File: HapTutorial.out

package info (click to toggle)
gap-hap 1.74%2Bds-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 58,664 kB
  • sloc: xml: 16,678; sh: 197; javascript: 155; makefile: 121; ansic: 47; perl: 24
file content (183 lines) | stat: -rw-r--r-- 15,499 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
\BOOKMARK [0][-]{chapter.1}{Simplicial complexes \046 CW complexes}{}% 1
\BOOKMARK [1][-]{section.1.1}{The Klein bottle as a simplicial complex}{chapter.1}% 2
\BOOKMARK [1][-]{section.1.2}{Other simplicial surfaces}{chapter.1}% 3
\BOOKMARK [1][-]{section.1.3}{The Quillen complex}{chapter.1}% 4
\BOOKMARK [1][-]{section.1.4}{The Quillen complex as a reduced CW45complex}{chapter.1}% 5
\BOOKMARK [1][-]{section.1.5}{Simple homotopy equivalences}{chapter.1}% 6
\BOOKMARK [1][-]{section.1.6}{Cellular simplifications preserving homeomorphism type}{chapter.1}% 7
\BOOKMARK [1][-]{section.1.7}{Constructing a CW45structure on a knot complement}{chapter.1}% 8
\BOOKMARK [1][-]{section.1.8}{Constructing a regular CW45complex by attaching cells}{chapter.1}% 9
\BOOKMARK [1][-]{section.1.9}{Constructing a regular CW45complex from its face lattice}{chapter.1}% 10
\BOOKMARK [1][-]{section.1.10}{Cup products}{chapter.1}% 11
\BOOKMARK [1][-]{section.1.11}{Intersection forms of 445manifolds}{chapter.1}% 12
\BOOKMARK [1][-]{section.1.12}{Cohomology Rings}{chapter.1}% 13
\BOOKMARK [1][-]{section.1.13}{Bockstein homomorphism}{chapter.1}% 14
\BOOKMARK [1][-]{section.1.14}{Diagonal maps on associahedra and other polytopes}{chapter.1}% 15
\BOOKMARK [1][-]{section.1.15}{CW maps and induced homomorphisms}{chapter.1}% 16
\BOOKMARK [1][-]{section.1.16}{Constructing a simplicial complex from a regular CW45complex}{chapter.1}% 17
\BOOKMARK [1][-]{section.1.17}{Some limitations to representing spaces as regular CW complexes}{chapter.1}% 18
\BOOKMARK [1][-]{section.1.18}{Equivariant CW complexes}{chapter.1}% 19
\BOOKMARK [1][-]{section.1.19}{Orbifolds and classifying spaces}{chapter.1}% 20
\BOOKMARK [0][-]{chapter.2}{Cubical complexes \046 permutahedral complexes}{}% 21
\BOOKMARK [1][-]{section.2.1}{Cubical complexes}{chapter.2}% 22
\BOOKMARK [1][-]{section.2.2}{Permutahedral complexes}{chapter.2}% 23
\BOOKMARK [1][-]{section.2.3}{Constructing pure cubical and permutahedral complexes}{chapter.2}% 24
\BOOKMARK [1][-]{section.2.4}{Computations in dynamical systems}{chapter.2}% 25
\BOOKMARK [0][-]{chapter.3}{Covering spaces}{}% 26
\BOOKMARK [1][-]{section.3.1}{Cellular chains on the universal cover}{chapter.3}% 27
\BOOKMARK [1][-]{section.3.2}{Spun knots and the Satoh tube map}{chapter.3}% 28
\BOOKMARK [1][-]{section.3.3}{Cohomology with local coefficients}{chapter.3}% 29
\BOOKMARK [1][-]{section.3.4}{Distinguishing between two non45homeomorphic homotopy equivalent spaces}{chapter.3}% 30
\BOOKMARK [1][-]{section.3.5}{ Second homotopy groups of spaces with finite fundamental group}{chapter.3}% 31
\BOOKMARK [1][-]{section.3.6}{Third homotopy groups of simply connected spaces}{chapter.3}% 32
\BOOKMARK [1][-]{section.3.7}{Computing the second homotopy group of a space with infinite fundamental group}{chapter.3}% 33
