File: chap9.html

package info (click to toggle)
gap-hap 1.74%2Bds-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 58,664 kB
  • sloc: xml: 16,678; sh: 197; javascript: 155; makefile: 121; ansic: 47; perl: 24
file content (147 lines) | stat: -rw-r--r-- 15,099 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
         "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>GAP (HAP commands) - Chapter 9:  Chain complexes</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap9"  onload="jscontent()">


<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a>  <a href="chap10.html">10</a>  <a href="chap11.html">11</a>  <a href="chap12.html">12</a>  <a href="chap13.html">13</a>  <a href="chap14.html">14</a>  <a href="chap15.html">15</a>  <a href="chap16.html">16</a>  <a href="chap17.html">17</a>  <a href="chap18.html">18</a>  <a href="chap19.html">19</a>  <a href="chap20.html">20</a>  <a href="chap21.html">21</a>  <a href="chap22.html">22</a>  <a href="chap23.html">23</a>  <a href="chap24.html">24</a>  <a href="chap25.html">25</a>  <a href="chap26.html">26</a>  <a href="chap27.html">27</a>  <a href="chap28.html">28</a>  <a href="chap29.html">29</a>  <a href="chap30.html">30</a>  <a href="chap31.html">31</a>  <a href="chap32.html">32</a>  <a href="chap33.html">33</a>  <a href="chap34.html">34</a>  <a href="chap35.html">35</a>  <a href="chap36.html">36</a>  <a href="chap37.html">37</a>  <a href="chap38.html">38</a>  <a href="chap39.html">39</a>  <a href="chap40.html">40</a>  <a href="chapInd.html">Ind</a>  </div>

<div class="chlinkprevnexttop">&nbsp;<a href="chap0.html">[Top of Book]</a>&nbsp;  <a href="chap0.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap8.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap10.html">[Next Chapter]</a>&nbsp;  </div>

<p id="mathjaxlink" class="pcenter"><a href="chap9_mj.html">[MathJax on]</a></p>
<p><a id="X7A06103979B92808" name="X7A06103979B92808"></a></p>
<div class="ChapSects"><a href="chap9.html#X7A06103979B92808">9 <span class="Heading"> Chain complexes</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap9.html#X7CFDEEC07F15CF82">9.1 <span class="Heading">  </span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap9.html#X7A1C427578108B7E">9.1-1 ChainComplex</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap9.html#X838AF689838BA681">9.1-2 ChainComplexOfPair</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap9.html#X7D84631C7B16C703">9.1-3 ChevalleyEilenbergComplex</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap9.html#X7D5DD19D7BA9D816">9.1-4 LeibnizComplex</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap9.html#X86EC96CC7EB5957E">9.1-5 SuspendedChainComplex</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap9.html#X83340F8C868BDE60">9.1-6 ReducedSuspendedChainComplex</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap9.html#X82F1E19E7B11095A">9.1-7 CoreducedChainComplex</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap9.html#X7ADC193D813C82F7">9.1-8 TensorProductOfChainComplexes</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap9.html#X7992AE7B7C8201F9">9.1-9 LefschetzNumber</a></span>
</div></div>
</div>

<h3>9 <span class="Heading"> Chain complexes</span></h3>

<p><a id="X7CFDEEC07F15CF82" name="X7CFDEEC07F15CF82"></a></p>

<h4>9.1 <span class="Heading">  </span></h4>

<p><a id="X7A1C427578108B7E" name="X7A1C427578108B7E"></a></p>

<h5>9.1-1 ChainComplex</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ChainComplex</code>( <var class="Arg">T</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a pure cubical complex, or cubical complex, or simplicial complex <span class="SimpleMath">T</span> and returns the (often very large) cellular chain complex of <span class="SimpleMath">T</span>.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> , <span class="URL"><a href="../tutorial/chap3.html">2</a></span> , <span class="URL"><a href="../tutorial/chap4.html">3</a></span> , <span class="URL"><a href="../tutorial/chap10.html">4</a></span> , <span class="URL"><a href="../tutorial/chap12.html">5</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutMetrics.html">6</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutBredon.html">7</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPersistent.html">8</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoveringSpaces.html">9</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoverinSpaces.html">10</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCubical.html">11</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutSimplicialGroups.html">12</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutIntro.html">13</a></span> </p>

