1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
|
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>GAP (HAP commands) - Chapter 8: Functors</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap8" onload="jscontent()">
<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a> <a href="chap1.html">1</a> <a href="chap2.html">2</a> <a href="chap3.html">3</a> <a href="chap4.html">4</a> <a href="chap5.html">5</a> <a href="chap6.html">6</a> <a href="chap7.html">7</a> <a href="chap8.html">8</a> <a href="chap9.html">9</a> <a href="chap10.html">10</a> <a href="chap11.html">11</a> <a href="chap12.html">12</a> <a href="chap13.html">13</a> <a href="chap14.html">14</a> <a href="chap15.html">15</a> <a href="chap16.html">16</a> <a href="chap17.html">17</a> <a href="chap18.html">18</a> <a href="chap19.html">19</a> <a href="chap20.html">20</a> <a href="chap21.html">21</a> <a href="chap22.html">22</a> <a href="chap23.html">23</a> <a href="chap24.html">24</a> <a href="chap25.html">25</a> <a href="chap26.html">26</a> <a href="chap27.html">27</a> <a href="chap28.html">28</a> <a href="chap29.html">29</a> <a href="chap30.html">30</a> <a href="chap31.html">31</a> <a href="chap32.html">32</a> <a href="chap33.html">33</a> <a href="chap34.html">34</a> <a href="chap35.html">35</a> <a href="chap36.html">36</a> <a href="chap37.html">37</a> <a href="chap38.html">38</a> <a href="chap39.html">39</a> <a href="chap40.html">40</a> <a href="chapInd.html">Ind</a> </div>
<div class="chlinkprevnexttop"> <a href="chap0.html">[Top of Book]</a> <a href="chap0.html#contents">[Contents]</a> <a href="chap7.html">[Previous Chapter]</a> <a href="chap9.html">[Next Chapter]</a> </div>
<p id="mathjaxlink" class="pcenter"><a href="chap8_mj.html">[MathJax on]</a></p>
<p><a id="X78D1062D78BE08C1" name="X78D1062D78BE08C1"></a></p>
<div class="ChapSects"><a href="chap8.html#X78D1062D78BE08C1">8 <span class="Heading"> Functors</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap8.html#X7CFDEEC07F15CF82">8.1 <span class="Heading"> </span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap8.html#X81BA486D7E532469">8.1-1 ExtendScalars</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap8.html#X788F3B5E7810E309">8.1-2 HomToIntegers</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap8.html#X7E0216028756963B">8.1-3 HomToIntegersModP</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap8.html#X81FED0E9858E413A">8.1-4 HomToIntegralModule</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap8.html#X7F5BAB35811AB0D1">8.1-5 TensorWithIntegralModule</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap8.html#X7CF7B8A3842D498B">8.1-6 HomToGModule</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap8.html#X7D686D5D78FEF5C9">8.1-7 InduceScalars</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap8.html#X8456E06D7E76707B">8.1-8 LowerCentralSeriesLieAlgebra</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap8.html#X83BA99787CBE2B7D">8.1-9 TensorWithIntegers</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap8.html#X829DD3868410FE2E">8.1-10 FilteredTensorWithIntegers</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap8.html#X7A0B33D085067A38">8.1-11 TensorWithTwistedIntegers</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap8.html#X8122D25786C83565">8.1-12 TensorWithIntegersModP</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap8.html#X873096CB823BFD1B">8.1-13 TensorWithTwistedIntegersModP</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap8.html#X809BA8A87F61EEDA">8.1-14 TensorWithRationals</a></span>
</div></div>
</div>
<h3>8 <span class="Heading"> Functors</span></h3>
<p><a id="X7CFDEEC07F15CF82" name="X7CFDEEC07F15CF82"></a></p>
<h4>8.1 <span class="Heading"> </span></h4>
<p><a id="X81BA486D7E532469" name="X81BA486D7E532469"></a></p>
<h5>8.1-1 ExtendScalars</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ExtendScalars</code>( <var class="Arg">R</var>, <var class="Arg">G</var>, <var class="Arg">EltsG</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a <span class="SimpleMath">ZH</span>-resolution <span class="SimpleMath">R</span>, a group <span class="SimpleMath">G</span> containing <span class="SimpleMath">H</span> as a subgroup, and a list <span class="SimpleMath">EltsG</span> of elements of <span class="SimpleMath">G</span>. It returns the free <span class="SimpleMath">ZG</span>-resolution <span class="SimpleMath">(R ⊗_ZH ZG)</span>. The returned resolution <span class="SimpleMath">S</span> has S!.elts:=EltsG. This is a resolution of the <span class="SimpleMath">ZG</span>-module <span class="SimpleMath">(Z ⊗_ZH ZG)</span>. (Here <span class="SimpleMath">⊗_ZH</span> means tensor over <span class="SimpleMath">ZH</span>.)</p>
<p><strong class="button">Examples:</strong></p>
<p><a id="X788F3B5E7810E309" name="X788F3B5E7810E309"></a></p>
