1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
|
[1XA HAP tutorial[101X
[1X(See also an older tutorial ([7X../www/SideLinks/About/aboutContents.html[107X) or
mini-course notes ([7Xcomp.pdf[107X) or related book
([7Xhttps://global.oup.com/academic/product/an-invitation-to-computational-homotopy-9780198832980[107X))
The [12XHAP[112X home page is here ([7X../www/index.html[107X)[101X
Graham Ellis
-------------------------------------------------------
[1XContents (HAP commands)[101X
1 [33X[0;0YSimplicial complexes & CW complexes[133X
1.1 [33X[0;0YThe Klein bottle as a simplicial complex[133X
1.2 [33X[0;0YOther simplicial surfaces[133X
1.3 [33X[0;0YThe Quillen complex[133X
1.4 [33X[0;0YThe Quillen complex as a reduced CW-complex[133X
1.5 [33X[0;0YSimple homotopy equivalences[133X
1.6 [33X[0;0YCellular simplifications preserving homeomorphism type[133X
1.7 [33X[0;0YConstructing a CW-structure on a knot complement[133X
1.8 [33X[0;0YConstructing a regular CW-complex by attaching cells[133X
1.9 [33X[0;0YConstructing a regular CW-complex from its face lattice[133X
1.10 [33X[0;0YCup products[133X
1.11 [33X[0;0YIntersection forms of [22X4[122X-manifolds[133X
1.12 [33X[0;0YCohomology Rings[133X
1.13 [33X[0;0YBockstein homomorphism[133X
1.14 [33X[0;0YDiagonal maps on associahedra and other polytopes[133X
1.15 [33X[0;0YCW maps and induced homomorphisms[133X
1.16 [33X[0;0YConstructing a simplicial complex from a regular CW-complex[133X
1.17 [33X[0;0YSome limitations to representing spaces as regular CW complexes[133X
1.18 [33X[0;0YEquivariant CW complexes[133X
1.19 [33X[0;0YOrbifolds and classifying spaces[133X
2 [33X[0;0YCubical complexes & permutahedral complexes[133X
2.1 [33X[0;0YCubical complexes[133X
2.2 [33X[0;0YPermutahedral complexes[133X
2.3 [33X[0;0YConstructing pure cubical and permutahedral complexes[133X
2.4 [33X[0;0YComputations in dynamical systems[133X
3 [33X[0;0YCovering spaces[133X
3.1 [33X[0;0YCellular chains on the universal cover[133X
3.2 [33X[0;0YSpun knots and the Satoh tube map[133X
3.3 [33X[0;0YCohomology with local coefficients[133X
3.4 [33X[0;0YDistinguishing between two non-homeomorphic homotopy equivalent spaces[133X
3.5 [33X[0;0YSecond homotopy groups of spaces with finite fundamental group[133X
3.6 [33X[0;0YThird homotopy groups of simply connected spaces[133X
3.6-1 [33X[0;0YFirst example: Whitehead's certain exact sequence[133X
3.6-2 [33X[0;0YSecond example: the Hopf invariant[133X
3.7 [33X[0;0YComputing the second homotopy group of a space with infinite
fundamental group[133X
4 [33X[0;0YThree Manifolds[133X
4.1 [33X[0;0YDehn Surgery[133X
4.2 [33X[0;0YConnected Sums[133X
4.3 [33X[0;0YDijkgraaf-Witten Invariant[133X
4.4 [33X[0;0YCohomology rings[133X
4.5 [33X[0;0YLinking Form[133X
4.6 [33X[0;0YDetermining the homeomorphism type of a lens space[133X
4.7 [33X[0;0YSurgeries on distinct knots can yield homeomorphic manifolds[133X
4.8 [33X[0;0YFinite fundamental groups of [22X3[122X-manifolds[133X
4.9 [33X[0;0YPoincare's cube manifolds[133X
4.10 [33X[0;0YThere are at least 25 distinct cube manifolds[133X
4.10-1 [33X[0;0YFace pairings for 25 distinct cube manifolds[133X
