1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
|
[1X10 [33X[0;0YChain Complexes[133X[101X
[33X[0;0YHAP uses implementations of chain complexes of free [22XK[122X-modules for each of
the rings [22XK = Z[122X, [22XK = Q[122X, [22XK = F_p[122X with [22Xp[122X a prime number, [22XK = ZG[122X, [22XK = F_pG[122X with
[22XG[122X a group. The implemented chain complexes have the form[133X
[33X[0;0Y[22XC_n stackreld_n⟶ C_n-1 stackreld_n-1}⟶ ⋯ stackreld_2⟶ C_1 stackreld_1⟶ C_0
stackreld_0⟶ 0 .[122X[133X
[33X[0;0YSuch a complex is said to have [13Xlength[113X [22Xn[122X and the rank of the free [22XK[122X-module
[22XC_k[122X is referred to as the [13Xdimenion[113X of the complex in degree [22Xk[122X.[133X
[33X[0;0YFor the case [22XK = ZG[122X (resp. [22XK = F_pG[122X) the main focus is on free chain
complexes that are exact at each degree [22Xk[122X, i.e. [22Xim(d_k+1)= ker(d_k)[122X, for [22X0 <
k < n[122X and with [22XC_0/ im(d_1) ≅ Z[122X (resp. [22XC_0/ im(d_1) ≅ F_p[122X). We refer to such
a chain complex as a [13Xresolution of length [113X [22Xn[122X even though [22Xd_n[122X will typically
not be injective. More correct terminology would refer to such a chain
complex as the first [22Xn[122X degrees of a free resolution.[133X
[33X[0;0YThe following sections illustrate some constructions of chain complexes.
Constructions for resolutions are described in the next chapter [14X11[114X.[133X
[1X10.1 [33X[0;0YChain complex of a simplicial complex and simplicial pair[133X[101X
[33X[0;0YThe following example constructs the Quillen simplicial complex [22XQ=mathcal
A_p(G)[122X for [22Xp=2[122X and [22XG=A_8[122X; this is the order complex of the poset of
non-trivial elementary [22X2[122X-subgroups of [22XG[122X. The chain complex [22XC_∗ = C_∗(Q)[122X is
then computed and seen to have the same number of free generators as [22XQ[122X has
simplices. (To ensure indexing of subcomplexes is consistent with that of
the large complex it is best to work with vertices represented as integers.)[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XQ:=QuillenComplex(AlternatingGroup(8),2);[127X[104X
[4X[28XSimplicial complex of dimension 3.[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XC:=ChainComplex(Q);[127X[104X
[4X[28XChain complex of length 3 in characteristic 0 . [128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XSize(Q);[127X[104X
[4X[28X55015[128X[104X
[4X[25Xgap>[125X [27XSize(C);[127X[104X
[4X[28X55015[128X[104X
[4X[28X[128X[104X
[4X[32X[104X
[33X[0;0YNext the simplicial complex [22XQ[122X is converted to one whose vertices are
represented by integers and a contactible subcomplex [22XL < Q[122X is computed. The
chain complex [22XD_∗=C_∗(Q,L)[122X of the simplicial pair [22X(Q,L)[122X is constructed and
seen to have the correct size.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XQ:=IntegerSimplicialComplex(Q);[127X[104X
[4X[28XSimplicial complex of dimension 3.[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XL:=ContractibleSubcomplex(Q);[127X[104X
[4X[28XSimplicial complex of dimension 3.[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XD:=ChainComplexOfPair(Q,L);[127X[104X
[4X[28XChain complex of length 3 in characteristic 0 . [128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XSize(D)=Size(Q)-Size(L);[127X[104X
[4X[28Xtrue[128X[104X
[4X[25Xgap>[125X [27XSize(D);[127X[104X
[4X[28X670[128X[104X
[4X[28Xgap>[128X[104X
[4X[28X[128X[104X
[4X[32X[104X
[33X[0;0YThe next commands produce a smalled chain complex [22XB_∗[122X chain homotopy
equivalent to [22XD_∗[122X and compute the homology [22XH_k(Q, Z) ≅ H_k(B_∗)[122X for [22Xk=1,2,3[122X.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XB:=ContractedComplex(D);[127X[104X
[4X[28XChain complex of length 3 in characteristic 0 . [128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XSize(B);[127X[104X
[4X[28X64[128X[104X
[4X[25Xgap>[125X [27XHomology(B,1);[127X[104X
[4X[28X[ ][128X[104X
[4X[25Xgap>[125X [27XHomology(B,2);[127X[104X
[4X[28X[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, [128X[104X
[4X[28X 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, [128X[104X
[4X[28X 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ][128X[104X
[4X[25Xgap>[125X [27XHomology(B,3);[127X[104X
[4X[28X[ ][128X[104X
[4X[28X[128X[104X
[4X[32X[104X