<h5>8.1-2 HomToIntegers</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ HomToIntegers</code>( <var class="Arg">X</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs either a <span class="SimpleMath">ZG</span>-resolution <span class="SimpleMath">X=R</span>, or an equivariant chain map <span class="SimpleMath">X = (F:R ⟶ S)</span>. It returns the cochain complex or cochain map obtained by applying <span class="SimpleMath">HomZG( _ , Z)</span> where <span class="SimpleMath">Z</span> is the trivial module of integers (characteristic 0).</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> , <span class="URL"><a href="../tutorial/chap7.html">2</a></span> , <span class="URL"><a href="../tutorial/chap8.html">3</a></span> , <span class="URL"><a href="../tutorial/chap10.html">4</a></span> , <span class="URL"><a href="../tutorial/chap13.html">5</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCohomologyRings.html">6</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutSpaceGroup.html">7</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutIntro.html">8</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutTorAndExt.html">9</a></span> </p>
<p><a id="X7E0216028756963B" name="X7E0216028756963B"></a></p>
<h5>8.1-3 HomToIntegersModP</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ HomToIntegersModP</code>( <var class="Arg">R</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a <span class="SimpleMath">ZG</span>-resolution <span class="SimpleMath">R</span> and returns the cochain complex obtained by applying <span class="SimpleMath">HomZG( _ , Z_p)</span> where <span class="SimpleMath">Z_p</span> is the trivial module of integers mod <span class="SimpleMath">p</span>. (At present this functor does not handle equivariant chain maps.)</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap8.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutSpaceGroup.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutIntro.html">3</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutTorAndExt.html">4</a></span> </p>
<p><a id="X81FED0E9858E413A" name="X81FED0E9858E413A"></a></p>
<h5>8.1-4 HomToIntegralModule</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ HomToIntegralModule</code>( <var class="Arg">R</var>, <var class="Arg">f</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a <span class="SimpleMath">ZG</span>-resolution <span class="SimpleMath">R</span> and a group homomorphism <span class="SimpleMath">f:G ⟶ GL_n(Z)</span> to the group of <span class="SimpleMath">n×n</span> invertible integer matrices. Here <span class="SimpleMath">Z</span> must have characteristic 0. It returns the cochain complex obtained by applying <span class="SimpleMath">HomZG( _ , A)</span> where <span class="SimpleMath">A</span> is the <span class="SimpleMath">ZG</span>-module <span class="SimpleMath">Z^n</span> with <span class="SimpleMath">G</span> action via <span class="SimpleMath">f</span>. (At present this function does not handle equivariant chain maps.)</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap7.html">1</a></span> , <span class="URL"><a href="../tutorial/chap13.html">2</a></span> , <span class="URL"><a href="../tutorial/chap14.html">3</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutTwistedCoefficients.html">4</a></span> </p>
<p><a id="X7F5BAB35811AB0D1" name="X7F5BAB35811AB0D1"></a></p>
<h5>8.1-5 TensorWithIntegralModule</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ TensorWithIntegralModule</code>( <var class="Arg">R</var>, <var class="Arg">f</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a <span class="SimpleMath">ZG</span>-resolution <span class="SimpleMath">R</span> and a group homomorphism <span class="SimpleMath">f:G ⟶ GL_n(Z)</span> to the group of <span class="SimpleMath">n×n</span> invertible integer matrices. Here <span class="SimpleMath">Z</span> must have characteristic 0. It returns the chain complex obtained by tensoring over <span class="SimpleMath">ZG</span> with the <span class="SimpleMath">ZG</span>-module <span class="SimpleMath">A=Z^n</span> with <span class="SimpleMath">G</span> action via <span class="SimpleMath">f</span>. (At present this function does not handle equivariant chain maps.)</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap7.html">1</a></span> </p>
<p><a id="X7CF7B8A3842D498B" name="X7CF7B8A3842D498B"></a></p>
<h5>8.1-6 HomToGModule</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ HomToGModule</code>( <var class="Arg">R</var>, <var class="Arg">A</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a <span class="SimpleMath">ZG</span>-resolution <span class="SimpleMath">R</span> and an abelian G-outer group A. It returns the G-cocomplex obtained by applying <span class="SimpleMath">HomZG( _ , A)</span>. (At present this function does not handle equivariant chain maps.)</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap6.html">1</a></span> , <span class="URL"><a href="../tutorial/chap7.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCrossedMods.html">3</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutGouter.html">4</a></span> </p>
<p><a id="X7D686D5D78FEF5C9" name="X7D686D5D78FEF5C9"></a></p>
<h5>8.1-7 InduceScalars</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ InduceScalars</code>( <var class="Arg">R</var>, <var class="Arg">hom</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a <span class="SimpleMath">ZQ</span>-resolution <span class="SimpleMath">R</span> and a surjective group homomorphism <span class="SimpleMath">hom:G→ Q</span>. It returns the unduced non-free <span class="SimpleMath">ZG</span>-resolution.</p>
<p><strong class="button">Examples:</strong></p>
<p><a id="X8456E06D7E76707B" name="X8456E06D7E76707B"></a></p>
