1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
|
#(C) Graham Ellis, October 2005
#####################################################################
InstallGlobalFunction(NonabelianTensorSquare,
function(arg)
local
AG, SizeOrList,
gensAG, NiceGensAG,
G, gensG, relsG,
BG, GhomBG, BG1homF, BG2homF,
F, relsT, gensF, gensF1, gensF2,
AF, FhomAF,
AGhomG, G1homF, G2homF, AG1homF, AG2homF,
SF, gensSF, gensSFG, FhomSF, AFhomSF, AG1homSF, AG2homSF, SFhomAG,
AFhomSSF,SSF,gensSF2,SSFhomSF,
TensorSquare, delta,
Trans,
CrossedPairing, action,
UpperBound,
Todd,i,v,w,x,y,z;
if not IsFinite(arg[1]) then return NonabelianTensorSquare_inf(arg[1]); fi;
Todd:=16; #Use Todd-Coxeter if Order(G)<Todd and G is not nilpotent.
#####################################################################
UpperBound:=function(AG)
local Facts, p,P,hom,bnd;
Facts:=SSortedList(Factors(Order(AG)));
bnd:=1;
for p in Facts do
P:=SylowSubgroup(AG,p);
hom:=NonabelianTensorSquare(P).homomorphism;
bnd:=bnd*Order(Source(hom))/Order(DerivedSubgroup(P));
od;
return bnd*Order(DerivedSubgroup(AG))*Order(AG)^2;
end;
#####################################################################
AG:=arg[1];
if Length(arg)>1 then SizeOrList:=arg[2]*Order(AG)^2;
else
if not IsSolvable(AG) then SizeOrList:=0;
else
if not IsNilpotent(AG) and Size(AG)>Todd
then SizeOrList:=UpperBound(AG); fi;
if not IsNilpotent(AG) and Size(AG)<=Todd then SizeOrList:=0;fi;
if IsNilpotent(AG) then SizeOrList:=-1; fi;
fi;
fi;
# AG and SF are groups whose elements are essentially enumerated. AG is
# isomorphic to G and to BG. SF is equal to F/relsT and AF. Two isomorphic
# copies of AG lie inside SF, and the homomorphisms AG1homSF, AG2homSF
# identify the two copies. delta is the commutator map from TensorSquare to AG.
# The homomorphisms GhomBG, AGhomG, FhomSF, FhomAF, AFhomSF are all
# isomorphisms. The relationship between the groups is summarized in the
# following diagrams: AG->G->BG->F->AF->SF and SF->AG.
gensAG:=ReduceGenerators(GeneratorsOfGroup(AG),AG);
AGhomG:=IsomorphismFpGroupByGenerators(AG,gensAG);
G:=Range(AGhomG);
gensG:=FreeGeneratorsOfFpGroup(G);
relsG:=RelatorsOfFpGroup(G);
BG:=Group(gensG);
GhomBG:=GroupHomomorphismByImagesNC(G,BG, GeneratorsOfGroup(G),gensG);
#I hope GhomBG really is the identity map!
F:=FreeGroup(2*Length(gensG));
gensF:=GeneratorsOfGroup(F); gensF1:=[]; gensF2:=[];
for i in [1..Length(gensG)] do
Append(gensF1,[gensF[i]]);
Append(gensF2,[gensF[Length(gensG)+i]]);
od;
BG1homF:=GroupHomomorphismByImagesNC(BG,F,gensG,gensF1);
G1homF:=GroupHomomorphismByFunction(G,F,x->Image(BG1homF,Image(GhomBG,x)));
BG2homF:=GroupHomomorphismByImagesNC(BG,F,gensG,gensF2);
G2homF:=GroupHomomorphismByFunction(G,F,x->Image(BG2homF,Image(GhomBG,x)));
AG1homF:=GroupHomomorphismByFunction(AG,F,g->Image(G1homF,Image(AGhomG,g)));
AG2homF:=GroupHomomorphismByFunction(AG,F,g->Image(G2homF,Image(AGhomG,g)));
if IsSolvable(AG) then
NiceGensAG:=Pcgs(AG);
else
NiceGensAG:=List(UpperCentralSeries(AG),x->GeneratorsOfGroup(x));
NiceGensAG[1]:=[Identity(AG)];
NiceGensAG:=Flat(NiceGensAG);
Trans:=RightTransversal(AG,Group(NiceGensAG));
Append(NiceGensAG,Elements(Trans));
fi;
relsT:=[];
for x in relsG do
Append(relsT,[Image(BG1homF,x), Image(BG2homF,x)]);
od;
for z in NiceGensAG do
for x in gensAG do
for y in gensAG do
v:=Comm(Image(AG1homF,x),Image(AG2homF,y))^Image(AG1homF,z) ;
w:=Comm(Image(AG2homF,y^z),Image(AG1homF,x^z) );
Append(relsT,[v*w]);
v:=Comm(Image(AG1homF,x),Image(AG2homF,y))^Image(AG2homF,z);
Append(relsT,[v*w]);
od;
od;
od;
#####################################################################IF
if SizeOrList=0 then
AF:=F/relsT;
FhomAF:=
GroupHomomorphismByImagesNC(F,AF,GeneratorsOfGroup(F),GeneratorsOfGroup(AF));
AFhomSF:=IsomorphismSimplifiedFpGroup(AF);
SF:=Image(AFhomSF);
FhomSF:=
GroupHomomorphismByFunction(F,SF,x->Image(AFhomSF,Image(FhomAF,x)) );
else
AF:=F/relsT;
FhomAF:=
GroupHomomorphismByImagesNC(F,AF,GeneratorsOfGroup(F),GeneratorsOfGroup(AF));
AFhomSSF:=IsomorphismSimplifiedFpGroup(AF);
SSF:=Image(AFhomSSF);