<p><a id="X838AF689838BA681" name="X838AF689838BA681"></a></p>

<h5>9.1-2 ChainComplexOfPair</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ChainComplexOfPair</code>( <var class="Arg">T</var>, <var class="Arg">S</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a pure cubical complex or cubical complex <span class="SimpleMath">T</span> and contractible subcomplex <span class="SimpleMath">S</span>. It returns the quotient <span class="SimpleMath">C(T)/C(S)</span> of cellular chain complexes.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap10.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCubical.html">2</a></span> </p>

<p><a id="X7D84631C7B16C703" name="X7D84631C7B16C703"></a></p>

<h5>9.1-3 ChevalleyEilenbergComplex</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ChevalleyEilenbergComplex</code>( <var class="Arg">X</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs either a Lie algebra <span class="SimpleMath">X=A</span> (over the ring of integers <span class="SimpleMath">Z</span> or over a field <span class="SimpleMath">K</span>) or a homomorphism of Lie algebras <span class="SimpleMath">X=(f:A ⟶ B)</span>, together with a positive integer <span class="SimpleMath">n</span>. It returns either the first <span class="SimpleMath">n</span> terms of the Chevalley-Eilenberg chain complex <span class="SimpleMath">C(A)</span>, or the induced map of Chevalley-Eilenberg complexes <span class="SimpleMath">C(f):C(A) ⟶ C(B)</span>.</p>

<p>(The homology of the Chevalley-Eilenberg complex <span class="SimpleMath">C(A)</span> is by definition the homology of the Lie algebra <span class="SimpleMath">A</span> with trivial coefficients in <span class="SimpleMath">Z</span> or <span class="SimpleMath">K</span>).</p>

<p>This function was written by <strong class="button">Pablo Fernandez Ascariz</strong></p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap7.html">1</a></span> </p>

<p><a id="X7D5DD19D7BA9D816" name="X7D5DD19D7BA9D816"></a></p>

<h5>9.1-4 LeibnizComplex</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; LeibnizComplex</code>( <var class="Arg">X</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs either a Lie or Leibniz algebra <span class="SimpleMath">X=A</span> (over the ring of integers <span class="SimpleMath">Z</span> or over a field <span class="SimpleMath">K</span>) or a homomorphism of Lie or Leibniz algebras <span class="SimpleMath">X=(f:A ⟶ B)</span>, together with a positive integer <span class="SimpleMath">n</span>. It returns either the first <span class="SimpleMath">n</span> terms of the Leibniz chain complex <span class="SimpleMath">C(A)</span>, or the induced map of Leibniz complexes <span class="SimpleMath">C(f):C(A) ⟶ C(B)</span>.</p>

<p>(The Leibniz complex <span class="SimpleMath">C(A)</span> was defined by J.-L.Loday. Its homology is by definition the Leibniz homology of the algebra <span class="SimpleMath">A</span>).</p>

<p>This function was written by <strong class="button">Pablo Fernandez Ascariz</strong></p>

<p><strong class="button">Examples:</strong></p>

<p><a id="X86EC96CC7EB5957E" name="X86EC96CC7EB5957E"></a></p>

<h5>9.1-5 SuspendedChainComplex</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SuspendedChainComplex</code>( <var class="Arg">C</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a chain complex <span class="SimpleMath">C</span> and returns the chain complex <span class="SimpleMath">S</span> defined by applying the degree shift <span class="SimpleMath">S_n = C_n-1</span> to chain groups and boundary homomorphisms.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap10.html">1</a></span> </p>

