1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
|
#(C) Graham Ellis, 2005-2006
#####################################################################
InstallGlobalFunction(PrimePartDerivedFunctor,
function(G,R,F,n)
local
C,P, DCRS, DCRS1, DCRSpruned,L,Y,GroupL,
X, K, gensK, S, f,fx, P1,
HP, HK, HPK, HKhomHPK, HPKhomHP, HKhomHP,
HKx,HPKx,
HKxhomHPKx, HPKxhomHP, HKxhomHP, HKhomHKx, HKhomHP2,
HPrels, x, y, i,prime, core, conjs, conjelt,CentP,
HPpres,G1,epi,HPP,rho, bool, eqmap;
C:=F(R);
#P:=StructuralCopy(R!.group);
P:=Group(SmallGeneratingSet(R!.group));
HP:=GroupHomomorphismByFunction(P,P,x->x);
HP:=EquivariantChainMap(R,R,HP);
HP!.conjugator:=Identity(P);
HP:=F(HP);
HP:=Homology(HP,n);
HP:=Source(HP);
HPrels:=[Identity(HP)];
if Length(AbelianInvariants(HP))=0 then return []; fi;
P1:=Normalizer(G,P);
prime:=Factors(Order(P))[1];
if not IsPrimeInt(Order(P)) then
DCRS1:=List(DoubleCosetRepsAndSizes(G,P1,P1),x->x[1]);
else
DCRS1:=[];
fi;
if Order(P1)>Order(P) then
Append(DCRS1,Filtered(ReduceGenerators(GeneratorsOfGroup(P1),P1),
x->not x in P));
fi;
core:=[];
for x in P do
if Order(x)=prime then AddSet(core,x); fi;
od;
DCRS:=[];
for x in DCRS1 do #I've forgotten what all this means!!
for y in core do
if x*y*x^-1 in core then Add(DCRS,x); break; fi;
od;od;
DCRSpruned:=[];
conjs:=[];
conjelt:=[];
for x in DCRS do
Y:=Intersection(P,P^x);
AddSet(conjs,Y);
Append(conjelt,[[x,Y]]); #An improvement would be to not save all Y (twice!).
od;
for Y in conjs do
L:=Filtered(conjelt,x->x[2]=Y);
L:=List(L,x->x[1]);
GroupL:=Group(L);
Add(DCRSpruned,ReduceGenerators(L,GroupL));
od;
DCRSpruned:=Filtered(DCRSpruned,x->Length(x)>0);
for L in DCRSpruned do
K:=Intersection(P,P^L[1]);
gensK:=ReduceGenerators(GeneratorsOfGroup(K),K);
if not Length(gensK)=0 then
G1:=Group(gensK);
if Order(G1)<64 and n<4 then ##NEED TO FIND AN "OPTIMAL" CHOICE HERE
S:=ResolutionFiniteGroup(gensK,n+1);
S!.group:=Group(SmallGeneratingSet(S!.group));
else
S:=ResolutionNormalSeries(LowerCentralSeries(G1),n+1);
S!.group:=Group(SmallGeneratingSet(S!.group));
fi;
if not (Homology(F(S),n)=[]) then
f:=GroupHomomorphismByFunction(K,P,x->x);
eqmap:=EquivariantChainMap(S,R,f);
eqmap!.conjugator:=Identity(S!.group);
#HKhomHPK:=Homology(F(EquivariantChainMap(S,R,f)),n);
#Print("F ",F,"\n");
#Print("eqmap ",eqmap,"\n");
HKhomHPK:=Homology(F(eqmap),n);
#Print("YES\n");
#################################rho##################
if "twist" in NamesOfComponents(F(R)) then
rho:=F(R)!.twist;
else
rho:=function(x) return 1; end;
fi;
#################################rho done#############
HK:=Source(HKhomHPK);
HPK:=Range(HKhomHPK);
HPKhomHP:=GroupHomomorphismByImagesNC(HPK,HP,GeneratorsOfGroup(HPK),
GeneratorsOfGroup(HP));
HKhomHP:=GroupHomomorphismByFunction(HK,HP,x->
Image(HPKhomHP, Image(HKhomHPK,x) ) );
for X in L do
fx:=GroupHomomorphismByFunction(K,P,g->Image(f,g)^(X^-1));
eqmap:=EquivariantChainMap(S,R,fx);
eqmap!.conjugator:=X^-1;
#HKxhomHPKx:=Homology(F(EquivariantChainMap(S,R,fx)),n);
HKxhomHPKx:=Homology(F(eqmap),n);
HKx:=Source(HKxhomHPKx);
HPKx:=Parent(Range(HKxhomHPKx));
HPKxhomHP:=GroupHomomorphismByImagesNC(HPKx,HP,GeneratorsOfGroup(HPKx),
GeneratorsOfGroup(HP));
HKxhomHP:=GroupHomomorphismByFunction(HKx,HP,x->
Image(HPKxhomHP, Image(HKxhomHPKx,x) )^rho(X) );
HKhomHKx:=GroupHomomorphismByImagesNC(HK,HKx,GeneratorsOfGroup(HK),GeneratorsOfGroup(HKx));
HKhomHP2:=GroupHomomorphismByFunction(HK,HP,a->
Image(HKxhomHP, Image(HKhomHKx,a)));
for x in GeneratorsOfGroup(HK) do
Append(HPrels, [Image(HKhomHP,x)*Image(HKhomHP2,x)^-1]);
od;
od;
fi;
fi;
od;
if IsPcpGroup(HP) or IsPcGroup(HP) then
HPP:=HP/Group(SSortedList(HPrels));
else
epi:=EpimorphismNilpotentQuotient(HP,1);
HPP:=Range(epi)/Group(SSortedList(List(HPrels,x->Image(epi,x))));
#HPP:=HP/Group(SSortedList(HPrels));
fi;
return AbelianInvariants(HPP);
end);
#####################################################################
|