File: weak.gi

package info (click to toggle)
gap-hap 1.74%2Bds-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 58,664 kB
  • sloc: xml: 16,678; sh: 197; javascript: 155; makefile: 121; ansic: 47; perl: 24
file content (190 lines) | stat: -rw-r--r-- 5,721 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

#######################################################
#######################################################
InstallGlobalFunction(WeakCommutativityGroup,
function(GG)
local G, epi, F, gensF, relsG, FF, n, FhomFF1, FhomFF2, gensFF, relsX,
       g, x, i, j, y, iso, Chi;


iso:=IsomorphismFpGroup(GG);
G:=Image(iso);
F:=FreeGroupOfFpGroup(G);
gensF:=GeneratorsOfGroup(F);
epi:=GroupHomomorphismByImagesNC(F,G,gensF, GeneratorsOfGroup(G));
relsG:=RelatorsOfFpGroup(G);

n:=Length(gensF);
FF:=FreeGroup(2*n);
gensFF:=GeneratorsOfGroup(FF);

FhomFF1:=GroupHomomorphismByImages(F,FF,gensF,gensFF{[1..n]});
FhomFF2:=GroupHomomorphismByImages(F,FF,gensF,gensFF{[n+1..2*n]});

relsX:=List(relsG,x->Image(FhomFF1,x));
relsX:=Concatenation(relsX,List(relsG,x->Image(FhomFF2,x)) );

for g in GG do
x:=ImagesRepresentative(iso,g);
x:=PreImagesRepresentative(epi,x);
Add(relsX, Comm(Image(FhomFF1,x), Image(FhomFF2,x) ) );
od;


Chi:= FF/relsX;
Chi:=SimplifiedFpGroup(Chi);
#if IsPGroup(GG) then Chi:=Image(NqEpimorphismNilpotentQuotient(Chi)); fi;
if IsNilpotentGroup(GG) then Chi:=Image(NqEpimorphismNilpotentQuotient(Chi)); fi;

return Chi;
end);
#######################################################
#######################################################


#######################################################
#######################################################
InstallGlobalFunction(SymmetricCommutativityGroup,
function(GG)
local G, epi, F, gensF, relsG, FF, n, FhomFF1, FhomFF2, gensFF, relsX,
       g, h, x, i, j, y, iso, Chi;


iso:=IsomorphismFpGroup(Group(MinimalGeneratingSet(GG)));
G:=Image(iso);
F:=FreeGroupOfFpGroup(G);
gensF:=GeneratorsOfGroup(F);
epi:=GroupHomomorphismByImagesNC(F,G,gensF, GeneratorsOfGroup(G));
relsG:=RelatorsOfFpGroup(G);

n:=Length(gensF);
FF:=FreeGroup(2*n);
gensFF:=GeneratorsOfGroup(FF);

FhomFF1:=GroupHomomorphismByImages(F,FF,gensF,gensFF{[1..n]});
FhomFF2:=GroupHomomorphismByImages(F,FF,gensF,gensFF{[n+1..2*n]});

relsX:=List(relsG,x->Image(FhomFF1,x));
relsX:=Concatenation(relsX,List(relsG,x->Image(FhomFF2,x)) );

for g in GG do
for h in GG do
x:=ImagesRepresentative(iso,g);
x:=PreImagesRepresentative(epi,x);
y:=ImagesRepresentative(iso,h);
y:=PreImagesRepresentative(epi,y);
Add(relsX, Comm(Image(FhomFF1,x), Image(FhomFF2,y) ) * Comm(Image(FhomFF1,y), Image(FhomFF2,x) ) );
od;od;


Chi:= FF/relsX;
#Chi:=SimplifiedFpGroup(Chi);

return Chi;
end);
#######################################################
#######################################################

#######################################################
#######################################################
InstallGlobalFunction(WeakCommutativityCommutatorGroup,
function(GG)
local G, epi, F, gensF, relsG, FF, n, FhomFF1, FhomFF2, gensFF, relsX, 
       g, x, i, j, y, iso, Chi, D, G1, G2, FFhomChi;


iso:=IsomorphismFpGroup(GG);
G:=Image(iso);
F:=FreeGroupOfFpGroup(G);
gensF:=GeneratorsOfGroup(F);
epi:=GroupHomomorphismByImagesNC(F,G,gensF, GeneratorsOfGroup(G));
relsG:=RelatorsOfFpGroup(G);

n:=Length(gensF);
FF:=FreeGroup(2*n);
gensFF:=GeneratorsOfGroup(FF);