<p><a id="X83340F8C868BDE60" name="X83340F8C868BDE60"></a></p>

<h5>9.1-6 ReducedSuspendedChainComplex</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ReducedSuspendedChainComplex</code>( <var class="Arg">C</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a chain complex <span class="SimpleMath">C</span> and returns the chain complex <span class="SimpleMath">S</span> defined by applying the degree shift <span class="SimpleMath">S_n = C_n-1</span> to chain groups and boundary homomorphisms for all <span class="SimpleMath">n &gt; 0</span>. The chain complex <span class="SimpleMath">S</span> has trivial homology in degree <span class="SimpleMath">0</span> and <span class="SimpleMath">S_0= Z</span>.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap10.html">1</a></span> </p>

<p><a id="X82F1E19E7B11095A" name="X82F1E19E7B11095A"></a></p>

<h5>9.1-7 CoreducedChainComplex</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; CoreducedChainComplex</code>( <var class="Arg">C</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; CoreducedChainComplex</code>( <var class="Arg">C</var>, <var class="Arg">2</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a chain complex <span class="SimpleMath">C</span> and returns a quasi-isomorphic chain complex <span class="SimpleMath">D</span>. In many cases the complex <span class="SimpleMath">D</span> should be smaller than <span class="SimpleMath">C</span>. If an optional second input argument is set equal to 2 then an alternative method is used for reducing the size of the chain complex.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutSimplicialGroups.html">1</a></span> </p>

<p><a id="X7ADC193D813C82F7" name="X7ADC193D813C82F7"></a></p>

<h5>9.1-8 TensorProductOfChainComplexes</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; TensorProductOfChainComplexes</code>( <var class="Arg">C</var>, <var class="Arg">D</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs two chain complexes <span class="SimpleMath">C</span> and <span class="SimpleMath">D</span> of the same characteristic and returns their tensor product as a chain complex.</p>

<p>This function was written by <strong class="button"> Le Van Luyen</strong>.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutSimplicialGroups.html">1</a></span> </p>

<p><a id="X7992AE7B7C8201F9" name="X7992AE7B7C8201F9"></a></p>

<h5>9.1-9 LefschetzNumber</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; LefschetzNumber</code>( <var class="Arg">F</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a chain map <span class="SimpleMath">F: C→ C</span> with common source and target. It returns the Lefschetz number of the map (that is, the alternating sum of the traces of the homology maps in each degree).</p>

<p><strong class="button">Examples:</strong></p>


<div class="chlinkprevnextbot">&nbsp;<a href="chap0.html">[Top of Book]</a>&nbsp;  <a href="chap0.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap8.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap10.html">[Next Chapter]</a>&nbsp;  </div>


<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a>  <a href="chap10.html">10</a>  <a href="chap11.html">11</a>  <a href="chap12.html">12</a>  <a href="chap13.html">13</a>  <a href="chap14.html">14</a>  <a href="chap15.html">15</a>  <a href="chap16.html">16</a>  <a href="chap17.html">17</a>  <a href="chap18.html">18</a>  <a href="chap19.html">19</a>  <a href="chap20.html">20</a>  <a href="chap21.html">21</a>  <a href="chap22.html">22</a>  <a href="chap23.html">23</a>  <a href="chap24.html">24</a>  <a href="chap25.html">25</a>  <a href="chap26.html">26</a>  <a href="chap27.html">27</a>  <a href="chap28.html">28</a>  <a href="chap29.html">29</a>  <a href="chap30.html">30</a>  <a href="chap31.html">31</a>  <a href="chap32.html">32</a>  <a href="chap33.html">33</a>  <a href="chap34.html">34</a>  <a href="chap35.html">35</a>  <a href="chap36.html">36</a>  <a href="chap37.html">37</a>  <a href="chap38.html">38</a>  <a href="chap39.html">39</a>  <a href="chap40.html">40</a>  <a href="chapInd.html">Ind</a>  </div>

<hr />
<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>