">18</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutTopology.html">19</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutTwistedCoefficients.html">20</a></span> </p>
<p><a id="X7AF48FA77F677E75" name="X7AF48FA77F677E75"></a></p>
<h5>5.1-18 ResolutionFiniteSubgroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ResolutionFiniteSubgroup</code>( <var class="Arg">R</var>, <var class="Arg">K</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ResolutionFiniteSubgroup</code>( <var class="Arg">R</var>, <var class="Arg">gensG</var>, <var class="Arg">gensK</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a <span class="SimpleMath">ZG</span>-resolution for a finite group <span class="SimpleMath">G</span> and a subgroup <span class="SimpleMath">K</span> of index <span class="SimpleMath">|G:K|</span>. It returns a free <span class="SimpleMath">ZK</span>-resolution whose <span class="SimpleMath">ZK</span>-rank is <span class="SimpleMath">|G:K|</span> times the <span class="SimpleMath">ZG</span>-rank in each dimension.</p>
<p>Generating sets <span class="SimpleMath">gensG</span>, <span class="SimpleMath">gensK</span> for <span class="SimpleMath">G</span> and <span class="SimpleMath">K</span> can also be input to the function (though the method does not depend on a choice of generators).</p>
<p>This <span class="SimpleMath">ZK</span>-resolution is not reduced. ie. it has more than one generator in dimension <span class="SimpleMath">0</span>.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap8.html">1</a></span> , <span class="URL"><a href="../tutorial/chap11.html">2</a></span> , <span class="URL"><a href="../tutorial/chap13.html">3</a></span> , <span class="URL"><a href="../tutorial/chap14.html">4</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutArithmetic.html">5</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoxeter.html">6</a></span> </p>
<p><a id="X78E504557FD75664" name="X78E504557FD75664"></a></p>
<h5>5.1-19 ResolutionGraphOfGroups</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ResolutionGraphOfGroups</code>( <var class="Arg">D</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ResolutionGraphOfGroups</code>( <var class="Arg">D</var>, <var class="Arg">n</var>, <var class="Arg">L</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a graph of groups <span class="SimpleMath">D</span> and a positive integer <span class="SimpleMath">n</span>. It returns <span class="SimpleMath">n</span> terms of a free <span class="SimpleMath">ZG</span>-resolution for the fundamental group <span class="SimpleMath">G</span> of <span class="SimpleMath">D</span>.</p>
<p>An optional third argument <span class="SimpleMath">L=[R_1 , ... , R_t]</span> can be used to list (in any order) free resolutions for some/all of the vertex and edge groups in <span class="SimpleMath">D</span>. If for some vertex or edge group no resolution is listed in <span class="SimpleMath">L</span> then the function <span class="SimpleMath">ResolutionFiniteGroup()</span> will be used to try to construct the resolution.</p>
<p>The <span class="SimpleMath">ZG</span>-resolution is usually not reduced. i.e. it has more than one generator in dimension 0.</p>
<p>The contracting homotopy on the <span class="SimpleMath">ZG</span>-resolution has not yet been implemented! Furthermore, the group <span class="SimpleMath">G</span> is currently returned only as a finitely presented group (without any method for solving the word problem).</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap7.html">1</a></span> , <span class="URL"><a href="../tutorial/chap11.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutGraphsOfGroups.html">3</a></span> </p>
<p><a id="X7CBE6BDA7DB5AD7D" name="X7CBE6BDA7DB5AD7D"></a></p>
<h5>5.1-20 ResolutionNilpotentGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ResolutionNilpotentGroup</code>( <var class="Arg">G</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ResolutionNilpotentGroup</code>( <var class="Arg">G</var>, <var class="Arg">n</var>, <var class="Arg">str</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a nilpotent group <span class="SimpleMath">G</span> and positive integer <span class="SimpleMath">n</span>. It returns <span class="SimpleMath">n</span> terms of a free <span class="SimpleMath">ZG</span>-resolution. The resolution is computed using a divide-and-conquer technique involving the lower central series.</p>
