File: primePartDerived.gi

package info (click to toggle)
gap-hap 1.74%2Bds-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 58,664 kB
  • sloc: xml: 16,678; sh: 197; javascript: 155; makefile: 121; ansic: 47; perl: 24
file content (151 lines) | stat: -rw-r--r-- 3,980 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
#(C) Graham Ellis, 2005-2006

#####################################################################
InstallGlobalFunction(PrimePartDerivedFunctor,
function(G,R,F,n)
local
	C,P, DCRS, DCRS1, DCRSpruned,L,Y,GroupL,
	X, K, gensK, S, f,fx, P1, 
	HP, HK, HPK, HKhomHPK, HPKhomHP, HKhomHP,
	HKx,HPKx, 
	HKxhomHPKx, HPKxhomHP, HKxhomHP, HKhomHKx,  HKhomHP2,
	HPrels, x, y, i,prime, core, conjs, conjelt,CentP,
	HPpres,G1,epi,HPP,rho, bool, eqmap;


C:=F(R);
#P:=StructuralCopy(R!.group);
P:=Group(SmallGeneratingSet(R!.group));
HP:=GroupHomomorphismByFunction(P,P,x->x);
HP:=EquivariantChainMap(R,R,HP);
HP!.conjugator:=Identity(P);
HP:=F(HP);
HP:=Homology(HP,n);
HP:=Source(HP);
HPrels:=[Identity(HP)];
if Length(AbelianInvariants(HP))=0 then return []; fi;

P1:=Normalizer(G,P);

prime:=Factors(Order(P))[1];

if not IsPrimeInt(Order(P)) then
DCRS1:=List(DoubleCosetRepsAndSizes(G,P1,P1),x->x[1]);
else
DCRS1:=[];
fi;

if Order(P1)>Order(P) then
Append(DCRS1,Filtered(ReduceGenerators(GeneratorsOfGroup(P1),P1),
x->not x in P));
fi;

core:=[];
for x in P do
if Order(x)=prime then AddSet(core,x); fi;
od;

DCRS:=[];
for x in DCRS1 do  #I've forgotten what all this means!!
for y in core do
if x*y*x^-1 in core then Add(DCRS,x); break; fi;
od;od;
DCRSpruned:=[];

conjs:=[];
conjelt:=[];
for x in DCRS do
Y:=Intersection(P,P^x);
AddSet(conjs,Y);
Append(conjelt,[[x,Y]]);  #An improvement would be to not save all Y (twice!).
od;

for Y in conjs do
L:=Filtered(conjelt,x->x[2]=Y);
L:=List(L,x->x[1]);
GroupL:=Group(L);
Add(DCRSpruned,ReduceGenerators(L,GroupL)); 
od;
DCRSpruned:=Filtered(DCRSpruned,x->Length(x)>0);


for L in DCRSpruned do
K:=Intersection(P,P^L[1]);
gensK:=ReduceGenerators(GeneratorsOfGroup(K),K);
if not Length(gensK)=0 then

G1:=Group(gensK);

if Order(G1)<64 and n<4 then 	##NEED TO FIND AN "OPTIMAL" CHOICE HERE
S:=ResolutionFiniteGroup(gensK,n+1);
S!.group:=Group(SmallGeneratingSet(S!.group));
else
S:=ResolutionNormalSeries(LowerCentralSeries(G1),n+1);
S!.group:=Group(SmallGeneratingSet(S!.group));
fi;


if not (Homology(F(S),n)=[]) then

f:=GroupHomomorphismByFunction(K,P,x->x);

eqmap:=EquivariantChainMap(S,R,f);
eqmap!.conjugator:=Identity(S!.group);
#HKhomHPK:=Homology(F(EquivariantChainMap(S,R,f)),n);
#Print("F  ",F,"\n");
#Print("eqmap  ",eqmap,"\n");
HKhomHPK:=Homology(F(eqmap),n);
#Print("YES\n");
#################################rho##################
if "twist" in NamesOfComponents(F(R)) then
rho:=F(R)!.twist; 
else
rho:=function(x) return 1; end;
fi;
#################################rho done#############

HK:=Source(HKhomHPK);

HPK:=Range(HKhomHPK);
HPKhomHP:=GroupHomomorphismByImagesNC(HPK,HP,GeneratorsOfGroup(HPK),
                                                  GeneratorsOfGroup(HP));
HKhomHP:=GroupHomomorphismByFunction(HK,HP,x->
Image(HPKhomHP, Image(HKhomHPK,x) ) );

for X in L do
fx:=GroupHomomorphismByFunction(K,P,g->Image(f,g)^(X^-1));
eqmap:=EquivariantChainMap(S,R,fx);
eqmap!.conjugator:=X^-1;
#HKxhomHPKx:=Homology(F(EquivariantChainMap(S,R,fx)),n);
HKxhomHPKx:=Homology(F(eqmap),n);
HKx:=Source(HKxhomHPKx);
HPKx:=Parent(Range(HKxhomHPKx));
HPKxhomHP:=GroupHomomorphismByImagesNC(HPKx,HP,GeneratorsOfGroup(HPKx),
                                                  GeneratorsOfGroup(HP));
HKxhomHP:=GroupHomomorphismByFunction(HKx,HP,x->
Image(HPKxhomHP, Image(HKxhomHPKx,x) )^rho(X) );
HKhomHKx:=GroupHomomorphismByImagesNC(HK,HKx,GeneratorsOfGroup(HK),GeneratorsOfGroup(HKx));
HKhomHP2:=GroupHomomorphismByFunction(HK,HP,a->
Image(HKxhomHP, Image(HKhomHKx,a)));

for x in GeneratorsOfGroup(HK) do
Append(HPrels, [Image(HKhomHP,x)*Image(HKhomHP2,x)^-1]);
od;

od;
fi;
fi;
od;

if IsPcpGroup(HP) or IsPcGroup(HP)  then 
HPP:=HP/Group(SSortedList(HPrels));
else
epi:=EpimorphismNilpotentQuotient(HP,1);
HPP:=Range(epi)/Group(SSortedList(List(HPrels,x->Image(epi,x))));
#HPP:=HP/Group(SSortedList(HPrels));
fi;

return AbelianInvariants(HPP);
end);
#####################################################################