1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
|
#(C) 2005-2006 Graham Ellis
#A:=Group([(1,2),(1,2,3,4,5)]);SetName(A,"S5");
#B:=Group([(1,2),(1,2,3,4)]);SetName(B,"S4");
#C:=SymmetricGroup(3);SetName(C,"S3");
#CA:=GroupHomomorphismByFunction(C,A,x->x);
#CB:=GroupHomomorphismByFunction(C,B,x->x);
#D:=[A,B,[CA,CB]];
#####################################################################
#####################################################################
InstallGlobalFunction(GraphOfGroupsTest,
function(D)
local
Boole, x, VertexNames, EdgeNames, RangeNames;
VertexNames:=[];
EdgeNames:=[];
RangeNames:=[];
for x in D do
Boole:=false;
if IsGroup(x) and HasName(x) then
Boole:=true;
Append(VertexNames,[Name(x)]);fi;
if IsList(x) then
if Length(x)=2 then
#if IsGroupHomomorphism(x[1])
#and IsGroupHomomorphism(x[2]) then
if HasSource(x[1])
and HasSource(x[2]) then
if HasName(Range(x[1]))
and HasName(Source(x[1]))
and HasName(Source(x[2]))
and HasName(Range(x[2])) then
if Name(Source(x[1]))=Name(Source(x[2]))
then Boole:=true;
Append(EdgeNames,[Name(Source(x[1]))]);
Append(RangeNames,[Name(Range(x[1]))]);
Append(RangeNames,[Name(Range(x[2]))]);
fi;
fi;
fi;
fi;
fi;
if not Boole then return false; fi;
od;
RangeNames:=SSortedList(RangeNames);
if Length(SSortedList(VertexNames))=Length(VertexNames)
and Length(RangeNames)=Length(Intersection(VertexNames,RangeNames))
and Length(SSortedList(EdgeNames))=Length(EdgeNames) then
return true;
else return false;
fi;
end);
#####################################################################
#####################################################################
#####################################################################
#####################################################################
InstallGlobalFunction(GraphOfGroupsDisplay,
function(arg)
local
PositionName, tmpDir, tmpInlog, tmpIn2log, basicgif,
D, Boole, Vertices, Edges,x,AppendTo,PrintTo;
AppendTo:=HAP_AppendTo;
PrintTo:=HAP_PrintTo;
tmpDir:=DirectoryTemporary();
tmpInlog:=Filename(tmpDir,"tmpIn.log");
tmpIn2log:=Filename(tmpDir,"tmpIn2.log");
basicgif:=Filename(tmpDir,"basic.gif");
#####################################################################
PositionName:=function(L,x)
return PositionProperty(L,n->Name(n)=Name(x));
end;
#####################################################################
D:=arg[1];
Vertices:=[];
Edges:=[];
if not GraphOfGroupsTest(D) then
Print("The list D does not represent a Graph of Groups \n");
return fail; fi;
for x in D do
if IsGroup(x) then Append(Vertices,[x]); fi;
if IsList(x) then Append(Edges,[x]); fi;
od;
################ WRITE TO TMPIN.LOG #################################
AppendTo(tmpInlog," graph G { \n size=\"10,10\" \n node [shape=circle, style=filled, color=gray] \n edge [style=\"setlinewidth(2)\"] \n");
for x in Vertices do
AppendTo(tmpInlog,PositionName(Vertices,x), "[label=\" ", Name(x), "\",fontsize=8]\n");
od;
for x in Edges do
AppendTo(tmpInlog,
PositionName(Vertices,Range(x[1]))," -- ",
PositionName(Vertices,Range(x[2])), "[label=\" ",Name(Source(x[1])),"\",fontsize=8,color=black] \n");
od;
AppendTo(tmpInlog,"} \n");
################ WRITTEN ############################################
Exec(Concatenation(NEATO_PATH,"-Tgif ",tmpInlog ," > ",basicgif));
if Length(arg)=1 then
Exec(Concatenation(DISPLAY_PATH, basicgif));
Sleep(2);
Exec(Concatenation("rm ",tmpInlog, "; rm ",basicgif));
else
AppendTo(tmpIn2log, "Browser=",arg[2],"\n");
AppendTo(tmpIn2log,"$Browser ",basicgif);
Exec(Concatenation("chmod a+x ",tmpIn2log,"; ",tmpIn2log));
Exec(Concatenation("rm ",tmpInlog,"; rm ",basicgif,"; rm ",tmpIn2log,";"));
fi;
end);
#####################################################################
#####################################################################
|