4.10-2 [33X[0;0YPlatonic cube manifolds[133X
4.11 [33X[0;0YThere are at most 41 distinct cube manifolds[133X
4.12 [33X[0;0YThere are precisely 18 orientable cube manifolds, of which 9 are
spherical and 5 are euclidean[133X
4.13 [33X[0;0YCube manifolds with boundary[133X
4.14 [33X[0;0YOctahedral manifolds[133X
4.15 [33X[0;0YDodecahedral manifolds[133X
4.16 [33X[0;0YPrism manifolds[133X
4.17 [33X[0;0YBipyramid manifolds[133X
5 [33X[0;0YTopological data analysis[133X
5.1 [33X[0;0YPersistent homology[133X
5.1-1 [33X[0;0YBackground to the data[133X
5.2 [33X[0;0YMapper clustering[133X
5.2-1 [33X[0;0YBackground to the data[133X
5.3 [33X[0;0YSome tools for handling pure complexes[133X
5.4 [33X[0;0YDigital image analysis and persistent homology[133X
5.4-1 [33X[0;0YNaive example of image segmentation by automatic thresholding[133X
5.4-2 [33X[0;0YRefining the filtration[133X
5.4-3 [33X[0;0YBackground to the data[133X
5.5 [33X[0;0YA second example of digital image segmentation[133X
5.6 [33X[0;0YA third example of digital image segmentation[133X
5.7 [33X[0;0YNaive example of digital image contour extraction[133X
5.8 [33X[0;0YAlternative approaches to computing persistent homology[133X
5.8-1 [33X[0;0YNon-trivial cup product[133X
5.8-2 [33X[0;0YExplicit homology generators[133X
5.9 [33X[0;0YKnotted proteins[133X
5.10 [33X[0;0YRandom simplicial complexes[133X
5.11 [33X[0;0YComputing homology of a clique complex (Vietoris-Rips complex)[133X
6 [33X[0;0YGroup theoretic computations[133X
6.1 [33X[0;0YThird homotopy group of a supsension of an Eilenberg-MacLane space[133X
6.2 [33X[0;0YRepresentations of knot quandles[133X
6.3 [33X[0;0YIdentifying knots[133X
6.4 [33X[0;0YAspherical [22X2[122X-complexes[133X
6.5 [33X[0;0YGroup presentations and homotopical syzygies[133X
6.6 [33X[0;0YBogomolov multiplier[133X
6.7 [33X[0;0YSecond group cohomology and group extensions[133X
6.8 [33X[0;0YCocyclic groups: a convenient way of representing certain groups[133X
6.9 [33X[0;0YEffective group presentations[133X
6.10 [33X[0;0YSecond group cohomology and cocyclic Hadamard matrices[133X
6.11 [33X[0;0YThird group cohomology and homotopy [22X2[122X-types[133X
7 [33X[0;0YCohomology of groups (and Lie Algebras)[133X
7.1 [33X[0;0YFinite groups[133X
7.1-1 [33X[0;0YNaive homology computation for a very small group[133X
7.1-2 [33X[0;0YA more efficient homology computation[133X
7.1-3 [33X[0;0YComputation of an induced homology homomorphism[133X
7.1-4 [33X[0;0YSome other finite group homology computations[133X
7.2 [33X[0;0YNilpotent groups[133X
7.3 [33X[0;0YCrystallographic and Almost Crystallographic groups[133X
7.4 [33X[0;0YArithmetic groups[133X
7.5 [33X[0;0YArtin groups[133X
7.6 [33X[0;0YGraphs of groups[133X
7.7 [33X[0;0YLie algebra homology and free nilpotent groups[133X
7.8 [33X[0;0YCohomology with coefficients in a module[133X
7.9 [33X[0;0YCohomology as a functor of the first variable[133X
7.10 [33X[0;0YCohomology as a functor of the second variable and the long exact
coefficient sequence[133X
7.11 [33X[0;0YTransfer Homomorphism[133X
7.12 [33X[0;0YCohomology rings of finite fundamental groups of 3-manifolds[133X
7.13 [33X[0;0YExplicit cocycles[133X