\BOOKMARK [0][-]{chapter.4}{Three Manifolds}{}% 34
\BOOKMARK [1][-]{section.4.1}{Dehn Surgery}{chapter.4}% 35
\BOOKMARK [1][-]{section.4.2}{Connected Sums}{chapter.4}% 36
\BOOKMARK [1][-]{section.4.3}{Dijkgraaf45Witten Invariant}{chapter.4}% 37
\BOOKMARK [1][-]{section.4.4}{Cohomology rings}{chapter.4}% 38
\BOOKMARK [1][-]{section.4.5}{Linking Form}{chapter.4}% 39
\BOOKMARK [1][-]{section.4.6}{Determining the homeomorphism type of a lens space}{chapter.4}% 40
\BOOKMARK [1][-]{section.4.7}{Surgeries on distinct knots can yield homeomorphic manifolds}{chapter.4}% 41
\BOOKMARK [1][-]{section.4.8}{Finite fundamental groups of 345manifolds}{chapter.4}% 42
\BOOKMARK [1][-]{section.4.9}{Poincare's cube manifolds}{chapter.4}% 43
\BOOKMARK [1][-]{section.4.10}{There are at least 25 distinct cube manifolds}{chapter.4}% 44
\BOOKMARK [1][-]{section.4.11}{There are at most 41 distinct cube manifolds}{chapter.4}% 45
\BOOKMARK [1][-]{section.4.12}{There are precisely 18 orientable cube manifolds, of which 9 are spherical and 5 are euclidean}{chapter.4}% 46
\BOOKMARK [1][-]{section.4.13}{Cube manifolds with boundary}{chapter.4}% 47
\BOOKMARK [1][-]{section.4.14}{Octahedral manifolds}{chapter.4}% 48
\BOOKMARK [1][-]{section.4.15}{Dodecahedral manifolds}{chapter.4}% 49
\BOOKMARK [1][-]{section.4.16}{Prism manifolds}{chapter.4}% 50
\BOOKMARK [1][-]{section.4.17}{Bipyramid manifolds}{chapter.4}% 51
\BOOKMARK [0][-]{chapter.5}{Topological data analysis}{}% 52
\BOOKMARK [1][-]{section.5.1}{Persistent homology }{chapter.5}% 53
\BOOKMARK [1][-]{section.5.2}{Mapper clustering}{chapter.5}% 54
\BOOKMARK [1][-]{section.5.3}{Some tools for handling pure complexes}{chapter.5}% 55
\BOOKMARK [1][-]{section.5.4}{Digital image analysis and persistent homology}{chapter.5}% 56
\BOOKMARK [1][-]{section.5.5}{A second example of digital image segmentation}{chapter.5}% 57
\BOOKMARK [1][-]{section.5.6}{A third example of digital image segmentation}{chapter.5}% 58
\BOOKMARK [1][-]{section.5.7}{Naive example of digital image contour extraction}{chapter.5}% 59
\BOOKMARK [1][-]{section.5.8}{Alternative approaches to computing persistent homology}{chapter.5}% 60
\BOOKMARK [1][-]{section.5.9}{Knotted proteins}{chapter.5}% 61
\BOOKMARK [1][-]{section.5.10}{Random simplicial complexes}{chapter.5}% 62
\BOOKMARK [1][-]{section.5.11}{Computing homology of a clique complex \(Vietoris45Rips complex\) }{chapter.5}% 63
\BOOKMARK [0][-]{chapter.6}{Group theoretic computations}{}% 64
\BOOKMARK [1][-]{section.6.1}{Third homotopy group of a supsension of an Eilenberg45MacLane space }{chapter.6}% 65
\BOOKMARK [1][-]{section.6.2}{Representations of knot quandles}{chapter.6}% 66
\BOOKMARK [1][-]{section.6.3}{Identifying knots}{chapter.6}% 67
\BOOKMARK [1][-]{section.6.4}{Aspherical 245complexes}{chapter.6}% 68
\BOOKMARK [1][-]{section.6.5}{Group presentations and homotopical syzygies}{chapter.6}% 69
\BOOKMARK [1][-]{section.6.6}{Bogomolov multiplier}{chapter.6}% 70
\BOOKMARK [1][-]{section.6.7}{Second group cohomology and group extensions}{chapter.6}% 71
\BOOKMARK [1][-]{section.6.8}{Cocyclic groups: a convenient way of representing certain groups}{chapter.6}% 72