<p>This function can be applied to infinite groups <span class="SimpleMath">G</span>. For finite groups the function <span class="SimpleMath">ResolutionNormalSeries()</span> probably gives better results.</p>
<p>If an optional third argument <span class="SimpleMath">str</span> is set equal to "TestFiniteness" then the groups <span class="SimpleMath">N</span> and <span class="SimpleMath">G</span> will be tested to see if they are finite. If they are finite then some speed saving routines will be invoked.</p>
<p>The contracting homotopy on the <span class="SimpleMath">ZE</span>-resolution has not yet been fully implemented for infinite groups.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap6.html">1</a></span> , <span class="URL"><a href="../tutorial/chap11.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCohomologyRings.html">3</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutRosenbergerMonster.html">4</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutExtensions.html">5</a></span> </p>
<p><a id="X8574D76D7C891A04" name="X8574D76D7C891A04"></a></p>
<h5>5.1-21 ResolutionNormalSeries</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ResolutionNormalSeries</code>( <var class="Arg">L</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ResolutionNormalSeries</code>( <var class="Arg">L</var>, <var class="Arg">n</var>, <var class="Arg">true</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ResolutionNormalSeries</code>( <var class="Arg">L</var>, <var class="Arg">n</var>, <var class="Arg">false</var>, <var class="Arg">p</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a positive integer <span class="SimpleMath">n</span> and a list <span class="SimpleMath">L = [L_1 , ..., L_k]</span> of normal subgroups <span class="SimpleMath">L_i</span> of a finite group <span class="SimpleMath">G</span> satisfying <span class="SimpleMath">G = L_1</span> > <span class="SimpleMath">L2</span> ><span class="SimpleMath">...</span> ><span class="SimpleMath">L_k</span>. Alternatively, <span class="SimpleMath">L = [gensL_1, ... gensL_k]</span> can be a list of generating sets for the <span class="SimpleMath">L_i</span> (and these particular generators will be used in the construction of resolutions). It returns a <span class="SimpleMath">ZG</span>-resolution by repeatedly using the function <span class="SimpleMath">ResolutionFiniteExtension()</span>.</p>
<p>The function has an optional third argument which, if set equal to true, invokes tietze reductions in the construction of resolutions.</p>
<p>The function has an optional fourth argument which, if set equal to p > 0, produces a resolution which is only valid for mod <span class="SimpleMath">p</span> calculations.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap7.html">1</a></span> , <span class="URL"><a href="../tutorial/chap10.html">2</a></span> , <span class="URL"><a href="../tutorial/chap11.html">3</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutModPRings.html">4</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPerformance.html">5</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPersistent.html">6</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutRosenbergerMonster.html">7</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutExtensions.html">8</a></span> </p>
<p><a id="X86934BE9858F7199" name="X86934BE9858F7199"></a></p>
<h5>5.1-22 ResolutionPrimePowerGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ResolutionPrimePowerGroup</code>( <var class="Arg">P</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ResolutionPrimePowerGroup</code>( <var class="Arg">G</var>, <var class="Arg">n</var>, <var class="Arg">p</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a <span class="SimpleMath">p</span>-group <span class="SimpleMath">P</span> and integer <span class="SimpleMath">n</span>><span class="SimpleMath">0</span>. It uses GAP's standard linear algebra functions over the field <span class="SimpleMath">F</span> of p elements to construct a free <span class="SimpleMath">FP</span>-resolution for mod <span class="SimpleMath">p</span> calculations only. The resolution is minimal - meaning that the number of generators of <span class="SimpleMath">R_n</span> equals the rank of <span class="SimpleMath">H_n(P,F)</span>.</p>
