1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
|
#######################################
#######################################
InstallGlobalFunction(SimplicialNerveOfTwoComplex,
function(K,dim)
local A, Vertices, NrSimplices, Simplices, SimplicesLst, EnumeratedSimplex,
bool, s, VL,x, y, d, i,j,k,l,m,n,RedundantFaces;
##########################
if not Dimension(K)<=2 then
Print("This function can only be applied to 2-dimensional simplicial complexes.\n");
return fail;
fi;
##########################
Vertices:=StructuralCopy(K!.vertices);
VL:=Length(Vertices);
SimplicesLst:=StructuralCopy(K!.simplicesLst);
Apply(SimplicesLst[3], x->SSortedList(x));
SimplicesLst[3]:=SSortedList(SimplicesLst[3]);
if dim>=3 then
SimplicesLst[4]:=[];
for s in SimplicesLst[3] do
i:=s[1];j:=s[2];k:=s[3];
for l in [k+1..VL] do
if
SSortedList([i,j,l]) in SimplicesLst[3] and
SSortedList([i,l,k]) in SimplicesLst[3] and
SSortedList([l,j,k]) in SimplicesLst[3]
then Add(SimplicesLst[4],SSortedList([i,j,k,l])); fi;
od;od;
SimplicesLst[4]:=SSortedList(SimplicesLst[4]);
if Length(SimplicesLst[4])=0 then dim:=2; fi;
fi;
if dim>=4 then
SimplicesLst[5]:=[];
for s in SimplicesLst[4] do
i:=s[1];j:=s[2];k:=s[3];l:=s[4];
for m in [l+1..VL] do
if
SSortedList([m,i,j]) in SimplicesLst[3] and
SSortedList([m,i,k]) in SimplicesLst[3] and
SSortedList([m,i,l]) in SimplicesLst[3] and
SSortedList([m,j,k]) in SimplicesLst[3] and
SSortedList([m,j,l]) in SimplicesLst[3] and
SSortedList([m,k,l]) in SimplicesLst[3]
then Add(SimplicesLst[5],SSortedList([i,j,k,l,m])); fi;
od;od;
SimplicesLst[5]:=SSortedList(SimplicesLst[5]);
if Length(SimplicesLst[5])=0 then dim:=3; fi;
fi;
###########################GOT THIS FAR
if dim>=5 then
SimplicesLst[6]:=[];
for s in SimplicesLst[5] do
i:=s[1];j:=s[2];k:=s[3];l:=s[4];m:=s[5];
for n in [m+1..VL] do
if
SSortedList([n,i,j]) in SimplicesLst[3] and
SSortedList([n,i,k]) in SimplicesLst[3] and
SSortedList([n,i,l]) in SimplicesLst[3] and
SSortedList([n,i,m]) in SimplicesLst[3] and
SSortedList([n,j,k]) in SimplicesLst[3] and
SSortedList([n,j,l]) in SimplicesLst[3] and
SSortedList([n,j,m]) in SimplicesLst[3] and
SSortedList([n,k,l]) in SimplicesLst[3] and
SSortedList([n,k,m]) in SimplicesLst[3] and
SSortedList([n,l,m]) in SimplicesLst[3]
then Add(SimplicesLst[6],SSortedList([i,j,k,l,m,n])); fi;
od;od;
SimplicesLst[6]:=SSortedList(SimplicesLst[6]);
if Length(SimplicesLst[6])=0 then dim:=4; fi;
fi;
if dim>=6 then Print("The function is only implemented up to dimension 5.\n");
return fail;
fi;
for d in [6..dim] do
SimplicesLst[d+1]:=[];
for y in Combinations(Vertices,d+1) do
bool:=true;
for x in Combinations(y,2) do
if A[x[1]][x[2]]=0 then bool:=false; break; fi;
od;
if bool then Add(SimplicesLst[d],y); fi;
od;
SimplicesLst[d+1]:=SSortedList(SimplicesLst[d+1]);
if Length(SimplicesLst[d+1])=0 then dim:=d-1; fi;
od;
##########################
##########################
Simplices:=function(d,k)
return SimplicesLst[d+1][k];
end;
#########################
##########################
NrSimplices:=function(d)
return Length(SimplicesLst[d+1]);
end;
#########################
#########################
EnumeratedSimplex:=function(v)
return PositionSet(SimplicesLst[Length(v)],v);
end;
#########################
Add(SimplicesLst,[]);
return
Objectify(HapSimplicialComplex,
rec(
vertices:=Vertices,
nrSimplices:=NrSimplices,
simplices:=Simplices,
simplicesLst:=SimplicesLst,
enumeratedSimplex:=EnumeratedSimplex,
properties:=[
["dimension",dim]]
));
end);
#####################################################################
|