\BOOKMARK [1][-]{section.6.9}{Effective group presentations}{chapter.6}% 73
\BOOKMARK [1][-]{section.6.10}{Second group cohomology and cocyclic Hadamard matrices}{chapter.6}% 74
\BOOKMARK [1][-]{section.6.11}{Third group cohomology and homotopy 245types}{chapter.6}% 75
\BOOKMARK [0][-]{chapter.7}{Cohomology of groups \(and Lie Algebras\)}{}% 76
\BOOKMARK [1][-]{section.7.1}{Finite groups }{chapter.7}% 77
\BOOKMARK [1][-]{section.7.2}{Nilpotent groups}{chapter.7}% 78
\BOOKMARK [1][-]{section.7.3}{Crystallographic and Almost Crystallographic groups}{chapter.7}% 79
\BOOKMARK [1][-]{section.7.4}{Arithmetic groups}{chapter.7}% 80
\BOOKMARK [1][-]{section.7.5}{Artin groups}{chapter.7}% 81
\BOOKMARK [1][-]{section.7.6}{Graphs of groups}{chapter.7}% 82
\BOOKMARK [1][-]{section.7.7}{Lie algebra homology and free nilpotent groups}{chapter.7}% 83
\BOOKMARK [1][-]{section.7.8}{Cohomology with coefficients in a module}{chapter.7}% 84
\BOOKMARK [1][-]{section.7.9}{Cohomology as a functor of the first variable}{chapter.7}% 85
\BOOKMARK [1][-]{section.7.10}{Cohomology as a functor of the second variable and the long exact coefficient sequence}{chapter.7}% 86
\BOOKMARK [1][-]{section.7.11}{Transfer Homomorphism}{chapter.7}% 87
\BOOKMARK [1][-]{section.7.12}{Cohomology rings of finite fundamental groups of 345manifolds }{chapter.7}% 88
\BOOKMARK [1][-]{section.7.13}{Explicit cocycles }{chapter.7}% 89
\BOOKMARK [1][-]{section.7.14}{Quillen's complex and the p45part of homology }{chapter.7}% 90
\BOOKMARK [1][-]{section.7.15}{Homology of a Lie algebra}{chapter.7}% 91
\BOOKMARK [1][-]{section.7.16}{Covers of Lie algebras}{chapter.7}% 92
\BOOKMARK [0][-]{chapter.8}{Cohomology rings and Steenrod operations for groups}{}% 93
\BOOKMARK [1][-]{section.8.1}{Mod45p cohomology rings of finite groups}{chapter.8}% 94
\BOOKMARK [1][-]{section.8.2}{Poincare Series for Mod45p cohomology}{chapter.8}% 95
\BOOKMARK [1][-]{section.8.3}{Functorial ring homomorphisms in Mod45p cohomology}{chapter.8}% 96
\BOOKMARK [1][-]{section.8.4}{Steenrod operations for finite 245groups}{chapter.8}% 97
\BOOKMARK [1][-]{section.8.5}{Steenrod operations on the classifying space of a finite p45group}{chapter.8}% 98
\BOOKMARK [1][-]{section.8.6}{Mod45p cohomology rings of crystallographic groups}{chapter.8}% 99
\BOOKMARK [0][-]{chapter.9}{Bredon homology}{}% 100
\BOOKMARK [1][-]{section.9.1}{Davis complex}{chapter.9}% 101
\BOOKMARK [1][-]{section.9.2}{Arithmetic groups}{chapter.9}% 102
\BOOKMARK [1][-]{section.9.3}{Crystallographic groups}{chapter.9}% 103
\BOOKMARK [0][-]{chapter.10}{Chain Complexes}{}% 104
\BOOKMARK [1][-]{section.10.1}{Chain complex of a simplicial complex and simplicial pair}{chapter.10}% 105
\BOOKMARK [1][-]{section.10.2}{Chain complex of a cubical complex and cubical pair}{chapter.10}% 106
\BOOKMARK [1][-]{section.10.3}{Chain complex of a regular CW45complex}{chapter.10}% 107
\BOOKMARK [1][-]{section.10.4}{Chain Maps of simplicial and regular CW maps}{chapter.10}% 108
\BOOKMARK [1][-]{section.10.5}{Constructions for chain complexes}{chapter.10}% 109
\BOOKMARK [1][-]{section.10.6}{Filtered chain complexes}{chapter.10}% 110
\BOOKMARK [1][-]{section.10.7}{Sparse chain complexes}{chapter.10}% 111
