1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
|
#(C) Graham Ellis, October 2005
#####################################################################
InstallGlobalFunction(NonabelianTensorProduct_Inf,
function(arg)
local
AG, AH, SizeOrList,
gensAG, NiceGensAG,
gensAH, NiceGensAH,
G,G1, gensG, relsG,
H, H1, gensH, relsH,
BG, GhomBG, BG1homF, BG2homF,
BH, HhomBH,
F, relsT, gensF, gensF1, gensF2,
AF, FhomAF,
AGhomG, AHhomH, G1homF, G2homF, AG1homF, AG2homF,
SF, gensSF, gensSFG, FhomSF, AFhomSF, AG1homSF, AG2homSF, SFhomAG,
AFhomSSF,SSF,gensSF2,SSFhomSF,
TensorSquare, delta,
Trans,
CrossedPairing,
AGhomBG,
BGhomAG, BHhomAH,
i,v,w,x,y,z;
AG:=arg[1];
AH:=arg[2];
# AG and SF are groups whose elements are essentially enumerated. AG is
# isomorphic to G and to BG. SF is equal to F/relsT and AF. Two isomorphic
# copies of AG lie inside SF, and the homomorphisms AG1homSF, AG2homSF
# identify the two copies. delta is the commutator map from TensorSquare to AG.
# The homomorphisms GhomBG, AGhomG, FhomSF, FhomAF, AFhomSF are all
# isomorphisms. The relationship between the groups is summarized in the
# following diagrams: AG->G->BG->F->AF->SF and SF->AG.
gensAG:=GeneratorsOfGroup(AG);
NiceGensAG:=gensAG;
AGhomG:=IsomorphismFpGroup(AG);
G:=Range(AGhomG);
gensAH:=GeneratorsOfGroup(AH);
NiceGensAH:=gensAH;
AHhomH:=IsomorphismFpGroup(AH);
H:=Range(AHhomH);
gensG:=FreeGeneratorsOfFpGroup(G);
relsG:=RelatorsOfFpGroup(G);
BG:=FreeGroupOfFpGroup(G);
BGhomAG:=GroupHomomorphismByImagesNC(BG,AG, GeneratorsOfGroup(BG),gensAG);
gensH:=FreeGeneratorsOfFpGroup(H);
relsH:=RelatorsOfFpGroup(H);
BH:=FreeGroupOfFpGroup(H);
BHhomAH:=GroupHomomorphismByImagesNC(BH,AH, GeneratorsOfGroup(BH),gensAH);
F:=FreeGroup(Length(gensG)+Length(gensH));
gensF:=GeneratorsOfGroup(F); gensF1:=[]; gensF2:=[];
for i in [1..Length(gensG)] do
Append(gensF1,[gensF[i]]);
od;
for i in [1..Length(gensH)] do
Append(gensF2,[gensF[Length(gensG)+i]]);
od;
BG1homF:=GroupHomomorphismByImagesNC(BG,F,gensG,gensF1);
BG2homF:=GroupHomomorphismByImagesNC(BH,F,gensH,gensF2);
AG1homF:=GroupHomomorphismByFunction(AG,F,g->Image(BG1homF,PreImagesRepresentative(BGhomAG,g)));
AG2homF:=GroupHomomorphismByFunction(AH,F,g->Image(BG2homF,PreImagesRepresentative(BHhomAH,g)));
relsT:=[];
for x in relsG do
Append(relsT,[Image(BG1homF,x)]);
od;
for x in relsH do
Append(relsT,[Image(BG2homF,x)]);
od;
for z in NiceGensAG do
for x in gensAG do
for y in gensAH do
v:=Comm(Image(AG1homF,x),Image(AG2homF,y))^Image(AG1homF,z) ;
w:=Comm(Image(AG2homF,y^z),Image(AG1homF,x^z) );
Append(relsT,[v*w]);
od;
od;
od;
for z in NiceGensAH do
for x in gensAG do
for y in gensAH do
w:=Comm(Image(AG2homF,y^z),Image(AG1homF,x^z) );
v:=Comm(Image(AG1homF,x),Image(AG2homF,y))^Image(AG2homF,z);
Append(relsT,[v*w]);
od;
od;
od;
relsT:=SSortedList(relsT);
#####################################################################IF
AF:=F/relsT;
FhomAF:=
GroupHomomorphismByImagesNC(F,AF,GeneratorsOfGroup(F),GeneratorsOfGroup(AF));
AFhomSSF:=IsomorphismSimplifiedFpGroup(AF);
SSF:=Image(AFhomSSF);
SSFhomSF:=HAP_NqEpimorphismNilpotentQuotient(SSF);
SF:=Range(SSFhomSF);
gensSF2:=List(GeneratorsOfGroup(AF),x->Image(SSFhomSF,Image(AFhomSSF,x)));
AFhomSF:=GroupHomomorphismByImagesNC(AF,SF,GeneratorsOfGroup(AF),gensSF2);
FhomSF:=
GroupHomomorphismByFunction(F,SF,x->Image(AFhomSF,Image(FhomAF,x)) );
#####################################################################FI
AG1homSF:=GroupHomomorphismByFunction(AG,SF,x->Image(FhomSF,Image(AG1homF,x)));
AG2homSF:=GroupHomomorphismByFunction(AH,SF,x->Image(FhomSF,Image(AG2homF,x)));
#TensorSquare:=Intersection(
#NormalClosure(SF,Group(List(GeneratorsOfGroup(AG),x->Image(AG1homSF,x)))),
#NormalClosure(SF,Group(List(GeneratorsOfGroup(AG),x->Image(AG2homSF,x))))
#);
TensorSquare:=CommutatorSubgroup(
Group(List(GeneratorsOfGroup(AG),x->Image(AG1homSF,x))),
Group(List(GeneratorsOfGroup(AH),x->Image(AG2homSF,x))))
;
gensSF:=List(gensF,x->Image(FhomSF,x));
gensSFG:=[];
for i in [1..Length(gensAG)] do
Append(gensSFG,[gensAG[i]]);
od;
for i in [1..Length(gensAH)] do
Append(gensSFG,[gensAH[i]]);
od;
SFhomAG:=GroupHomomorphismByImagesNC(SF,AG,gensSF,gensSFG);
delta:=GroupHomomorphismByImagesNC(TensorSquare,AG,
GeneratorsOfGroup(TensorSquare),
List(GeneratorsOfGroup(TensorSquare),x->Image(SFhomAG,x)));
#####################################################################
CrossedPairing:=function(x,y)
return Comm(Image(AG1homSF,x), Image(AG2homSF,y));
end;
#####################################################################
return rec(homomorphism:=delta, pairing:=CrossedPairing);
end);
#####################################################################
|