7.14 [33X[0;0YQuillen's complex and the [22Xp[122X-part of homology[133X
7.15 [33X[0;0YHomology of a Lie algebra[133X
7.16 [33X[0;0YCovers of Lie algebras[133X
7.16-1 [33X[0;0YComputing a cover[133X
8 [33X[0;0YCohomology rings and Steenrod operations for groups[133X
8.1 [33X[0;0YMod-[22Xp[122X cohomology rings of finite groups[133X
8.1-1 [33X[0;0YRing presentations (for the commutative [22Xp=2[122X case)[133X
8.2 [33X[0;0YPoincare Series for Mod-[22Xp[122X cohomology[133X
8.3 [33X[0;0YFunctorial ring homomorphisms in Mod-[22Xp[122X cohomology[133X
8.3-1 [33X[0;0YTesting homomorphism properties[133X
8.3-2 [33X[0;0YTesting functorial properties[133X
8.3-3 [33X[0;0YComputing with larger groups[133X
8.4 [33X[0;0YSteenrod operations for finite [22X2[122X-groups[133X
8.5 [33X[0;0YSteenrod operations on the classifying space of a finite [22Xp[122X-group[133X
8.6 [33X[0;0YMod-[22Xp[122X cohomology rings of crystallographic groups[133X
8.6-1 [33X[0;0YPoincare series for crystallographic groups[133X
8.6-2 [33X[0;0YMod [22X2[122X cohomology rings of [22X3[122X-dimensional crystallographic groups[133X
9 [33X[0;0YBredon homology[133X
9.1 [33X[0;0YDavis complex[133X
9.2 [33X[0;0YArithmetic groups[133X
9.3 [33X[0;0YCrystallographic groups[133X
10 [33X[0;0YChain Complexes[133X
10.1 [33X[0;0YChain complex of a simplicial complex and simplicial pair[133X
10.2 [33X[0;0YChain complex of a cubical complex and cubical pair[133X
10.3 [33X[0;0YChain complex of a regular CW-complex[133X
10.4 [33X[0;0YChain Maps of simplicial and regular CW maps[133X
10.5 [33X[0;0YConstructions for chain complexes[133X
10.6 [33X[0;0YFiltered chain complexes[133X
10.7 [33X[0;0YSparse chain complexes[133X
11 [33X[0;0YResolutions[133X
11.1 [33X[0;0YResolutions for small finite groups[133X
11.2 [33X[0;0YResolutions for very small finite groups[133X
11.3 [33X[0;0YResolutions for finite groups acting on orbit polytopes[133X
11.4 [33X[0;0YMinimal resolutions for finite [22Xp[122X-groups over [22XF_p[122X[133X
11.5 [33X[0;0YResolutions for abelian groups[133X
11.6 [33X[0;0YResolutions for nilpotent groups[133X
11.7 [33X[0;0YResolutions for groups with subnormal series[133X
11.8 [33X[0;0YResolutions for groups with normal series[133X
11.9 [33X[0;0YResolutions for polycyclic (almost) crystallographic groups[133X
11.10 [33X[0;0YResolutions for Bieberbach groups[133X
11.11 [33X[0;0YResolutions for arbitrary crystallographic groups[133X
11.12 [33X[0;0YResolutions for crystallographic groups admitting cubical
fundamental domain[133X
11.13 [33X[0;0YResolutions for Coxeter groups[133X
11.14 [33X[0;0YResolutions for Artin groups[133X
11.15 [33X[0;0YResolutions for [22XG=SL_2( Z[1/m])[122X[133X
11.16 [33X[0;0YResolutions for selected groups [22XG=SL_2( mathcal O( Q(sqrtd) )[122X[133X
11.17 [33X[0;0YResolutions for selected groups [22XG=PSL_2( mathcal O( Q(sqrtd) )[122X[133X
11.18 [33X[0;0YResolutions for a few higher-dimensional arithmetic groups[133X
11.19 [33X[0;0YResolutions for finite-index subgroups[133X
11.20 [33X[0;0YSimplifying resolutions[133X
11.21 [33X[0;0YResolutions for graphs of groups and for groups with aspherical
presentations[133X