\BOOKMARK [0][-]{chapter.11}{Resolutions}{}% 112
\BOOKMARK [1][-]{section.11.1}{Resolutions for small finite groups}{chapter.11}% 113
\BOOKMARK [1][-]{section.11.2}{Resolutions for very small finite groups}{chapter.11}% 114
\BOOKMARK [1][-]{section.11.3}{Resolutions for finite groups acting on orbit polytopes}{chapter.11}% 115
\BOOKMARK [1][-]{section.11.4}{Minimal resolutions for finite p45groups over Fp}{chapter.11}% 116
\BOOKMARK [1][-]{section.11.5}{Resolutions for abelian groups}{chapter.11}% 117
\BOOKMARK [1][-]{section.11.6}{Resolutions for nilpotent groups}{chapter.11}% 118
\BOOKMARK [1][-]{section.11.7}{Resolutions for groups with subnormal series}{chapter.11}% 119
\BOOKMARK [1][-]{section.11.8}{Resolutions for groups with normal series}{chapter.11}% 120
\BOOKMARK [1][-]{section.11.9}{Resolutions for polycyclic \(almost\) crystallographic groups }{chapter.11}% 121
\BOOKMARK [1][-]{section.11.10}{Resolutions for Bieberbach groups }{chapter.11}% 122
\BOOKMARK [1][-]{section.11.11}{Resolutions for arbitrary crystallographic groups}{chapter.11}% 123
\BOOKMARK [1][-]{section.11.12}{Resolutions for crystallographic groups admitting cubical fundamental domain}{chapter.11}% 124
\BOOKMARK [1][-]{section.11.13}{Resolutions for Coxeter groups }{chapter.11}% 125
\BOOKMARK [1][-]{section.11.14}{Resolutions for Artin groups }{chapter.11}% 126
\BOOKMARK [1][-]{section.11.15}{Resolutions for G=SL2\(Z[1/m]\)}{chapter.11}% 127
\BOOKMARK [1][-]{section.11.16}{Resolutions for selected groups G=SL2\( O\(Q\(d\) \)}{chapter.11}% 128
\BOOKMARK [1][-]{section.11.17}{Resolutions for selected groups G=PSL2\( O\(Q\(d\) \)}{chapter.11}% 129
\BOOKMARK [1][-]{section.11.18}{Resolutions for a few higher45dimensional arithmetic groups }{chapter.11}% 130
\BOOKMARK [1][-]{section.11.19}{Resolutions for finite45index subgroups }{chapter.11}% 131
\BOOKMARK [1][-]{section.11.20}{Simplifying resolutions }{chapter.11}% 132
\BOOKMARK [1][-]{section.11.21}{Resolutions for graphs of groups and for groups with aspherical presentations }{chapter.11}% 133
\BOOKMARK [1][-]{section.11.22}{Resolutions for FG45modules }{chapter.11}% 134
\BOOKMARK [0][-]{chapter.12}{Simplicial groups}{}% 135
\BOOKMARK [1][-]{section.12.1}{Crossed modules}{chapter.12}% 136
\BOOKMARK [1][-]{section.12.2}{Eilenberg45MacLane spaces as simplicial groups \(not recommended\)}{chapter.12}% 137
\BOOKMARK [1][-]{section.12.3}{Eilenberg45MacLane spaces as simplicial free abelian groups \(recommended\)}{chapter.12}% 138
\BOOKMARK [1][-]{section.12.4}{Elementary theoretical information on H\(K\(,n\),Z\)}{chapter.12}% 139
\BOOKMARK [1][-]{section.12.5}{The first three non45trivial homotopy groups of spheres}{chapter.12}% 140
\BOOKMARK [1][-]{section.12.6}{The first two non45trivial homotopy groups of the suspension and double suspension of a K\(G,1\)}{chapter.12}% 141
\BOOKMARK [1][-]{section.12.7}{Postnikov towers and 5\(S3\) }{chapter.12}% 142
\BOOKMARK [1][-]{section.12.8}{Towards 4\(K\(G,1\)\) }{chapter.12}% 143
\BOOKMARK [1][-]{section.12.9}{Enumerating homotopy 245types}{chapter.12}% 144
\BOOKMARK [1][-]{section.12.10}{Identifying cat145groups of low order}{chapter.12}% 145