<h5>8.1-8 LowerCentralSeriesLieAlgebra</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ LowerCentralSeriesLieAlgebra</code>( <var class="Arg">G</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ LowerCentralSeriesLieAlgebra</code>( <var class="Arg">f</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a pcp group <span class="SimpleMath">G</span>. If each quotient <span class="SimpleMath">G_c/G_c+1</span> of the lower central series is free abelian or p-elementary abelian (for fixed prime p) then a Lie algebra <span class="SimpleMath">L(G)</span> is returned. The abelian group underlying <span class="SimpleMath">L(G)</span> is the direct sum of the quotients <span class="SimpleMath">G_c/G_c+1</span> . The Lie bracket on <span class="SimpleMath">L(G)</span> is induced by the commutator in <span class="SimpleMath">G</span>. (Here <span class="SimpleMath">G_1=G</span>, <span class="SimpleMath">G_c+1=[G_c,G]</span> .)</p>
<p>The function can also be applied to a group homomorphism <span class="SimpleMath">f: G ⟶ G'</span> . In this case the induced homomorphism of Lie algebras <span class="SimpleMath">L(f):L(G) ⟶ L(G')</span> is returned.</p>
<p>If the quotients of the lower central series are not all free or p-elementary abelian then the function returns fail.</p>
<p>This function was written by Pablo Fernandez Ascariz</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap7.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutIntro.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutLie.html">3</a></span> </p>
<p><a id="X83BA99787CBE2B7D" name="X83BA99787CBE2B7D"></a></p>
<h5>8.1-9 TensorWithIntegers</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ TensorWithIntegers</code>( <var class="Arg">X</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs either a <span class="SimpleMath">ZG</span>-resolution <span class="SimpleMath">X=R</span>, or an equivariant chain map <span class="SimpleMath">X = (F:R ⟶ S)</span>. It returns the chain complex or chain map obtained by tensoring with the trivial module of integers (characteristic 0).</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> , <span class="URL"><a href="../tutorial/chap3.html">2</a></span> , <span class="URL"><a href="../tutorial/chap6.html">3</a></span> , <span class="URL"><a href="../tutorial/chap7.html">4</a></span> , <span class="URL"><a href="../tutorial/chap10.html">5</a></span> , <span class="URL"><a href="../tutorial/chap11.html">6</a></span> , <span class="URL"><a href="../tutorial/chap13.html">7</a></span> , <span class="URL"><a href="../tutorial/chap14.html">8</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutArithmetic.html">9</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutArtinGroups.html">10</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutAspherical.html">11</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutParallel.html">12</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPerformance.html">13</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCocycles.html">14</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPersistent.html">15</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPoincareSeries.html">16</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoveringSpaces.html">17</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoverinSpaces.html">18</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPolytopes.html">19</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoxeter.html">20</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutRosenbergerMonster.html">21</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutDavisComplex.html">22</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutDefinitions.html">23</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutSimplicialGroups.html">24</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutExtensions.html">25</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutSpaceGroup.html">26</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutFunctorial.html">27</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutGraphsOfGroups.html">28</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutIntro.html">29</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutTorAndExt.html">30</a></span> </p>
<p><a id="X829DD3868410FE2E" name="X829DD3868410FE2E"></a></p>
<h5>8.1-10 FilteredTensorWithIntegers</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ FilteredTensorWithIntegers</code>( <var class="Arg">R</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a <span class="SimpleMath">ZG</span>-resolution <span class="SimpleMath">R</span> for which "filteredDimension" lies in NamesOfComponents(R). (Such a resolution can be produced using TwisterTensorProduct(), ResolutionNormalSubgroups() or FreeGResolution().) It returns the filtered chain complex obtained by tensoring with the trivial module of integers (characteristic 0).</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap10.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPersistent.html">2</a></span> </p>
<p><a id="X7A0B33D085067A38" name="X7A0B33D085067A38"></a></p>