<p>The function can also be used to obtain a free non-minimal <span class="SimpleMath">FG</span>-resolution of a small nilpotent group <span class="SimpleMath">G</span> of non-prime-power order. In this case the prime <span class="SimpleMath">p</span> must be entered as the third input variable. (In the non-prime-power nilpotent case the algorithm is naive and not very good.)</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap7.html">1</a></span> , <span class="URL"><a href="../tutorial/chap8.html">2</a></span> , <span class="URL"><a href="../tutorial/chap11.html">3</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutModPRings.html">4</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutDefinitions.html">5</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutTopology.html">6</a></span> </p>
<p><a id="X8521359A87D46462" name="X8521359A87D46462"></a></p>
<h5>5.1-23 ResolutionSmallFpGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ResolutionSmallFpGroup</code>( <var class="Arg">G</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ResolutionSmallFpGroup</code>( <var class="Arg">G</var>, <var class="Arg">n</var>, <var class="Arg">p</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a small finitely presented group <span class="SimpleMath">G</span> and an integer <span class="SimpleMath">n</span>><span class="SimpleMath">0</span>. It returns <span class="SimpleMath">n</span> terms of a <span class="SimpleMath">ZG</span>-resolution which, in dimensions 1 and 2, corresponds to the given presentation for <span class="SimpleMath">G</span>. The method returns no contracting homotopy for the resolution.</p>
<p>The function has an optional fourth argument which, when set equal to a prime <span class="SimpleMath">p</span>, records the fact that the resolution will only be used for mod <span class="SimpleMath">p</span> calculations. This could speed up subsequent constructions.</p>
<p>This function was written by Irina Kholodna.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutPeriodic.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutSpaceGroup.html">2</a></span> </p>
<p><a id="X79A0221B7E96B642" name="X79A0221B7E96B642"></a></p>
<h5>5.1-24 ResolutionSubgroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ResolutionSubgroup</code>( <var class="Arg">R</var>, <var class="Arg">K</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a <span class="SimpleMath">ZG</span>-resolution for an (infinite) group <span class="SimpleMath">G</span> and a subgroup <span class="SimpleMath">K</span> of finite index <span class="SimpleMath">|G:K|</span>. It returns a free <span class="SimpleMath">ZK</span>-resolution whose <span class="SimpleMath">ZK</span>-rank is <span class="SimpleMath">|G:K|</span> times the <span class="SimpleMath">ZG</span>-rank in each dimension.</p>
<p>If <span class="SimpleMath">G</span> is finite then the function <span class="SimpleMath">ResolutionFiniteSubgroup(R,G,K)</span> will probably work better. In particular, resolutions from this function probably won't work with the function <span class="SimpleMath">EquivariantChainMap()</span>. This <span class="SimpleMath">ZK</span>-resolution is not reduced. i.e. it has more than one generator in dimension 0.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutArithmetic.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutArtinGroups.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutTwistedCoefficients.html">3</a></span> </p>
<p><a id="X80CE971A7C2C538B" name="X80CE971A7C2C538B"></a></p>
<h5>5.1-25 ResolutionSubnormalSeries</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ResolutionSubnormalSeries</code>( <var class="Arg">L</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a positive integer n and a list <span class="SimpleMath">L = [L_1 , ... , L_k]</span> of subgroups <span class="SimpleMath">L_i</span> of a finite group <span class="SimpleMath">G=L_1</span> such that <span class="SimpleMath">L_1</span> > <span class="SimpleMath">L2 ...</span> > <span class="SimpleMath">L_k</span> is a subnormal series in <span class="SimpleMath">G</span> (meaning that each <span class="SimpleMath">L_i+1</span> must be normal in <span class="SimpleMath">L_i</span>). It returns a <span class="SimpleMath">ZG</span>-resolution by repeatedly using the function <span class="SimpleMath">ResolutionFiniteExtension()</span>.</p>
<p>If <span class="SimpleMath">L</span> is a series of normal subgroups in <span class="SimpleMath">G</span> then the function <span class="SimpleMath">ResolutionNormalSeries(L,n)</span> will possibly work more efficiently.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap6.html">1</a></span> , <span class="URL"><a href="../tutorial/chap11.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutExtensions.html">3</a></span> </p>