FhomFF1:=GroupHomomorphismByImages(F,FF,gensF,gensFF{[1..n]});
FhomFF2:=GroupHomomorphismByImages(F,FF,gensF,gensFF{[n+1..2*n]});

relsX:=List(relsG,x->Image(FhomFF1,x));
relsX:=Concatenation(relsX,List(relsG,x->Image(FhomFF2,x)) );

for g in GG do
x:=ImagesRepresentative(iso,g);
x:=PreImagesRepresentative(epi,x);
Add(relsX, Comm(Image(FhomFF1,x), Image(FhomFF2,x) ) );
od;


Chi:= FF/relsX;
FFhomChi:=GroupHomomorphismByImagesNC(FF,Chi,GeneratorsOfGroup(FF),GeneratorsOfGroup(Chi));

iso:=IsomorphismSimplifiedFpGroup(Chi);

G1:=Group(Image(iso,Image(FFhomChi, GeneratorsOfGroup(Image(FhomFF1)))));
G2:=Group(Image(iso,Image(FFhomChi, GeneratorsOfGroup(Image(FhomFF2)))));
D:= CommutatorSubgroup(G1,G2);
D:=Image(IsomorphismFpGroup(D));
if IsNilpotent(GG) then D:=Image(NqEpimorphismNilpotentQuotient(D));fi;

return D;
end);
#######################################################
#######################################################


#######################################################
#######################################################
InstallGlobalFunction(SymmetricCommutativityCommutatorGroup,
function(GG)
local G, epi, F, gensF, relsG, FF, n, FhomFF1, FhomFF2, gensFF, relsX,
       g, h, x, i, j, y, iso, Chi, D, G1, G2, FFhomChi;


iso:=IsomorphismFpGroup(Group(MinimalGeneratingSet(GG)));
G:=Image(iso);
F:=FreeGroupOfFpGroup(G);
gensF:=GeneratorsOfGroup(F);
epi:=GroupHomomorphismByImagesNC(F,G,gensF, GeneratorsOfGroup(G));
relsG:=RelatorsOfFpGroup(G);

n:=Length(gensF);
FF:=FreeGroup(2*n);
gensFF:=GeneratorsOfGroup(FF);

FhomFF1:=GroupHomomorphismByImages(F,FF,gensF,gensFF{[1..n]});
FhomFF2:=GroupHomomorphismByImages(F,FF,gensF,gensFF{[n+1..2*n]});

relsX:=List(relsG,x->Image(FhomFF1,x));
relsX:=Concatenation(relsX,List(relsG,x->Image(FhomFF2,x)) );

for g in GG do
for h in GG do
x:=ImagesRepresentative(iso,g);
x:=PreImagesRepresentative(epi,x);
y:=ImagesRepresentative(iso,h);
y:=PreImagesRepresentative(epi,y);
Add(relsX, Comm(Image(FhomFF1,x), Image(FhomFF2,y) ) * Comm(Image(FhomFF1,y), Image(FhomFF2,x) ) );
od;od;


Chi:= FF/relsX;
FFhomChi:=GroupHomomorphismByImagesNC(FF,Chi,GeneratorsOfGroup(FF),GeneratorsOfGroup(Chi));

iso:=IsomorphismSimplifiedFpGroup(Chi);

G1:=Group(Image(iso,Image(FFhomChi, GeneratorsOfGroup(Image(FhomFF1)))));
G2:=Group(Image(iso,Image(FFhomChi, GeneratorsOfGroup(Image(FhomFF2)))));
D:= CommutatorSubgroup(G1,G2);
D:=Image(IsomorphismFpGroup(D));
if IsNilpotent(GG) then D:=Image(NqEpimorphismNilpotentQuotient(D));fi;

return D;


end);
#######################################################
#######################################################