<h5>8.1-11 TensorWithTwistedIntegers</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ TensorWithTwistedIntegers</code>( <var class="Arg">X</var>, <var class="Arg">rho</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs either a <span class="SimpleMath">ZG</span>-resolution <span class="SimpleMath">X=R</span>, or an equivariant chain map <span class="SimpleMath">X = (F:R ⟶ S)</span>. It also inputs a function <span class="SimpleMath">rho: G→ Z</span> where the action of <span class="SimpleMath">g ∈ G</span> on <span class="SimpleMath">Z</span> is such that <span class="SimpleMath">g.1 = rho(g)</span>. It returns the chain complex or chain map obtained by tensoring with the (twisted) module of integers (characteristic 0).</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap3.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoveringSpaces.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoverinSpaces.html">3</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutTwistedCoefficients.html">4</a></span> </p>
<p><a id="X8122D25786C83565" name="X8122D25786C83565"></a></p>
<h5>8.1-12 TensorWithIntegersModP</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ TensorWithIntegersModP</code>( <var class="Arg">X</var>, <var class="Arg">p</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs either a <span class="SimpleMath">ZG</span>-resolution <span class="SimpleMath">X=R</span>, or a characteristics 0 chain complex, or an equivariant chain map <span class="SimpleMath">X = (F:R ⟶ S)</span>, or a chain map between characteristic 0 chain complexes, together with a prime <span class="SimpleMath">p</span>. It returns the chain complex or chain map obtained by tensoring with the trivial module of integers modulo <span class="SimpleMath">p</span>.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> , <span class="URL"><a href="../tutorial/chap10.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutArithmetic.html">3</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPerformance.html">4</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPersistent.html">5</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPoincareSeries.html">6</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutDefinitions.html">7</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutExtensions.html">8</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutTorAndExt.html">9</a></span> </p>
<p><a id="X873096CB823BFD1B" name="X873096CB823BFD1B"></a></p>
<h5>8.1-13 TensorWithTwistedIntegersModP</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ TensorWithTwistedIntegersModP</code>( <var class="Arg">X</var>, <var class="Arg">p</var>, <var class="Arg">rho</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs either a <span class="SimpleMath">ZG</span>-resolution <span class="SimpleMath">X=R</span>, or an equivariant chain map <span class="SimpleMath">X = (F:R ⟶ S)</span>, and a prime <span class="SimpleMath">p</span>. It also inputs a function <span class="SimpleMath">rho: G→ Z</span> where the action of <span class="SimpleMath">g ∈ G</span> on <span class="SimpleMath">Z</span> is such that <span class="SimpleMath">g.1 = rho(g)</span>. It returns the chain complex or chain map obtained by tensoring with the trivial module of integers modulo <span class="SimpleMath">p</span>.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutTwistedCoefficients.html">1</a></span> </p>
<p><a id="X809BA8A87F61EEDA" name="X809BA8A87F61EEDA"></a></p>
<h5>8.1-14 TensorWithRationals</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ TensorWithRationals</code>( <var class="Arg">R</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a <span class="SimpleMath">ZG</span>-resolution <span class="SimpleMath">R</span> and returns the chain complex obtained by tensoring with the trivial module of rational numbers.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap10.html">1</a></span> , <span class="URL"><a href="../tutorial/chap13.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutExtensions.html">3</a></span> </p>
<div class="chlinkprevnextbot"> <a href="chap0.html">[Top of Book]</a> <a href="chap0.html#contents">[Contents]</a> <a href="chap7.html">[Previous Chapter]</a> <a href="chap9.html">[Next Chapter]</a> </div>
<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a> <a href="chap1.html">1</a> <a href="chap2.html">2</a> <a href="chap3.html">3</a> <a href="chap4.html">4</a> <a href="chap5.html">5</a> <a href="chap6.html">6</a> <a href="chap7.html">7</a> <a href="chap8.html">8</a> <a href="chap9.html">9</a> <a href="chap10.html">10</a> <a href="chap11.html">11</a> <a href="chap12.html">12</a> <a href="chap13.html">13</a> <a href="chap14.html">14</a> <a href="chap15.html">15</a> <a href="chap16.html">16</a> <a href="chap17.html">17</a> <a href="chap18.html">18</a> <a href="chap19.html">19</a> <a href="chap20.html">20</a> <a href="chap21.html">21</a> <a href="chap22.html">22</a> <a href="chap23.html">23</a> <a href="chap24.html">24</a> <a href="chap25.html">25</a> <a href="chap26.html">26</a> <a href="chap27.html">27</a> <a href="chap28.html">28</a> <a href="chap29.html">29</a> <a href="chap30.html">30</a> <a href="chap31.html">31</a> <a href="chap32.html">32</a> <a href="chap33.html">33</a> <a href="chap34.html">34</a> <a href="chap35.html">35</a> <a href="chap36.html">36</a> <a href="chap37.html">37</a> <a href="chap38.html">38</a> <a href="chap39.html">39</a> <a href="chap40.html">40</a> <a href="chapInd.html">Ind</a> </div>
<hr />
<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>
|