if SizeOrList=-1 then #if nilpotent
SSFhomSF:=EpimorphismNilpotentQuotient(SSF);
#SSFhomSF:=IsomorphismPcGroup(SSF);
else #if solvable and big
SSFhomSF:=EpimorphismSolvableQuotient(SSF,SizeOrList);
fi;
SF:=Range(SSFhomSF);
gensSF2:=List(GeneratorsOfGroup(AF),x->Image(SSFhomSF,Image(AFhomSSF,x)));
AFhomSF:=GroupHomomorphismByImagesNC(AF,SF,GeneratorsOfGroup(AF),gensSF2);
FhomSF:=
GroupHomomorphismByFunction(F,SF,x->Image(AFhomSF,Image(FhomAF,x)) );
fi;
#####################################################################FI
AG1homSF:=GroupHomomorphismByFunction(AG,SF,x->Image(FhomSF,Image(AG1homF,x)));
AG2homSF:=GroupHomomorphismByFunction(AG,SF,x->Image(FhomSF,Image(AG2homF,x)));
TensorSquare:=NormalIntersection(
NormalClosure(SF,Group(List(GeneratorsOfGroup(AG),x->Image(AG1homSF,x)))),
NormalClosure(SF,Group(List(GeneratorsOfGroup(AG),x->Image(AG2homSF,x))))
);
gensSF:=List(gensF,x->Image(FhomSF,x));
gensSFG:=[];
for i in [1..Length(gensAG)] do
Append(gensSFG,[gensAG[i]]);
od;
for i in [1..Length(gensAG)] do
Append(gensSFG,[gensAG[i]]);
od;
SFhomAG:=GroupHomomorphismByImagesNC(SF,AG,gensSF,gensSFG);
delta:=GroupHomomorphismByImagesNC(TensorSquare,AG,
GeneratorsOfGroup(TensorSquare),
List(GeneratorsOfGroup(TensorSquare),x->Image(SFhomAG,x)));
#####################################################################
CrossedPairing:=function(x,y)
return Comm(Image(AG1homSF,x), Image(AG2homSF,y));
end;
#####################################################################
#####################################################################
action:=function(x,t)
return Image(AG1homSF,x) * t * Image(AG1homSF,x)^-1;
end;
#####################################################################
return rec(homomorphism:=delta, pairing:=CrossedPairing, action:=action,nu:=SF);
end);
#####################################################################
#####################################################################
InstallGlobalFunction(ThirdHomotopyGroupOfSuspensionB,
function(arg) local T;
if Length(arg)>1 then
if arg[2]=0 then
return ThirdHomotopyGroupOfSuspensionB_alt(arg[1]);
else
return AbelianInvariants(Kernel(
NonabelianTensorSquare(arg[1],arg[2]).homomorphism));
fi;
else
T:=NonabelianTensorSquare(arg[1]).homomorphism;
if IsAbelian(arg[1]) then return AbelianInvariants(Source(T));
else
return AbelianInvariants(Kernel(T));
fi;
fi;
end);
#####################################################################
#####################################################################
InstallGlobalFunction(FourthHomotopyGroupOfDoubleSuspensionB,
function(arg) local T;
T:=NonabelianSymmetricSquare(arg[1]).homomorphism;
if IsAbelian(arg[1]) then return AbelianInvariants(Source(T));
else
return AbelianInvariants(Kernel(T));
fi;
end);
#####################################################################
#####################################################################
InstallGlobalFunction(TensorCentre,
function(G)
local x,g,TC,h,Boole;
if IsTrivial(Centre(G)) then return Centre(G); fi;
h:=NonabelianTensorSquare(G).pairing;
TC:=[];
for g in Center(G) do
Boole:=true;
for x in G do
if not Order(h(g,x))=1 then Boole:=false; break; fi;
od;
if Boole then Append(TC,[g]); fi;
od;
return Group(Concatenation(TC,[Identity(G)]));
end);
######################################################################
######################################################################
InstallGlobalFunction(NonabelianTensorSquareAsCrossedModule,
function(G)
local delta, pairing, act, C;
C:=NonabelianTensorSquare(G);
delta:=C.homomorphism;
act:=C.action;
return Objectify(HapCrossedModule,rec(
map:=delta,
action:=act
));
end);
#######################################################################
######################################################################
InstallGlobalFunction(NonabelianTensorSquareAsCatOneGroup,
function(G)
local C;
C:=NonabelianTensorSquareAsCrossedModule(G);
return CatOneGroupByCrossedModule(C);
end);
#######################################################################
|