1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
|
############################################################
############################################################
InstallGlobalFunction(CrystallographicComplex,
function(arg)
local G,K,pt,AG,SAG,F,V,FL,Boundaries,ind,inv,
Cells,VCells,GCells,PGCells,setV,
Dimn,BNDS, Bndy, REPS, NREPS,OREPS, Elts,Canonical,
STAB, STABREC, ACTION, action, StandardWord, StabilizerBasis,
n,Y,k,x,y,i;
#In constructing K we'll use right actions, and at the end of the
#construction we'll convert to left actions.
#The Stabilizer and action and StandardWord functions need care --
#they will only ever be used with left actions.
G:=arg[1];
G:=StandardAffineCrystGroup(G);
if Length(arg)>1 then pt:=arg[2]; else
pt:=List([1..Length(One(G))-1], i->1/Primes[10+i]);
fi;
####CREATE FUNDAMENTAL DOMAIN AND CORRESPONDING CW-COMPLE####
AG:=AffineCrystGroupOnRight(GeneratorsOfGroup(G));;
SAG:=StandardAffineCrystGroup(AG);;
F:=FundamentalDomainStandardSpaceGroup(pt,SAG);;
V:=Polymake(F,"VERTICES");;
setV:=Set(V);
FL:=PolymakeFaceLattice(F,true);
FL:=FL{[1..Length(FL)-1]};
ind:=List(FL,h->Minimum(Flat(h)));
for n in [1..Length(ind)] do
FL[n]:=FL[n]-ind[n]+1;
od;
ind:=List(FL,h->Length(h));
##########################################################
Boundaries:=[];
Boundaries[1]:=List([1..ind[1]],x->[1,0]);
for n in [2..Length(ind)] do
Boundaries[n]:=List([1..ind[n]],x->[]);
for x in [1..Length(FL[n-1])] do
for i in FL[n-1][x] do
Add(Boundaries[n][i],x);
od;
od;
Boundaries[n]:=List(Boundaries[n],b->Concatenation([Length(b)],SSortedList(b)));
od;
Boundaries[n+1]:=[Concatenation([ind[n]],[1..ind[n]])];
Boundaries[n+2]:=[];
##########################################################
Y:=RegularCWComplex(Boundaries);
###FUNDAMENTAL DOMAIN AND CW-COMPLEX CREATED##############
#return Y;
Cells:=[]; #THIS RECORDS INTEGER VERTICES FOR EACH CELL
Cells[1]:=List([1..Y!.nrCells(0)],i->[i]);
for k in [1..Dimension(Y)] do
Cells[k+1]:=List(Y!.boundaries[k+1], x->
SSortedList( Concatenation( List(x{[2..Length(x)]}, i->Cells[k][i]) ))
);
od;
VCells:=[]; #THIS RECORDS VECTOR VERTICES FOR EACH CELL
for k in [1..Length(Cells)] do
VCells[k]:= List(Cells[k], S -> SortedList(List(S,i->V[i])));
od;
############################
inv:=function(X)
local st;
st:=Set(List(X,v->V[v]));
st:=OrbitPartInVertexSetsStandardSpaceGroup(SAG,st,setV);
return st;
end;
############################
GCells:=[]; #THIS RECORDS CELL G-ORBITS USING INTEGER CELL VERTICES
for k in [1..Length(Cells)] do
GCells[k]:=Classify( Cells[k] , inv);
od;
PGCells:=[]; #THIS RECORDS CELL G-ORBITS USING POSITION IN Y
for k in [1..Length(GCells)] do
PGCells[k]:=[];
for x in GCells[k] do
y:=List(x, i->Position(Cells[k],i));
Add(PGCells[k],y);
od;
od;
OREPS:=[]; #THIS CONVERTS A CELL NUMBER IN Y TO ITS ORBIT REP NUMBER IN Y
for k in [1..Length(PGCells)] do
OREPS[k]:=[];
for x in PGCells[k] do
for i in x do
OREPS[k][i]:=x[1];
od;
od;
od;
NREPS:=[]; #THIS RECORDS THE POSITION IN Y OF AN ORBIT REP IN THE G-COMPLEX
for k in [1..Length(Cells)] do
REPS:=List(GCells[k],x->x[1]);
NREPS[k]:=List(REPS,x->Position(Cells[k],x));
od;
Elts:=[One(SAG)];
###############################################
Canonical:=function(n,k)
local kk, ll, g, pos;
#inputs a dimension n and cell number k in Y
#returns a pair [kk,g] with kk cell number of the orbit
#rep and g the number in Elts such that g.kk=k
kk:=OREPS[n+1][k];
ll:=Position(NREPS[n+1],kk);
g:=RepresentativeActionOnRightOnSets(SAG,VCells[n+1][kk], VCells[n+1][k]);
if g=fail then Print("Error!!!\n"); return fail;fi; #THIS WON'T HAPPEN
pos:=Position(Elts,g);
if pos=fail then Add(Elts,g); pos:=Length(Elts); fi;
return [ll,pos];
end;
###############################################
########################################
Dimn:=function(n)
if n<0 or n>Dimension(Y) then return 0; fi;
return Length(GCells[n+1]);
end;
########################################
BNDS:=[];
for n in [2..Length(NREPS)] do
BNDS[n-1]:=[];
for k in NREPS[n] do
x:=1*Y!.boundaries[n][k]{[2..Y!.boundaries[n][k][1]+1]};
y:=List(x, i->Canonical(n-2,i));
for i in [1..Length(Y!.orientation[n][k])] do
y[i]:=[Y!.orientation[n][k][i]*y[i][1],y[i][2]];
od;
Add(BNDS[n-1], y );
od;
od;
########################################
Bndy:=function(n,k)
if n<1 or n>Dimension(Y) then return []; fi;