\BOOKMARK [1][-]{section.12.11}{Identifying crossed modules of low order}{chapter.12}% 146
\BOOKMARK [0][-]{chapter.13}{Congruence Subgroups, Cuspidal Cohomology and Hecke Operators}{}% 147
\BOOKMARK [1][-]{section.13.1}{Eichler45Shimura isomorphism}{chapter.13}% 148
\BOOKMARK [1][-]{section.13.2}{Generators for SL2\(Z\) and the cubic tree}{chapter.13}% 149
\BOOKMARK [1][-]{section.13.3}{One45dimensional fundamental domains and generators for congruence subgroups}{chapter.13}% 150
\BOOKMARK [1][-]{section.13.4}{Cohomology of congruence subgroups}{chapter.13}% 151
\BOOKMARK [1][-]{section.13.5}{Cuspidal cohomology}{chapter.13}% 152
\BOOKMARK [1][-]{section.13.6}{Hecke operators on forms of weight 2}{chapter.13}% 153
\BOOKMARK [1][-]{section.13.7}{Hecke operators on forms of weight \0402}{chapter.13}% 154
\BOOKMARK [1][-]{section.13.8}{Reconstructing modular forms from cohomology computations}{chapter.13}% 155
\BOOKMARK [1][-]{section.13.9}{The Picard group}{chapter.13}% 156
\BOOKMARK [1][-]{section.13.10}{Bianchi groups}{chapter.13}% 157
\BOOKMARK [1][-]{section.13.11}{\(Co\)homology of Bianchi groups and SL2\(O-d\)}{chapter.13}% 158
\BOOKMARK [1][-]{section.13.12}{Some other infinite matrix groups}{chapter.13}% 159
\BOOKMARK [1][-]{section.13.13}{Ideals and finite quotient groups}{chapter.13}% 160
\BOOKMARK [1][-]{section.13.14}{Congruence subgroups for ideals}{chapter.13}% 161
\BOOKMARK [1][-]{section.13.15}{First homology}{chapter.13}% 162
\BOOKMARK [0][-]{chapter.14}{Fundamental domains for Bianchi groups}{}% 163
\BOOKMARK [1][-]{section.14.1}{Bianchi groups}{chapter.14}% 164
\BOOKMARK [1][-]{section.14.2}{Swan's description of a fundamental domain}{chapter.14}% 165
\BOOKMARK [1][-]{section.14.3}{Computing a fundamental domain}{chapter.14}% 166
\BOOKMARK [1][-]{section.14.4}{Examples}{chapter.14}% 167
\BOOKMARK [1][-]{section.14.5}{Establishing correctness of a fundamental domain}{chapter.14}% 168
\BOOKMARK [1][-]{section.14.6}{Computing a free resolution for SL2\(O-d\)}{chapter.14}% 169
\BOOKMARK [1][-]{section.14.7}{Some sanity checks}{chapter.14}% 170
\BOOKMARK [1][-]{section.14.8}{Group presentations}{chapter.14}% 171
\BOOKMARK [1][-]{section.14.9}{Finite index subgroups}{chapter.14}% 172
\BOOKMARK [1][-]{section.14.10}{Totally real quadratic fields / Hilbert modular group}{chapter.14}% 173
\BOOKMARK [1][-]{section.14.11}{Calling Magma's Voronoi algorithm directly}{chapter.14}% 174
\BOOKMARK [0][-]{chapter.15}{Parallel computation}{}% 175
\BOOKMARK [1][-]{section.15.1}{An embarassingly parallel computation}{chapter.15}% 176
\BOOKMARK [1][-]{section.15.2}{A non45embarassingly parallel computation}{chapter.15}% 177
\BOOKMARK [1][-]{section.15.3}{Parallel persistent homology}{chapter.15}% 178
\BOOKMARK [0][-]{chapter.16}{Regular CW45structure on knots \(written by Kelvin Killeen\)}{}% 179
\BOOKMARK [1][-]{section.16.1}{Knot complements in the 345ball}{chapter.16}% 180
\BOOKMARK [1][-]{section.16.2}{Tubular neighbourhoods}{chapter.16}% 181
\BOOKMARK [1][-]{section.16.3}{Knotted surface complements in the 445ball}{chapter.16}% 182
\BOOKMARK [0][-]{chapter*.2}{References}{}% 183