<p><a id="X7A8E03D57895D04A" name="X7A8E03D57895D04A"></a></p>
<h5>5.1-26 TwistedTensorProduct</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ TwistedTensorProduct</code>( <var class="Arg">R</var>, <var class="Arg">S</var>, <var class="Arg">EhomG</var>, <var class="Arg">GmapE</var>, <var class="Arg">NhomE</var>, <var class="Arg">NEhomN</var>, <var class="Arg">EltsE</var>, <var class="Arg">Mult</var>, <var class="Arg">InvE</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a <span class="SimpleMath">ZG</span>-resolution <span class="SimpleMath">R</span>, a <span class="SimpleMath">ZN</span>-resolution <span class="SimpleMath">S</span>, and other data relating to a short exact sequence <span class="SimpleMath">1 ⟶ N ⟶ E ⟶ G ⟶ 1</span>. It uses a perturbation technique of CTC Wall to construct a <span class="SimpleMath">ZE</span>-resolution <span class="SimpleMath">F</span>. Both <span class="SimpleMath">G</span> and <span class="SimpleMath">N</span> could be infinite. The "length" of <span class="SimpleMath">F</span> is equal to the minimum of the "length"s of <span class="SimpleMath">R</span> and <span class="SimpleMath">S</span>. The resolution <span class="SimpleMath">R</span> needs no contracting homotopy if no such homotopy is requied for <span class="SimpleMath">F</span>.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutExtensions.html">1</a></span> </p>
<p><a id="X864044D679AE4E25" name="X864044D679AE4E25"></a></p>
<h5>5.1-27 ConjugatedResolution</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ConjugatedResolution</code>( <var class="Arg">R</var>, <var class="Arg">x</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a ZG-resoluton <span class="SimpleMath">R</span> and an element <span class="SimpleMath">x</span> from some group containing <span class="SimpleMath">G</span>. It returns a <span class="SimpleMath">ZG^x</span>-resolution <span class="SimpleMath">S</span> where the group <span class="SimpleMath">G^x</span> is the conjugate of <span class="SimpleMath">G</span> by <span class="SimpleMath">x</span>. (The component <span class="SimpleMath">S!.elts</span> will be a pseudolist rather than a list.)</p>
<p><strong class="button">Examples:</strong></p>
<p><a id="X82646B64875E5560" name="X82646B64875E5560"></a></p>
<h5>5.1-28 RecalculateIncidenceNumbers</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ RecalculateIncidenceNumbers</code>( <var class="Arg">R</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a ZG-resoluton <span class="SimpleMath">R</span> which arises as the cellular chain complex of a regular CW-complex. (Thus the boundary of any cell is a list of distinct cells.) It recalculates the incidence numbers for <span class="SimpleMath">R</span>. If it is applied to a resolution that is not regular then a wrong answer may be returned.</p>
<p><strong class="button">Examples:</strong></p>
<div class="chlinkprevnextbot"> <a href="chap0.html">[Top of Book]</a> <a href="chap0.html#contents">[Contents]</a> <a href="chap4.html">[Previous Chapter]</a> <a href="chap6.html">[Next Chapter]</a> </div>
<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a> <a href="chap1.html">1</a> <a href="chap2.html">2</a> <a href="chap3.html">3</a> <a href="chap4.html">4</a> <a href="chap5.html">5</a> <a href="chap6.html">6</a> <a href="chap7.html">7</a> <a href="chap8.html">8</a> <a href="chap9.html">9</a> <a href="chap10.html">10</a> <a href="chap11.html">11</a> <a href="chap12.html">12</a> <a href="chap13.html">13</a> <a href="chap14.html">14</a> <a href="chap15.html">15</a> <a href="chap16.html">16</a> <a href="chap17.html">17</a> <a href="chap18.html">18</a> <a href="chap19.html">19</a> <a href="chap20.html">20</a> <a href="chap21.html">21</a> <a href="chap22.html">22</a> <a href="chap23.html">23</a> <a href="chap24.html">24</a> <a href="chap25.html">25</a> <a href="chap26.html">26</a> <a href="chap27.html">27</a> <a href="chap28.html">28</a> <a href="chap29.html">29</a> <a href="chap30.html">30</a> <a href="chap31.html">31</a> <a href="chap32.html">32</a> <a href="chap33.html">33</a> <a href="chap34.html">34</a> <a href="chap35.html">35</a> <a href="chap36.html">36</a> <a href="chap37.html">37</a> <a href="chap38.html">38</a> <a href="chap39.html">39</a> <a href="chap40.html">40</a> <a href="chapInd.html">Ind</a> </div>
<hr />
<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>
|