return BNDS[n][k];
end;
########################################
########################################
STAB:=function(n,kk)
local st,k, gens;
k:=NREPS[n+1][kk];
st:=VCells[n+1][k];
st:=StabilizerOnSetsStandardSpaceGroup(SAG,st);
st:=List(st,a->TransposedMat(a));
st:=Group(st);
return st;
end;
########################################
STABREC:=[];
for n in [1..Length(NREPS)] do
STABREC[n]:=[];
for k in [1..Length(NREPS[n])] do
STABREC[n][k]:=STAB(n-1,k);
od;
od;
########################################
STAB:=function(n,k)
return STABREC[n+1][k];
end;
########################################
#####################################################################
StandardWord:=function(k,bnd)
local w,x,c,pos;
w:=[];
for x in bnd do
c:=CanonicalRightCosetElement(STAB(k,AbsInt(x[1])), Elts[x[2]]^-1 )^-1;
pos:=Position(Elts,c);
if pos=fail then Add(Elts,c); pos:=Length(Elts); fi;
Add(w,[x[1]*ACTION(k,AbsInt(x[1]),x[2]),pos]);
#Add(w,[x[1],pos]);
od;
return AlgebraicReduction(w);
end;
#####################################################################
####################################################
action:=function(uu,V)
local L, M, T, d, u;
u:=TransposedMat(uu);
d:=Length(V);
L:=1*u{[1..d]};
M:=List(L,r->r{[1..d]});
T:=1*u[d+1]{[1..d]} ;
return V*M + T;
end;
####################################################
###############################################################
# This describes how the group G acts on the orientation.
ACTION:=function(n,k,h)
local bas, Gbas, mat,id,r,u,H,A,B,p,kk,cg,d;
if n=0 then return 1; fi;
if Elts[h]=One(SAG) then return 1; fi;
H:=STAB(n,AbsInt(k));
id:=CanonicalRightCosetElement(H,Identity(SAG));
r:=CanonicalRightCosetElement(H,Elts[h]^-1);
r:=id^-1*r;
u:=r*Elts[h];
if not u in H then Print("ERROR\n"); fi;
kk:=NREPS[n+1][AbsInt(k)];
A:=VCells[n+1][kk];
cg:=Sum(A)/(Length(A));
A:=List(A,v->v-cg);
bas:=SemiEchelonMat(A).vectors;
Gbas:=List(bas,V->action(u,V+cg)-cg);
mat:=List(Gbas,b->SolutionMat(bas,b));
d:=Determinant(mat);
if not AbsInt(d)=1 then Print("ERROR\n"); fi;
return Determinant(mat);
end;
###############################################################
#So far we have constructed a complex of RIGHT modules.
#But we've already fixed STAB to left module convention.
Elts:=List(Elts,a->TransposedMat(a));
SAG:=GeneratorsOfGroup(SAG);
SAG:=List(SAG,a->TransposedMat(a));
SAG:=Group(SAG);
K:= Objectify(HapNonFreeResolution,
rec(
dimension:=Dimn,
boundary:=Bndy,
homotopy:=fail,
elts:=Elts,
group:=SAG,
stabilizer:=STAB,
action:=ACTION,
standardWord:=StandardWord,
fundamentalDomain:=F,
properties:=
[["type","non-free resolution"],
["length",1000],
["characteristic", 0] ]));
RecalculateIncidenceNumbers(K);
return K;
end);
###############################################################
###############################################################
###############################################################
###############################################################
InstallGlobalFunction(ResolutionSpaceGroup,
function(arg)
local G, N, V, R, K, pos;
G:=arg[1];
N:=arg[2];
if Length(arg)>2 then V:=arg[3]; fi;
if Length(arg)=2 then
K:=CrystallographicComplex(G);
else
K:=CrystallographicComplex(G,V);
fi;
R:=FreeGResolution(K,N);
#pos:=PositionProperty(R!.properties,x->x[1]="characteristic");
#R!.properties[pos][2]:=2;
return R;
end);
###############################################################
###############################################################
####################################################
####################################################
InstallGlobalFunction(IsPeriodicSpaceGroup,
function(G)
local K, hom, P, n, k, GG, g;
P:=PointGroup(G);
if IsPeriodic(P) then return true; fi;
if IsPolycyclicGroup(G) then
GG:=Image(IsomorphismPcpGroup(G));
#if IsTorsionFree(GG) then return true; fi;
K:=FiniteSubgroupClasses(GG);
K:=List(K,x->x!.Representative);
K:=List(K,g->Image(IsomorphismPcGroup(g)));
for g in K do
if not IsPeriodic(g) then return false; fi;
od;
return true;
fi;
K:=CrystallographicComplex(G);
for n in [0..3] do
for k in [1..K!.dimension(n)] do
if not IsPeriodic(K!.stabilizer(n,k)) then return false; fi;
od;od;
return true;
end);
####################################################
####################################################
|