11.22 [33X[0;0YResolutions for [22XFG[122X-modules[133X
12 [33X[0;0YSimplicial groups[133X
12.1 [33X[0;0YCrossed modules[133X
12.2 [33X[0;0YEilenberg-MacLane spaces as simplicial groups (not recommended)[133X
12.3 [33X[0;0YEilenberg-MacLane spaces as simplicial free abelian groups
(recommended)[133X
12.4 [33X[0;0YElementary theoretical information on [22XH^∗(K(π,n), Z)[122X[133X
12.5 [33X[0;0YThe first three non-trivial homotopy groups of spheres[133X
12.6 [33X[0;0YThe first two non-trivial homotopy groups of the suspension and
double suspension of a [22XK(G,1)[122X[133X
12.7 [33X[0;0YPostnikov towers and [22Xπ_5(S^3)[122X[133X
12.8 [33X[0;0YTowards [22Xπ_4(Σ K(G,1))[122X[133X
12.9 [33X[0;0YEnumerating homotopy 2-types[133X
12.10 [33X[0;0YIdentifying cat[22X^1[122X-groups of low order[133X
12.11 [33X[0;0YIdentifying crossed modules of low order[133X
13 [33X[0;0YCongruence Subgroups, Cuspidal Cohomology and Hecke Operators[133X
13.1 [33X[0;0YEichler-Shimura isomorphism[133X
13.2 [33X[0;0YGenerators for [22XSL_2( Z)[122X and the cubic tree[133X
13.3 [33X[0;0YOne-dimensional fundamental domains and generators for congruence
subgroups[133X
13.4 [33X[0;0YCohomology of congruence subgroups[133X
13.4-1 [33X[0;0YCohomology with rational coefficients[133X
13.5 [33X[0;0YCuspidal cohomology[133X
13.6 [33X[0;0YHecke operators on forms of weight 2[133X
13.7 [33X[0;0YHecke operators on forms of weight [22X≥ 2[122X[133X
13.8 [33X[0;0YReconstructing modular forms from cohomology computations[133X
13.9 [33X[0;0YThe Picard group[133X
13.10 [33X[0;0YBianchi groups[133X
13.11 [33X[0;0Y(Co)homology of Bianchi groups and [22XSL_2(cal O_-d)[122X[133X
13.12 [33X[0;0YSome other infinite matrix groups[133X
13.13 [33X[0;0YIdeals and finite quotient groups[133X
13.14 [33X[0;0YCongruence subgroups for ideals[133X
13.15 [33X[0;0YFirst homology[133X
14 [33X[0;0YFundamental domains for Bianchi groups[133X
14.1 [33X[0;0YBianchi groups[133X
14.2 [33X[0;0YSwan's description of a fundamental domain[133X
14.3 [33X[0;0YComputing a fundamental domain[133X
14.4 [33X[0;0YExamples[133X
14.5 [33X[0;0YEstablishing correctness of a fundamental domain[133X
14.6 [33X[0;0YComputing a free resolution for [22XSL_2(mathcal O_-d)[122X[133X
14.7 [33X[0;0YSome sanity checks[133X
14.7-1 [33X[0;0YEquivariant Euler characteristic[133X
14.7-2 [33X[0;0YBoundary squares to zero[133X
14.7-3 [33X[0;0YCompare different algorithms or implementations[133X
14.7-4 [33X[0;0YCompare geometry to algebra[133X
14.8 [33X[0;0YGroup presentations[133X
14.8-1 [33X[0;0YSwan's generators[133X
14.9 [33X[0;0YFinite index subgroups[133X
14.10 [33X[0;0YTotally real quadratic fields / Hilbert modular group[133X
14.11 [33X[0;0YCalling Magma's Voronoi algorithm directly[133X
15 [33X[0;0YParallel computation[133X
15.1 [33X[0;0YAn embarassingly parallel computation[133X
15.2 [33X[0;0YA non-embarassingly parallel computation[133X
15.3 [33X[0;0YParallel persistent homology[133X
16 [33X[0;0YRegular CW-structure on knots (written by Kelvin Killeen)[133X
16.1 [33X[0;0YKnot complements in the 3-ball[133X
16.2 [33X[0;0YTubular neighbourhoods[133X
16.3 [33X[0;0YKnotted surface complements in the 4-ball[133X
[32X
|