[1X10.2 [33X[0;0YChain complex of a cubical complex and cubical pair[133X[101X
[33X[0;0YThe following example reads in the digital image[133X
[33X[0;0Yas a [22X2[122X-dimensional pure cubical complex [22XM[122X and constructs the chain complex
[22XC_∗=C_∗(M)[122X.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XK:=ReadImageAsPureCubicalComplex(file,400);[127X[104X
[4X[28XPure cubical complex of dimension 2.[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XC:=ChainComplex(K);[127X[104X
[4X[28XChain complex of length 2 in characteristic 0 . [128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XSize(C); [127X[104X
[4X[28X173243[128X[104X
[4X[28X[128X[104X
[4X[32X[104X
[33X[0;0YNext an acyclic pure cubical subcomplex [22XL < M[122X is computed and the chain
complex [22XD_∗=C_∗(M,L)[122X of the pair is constructed.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XL:=AcyclicSubcomplexOfPureCubicalComplex(K);[127X[104X
[4X[28XPure cubical complex of dimension 2.[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XD:=ChainComplexOfPair(K,L);[127X[104X
[4X[28XChain complex of length 2 in characteristic 0 . [128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XSize(D);[127X[104X
[4X[28X618[128X[104X
[4X[28X[128X[104X
[4X[32X[104X
[33X[0;0YFinally the chain complex [22XD_∗[122X is simplified to a homotopy equivalent chain
complex [22XB_∗[122X and the homology [22XH_1(M, Z) ≅ H_1(B_∗)[122X is computed.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XB:=ContractedComplex(D);[127X[104X
[4X[28XChain complex of length 2 in characteristic 0 . [128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XSize(B);[127X[104X
[4X[28X20[128X[104X
[4X[25Xgap>[125X [27XHomology(B,1);[127X[104X
[4X[28X[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ][128X[104X
[4X[28X[128X[104X
[4X[32X[104X
[1X10.3 [33X[0;0YChain complex of a regular CW-complex[133X[101X
[33X[0;0YThe next example constructs a [22X15[122X-dimensional regular CW-complex [22XY[122X that is
homotopy equivalent to the [22X2[122X-dimensional torus.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XCircle:=PureCubicalComplex([[1,1,1,1,1],[1,1,0,1,1],[1,1,1,1,1]]);[127X[104X
[4X[28XPure cubical complex of dimension 2.[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XTorus:=DirectProductOfPureCubicalComplexes(Circle,Circle);[127X[104X
[4X[28XPure cubical complex of dimension 4.[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XCTorus:=CechComplexOfPureCubicalComplex(Torus);[127X[104X
[4X[28XSimplicial complex of dimension 15.[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XY:=RegularCWComplex(CTorus);[127X[104X
[4X[28XRegular CW-complex of dimension 15[128X[104X
[4X[28X[128X[104X
[4X[32X[104X
[33X[0;0YNext the cellular chain complex [22XC_∗=C_∗(Y)[122X is constructed. Also, a minimally
generated chain complex [22XD_∗=C_∗(Y')[122X of a non-regular CW-complex [22XY'≃ Y[122X is
constructed.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XC:=ChainComplexOfRegularCWComplex(Y);[127X[104X
[4X[28XChain complex of length 15 in characteristic 0 . [128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XSize(C);[127X[104X
[4X[28X1172776[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XD:=ChainComplex(Y);[127X[104X
[4X[28XChain complex of length 15 in characteristic 0 . [128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XSize(D);[127X[104X
[4X[28X4[128X[104X
[4X[28X[128X[104X
[4X[32X[104X
[1X10.4 [33X[0;0YChain Maps of simplicial and regular CW maps[133X[101X
[33X[0;0YThe next example realizes the complement of the first prime knot on [22X11[122X
crossings as a pure permutahedral complex. The complement is converted to a
regular CW-complex [22XY[122X and the boundary inclusion [22Xf: ∂ Y ↪ Y[122X is constructed as
a map of regular CW-complexes. Then the induced chain map [22XF: C_∗(∂ Y) ↪
C_∗(Y)[122X is constructed. Finally the homology homomorphism [22XH_1(F): H_1(C_∗(∂
Y)) → H_1(C_∗(Y))[122X is computed.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XK:=PurePermutahedralKnot(11,1);;[127X[104X
[4X[25Xgap>[125X [27XM:=PureComplexComplement(K);[127X[104X
[4X[28XPure permutahedral complex of dimension 3.[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XY:=RegularCWComplex(M);[127X[104X
[4X[28XRegular CW-complex of dimension 3[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27Xf:=BoundaryMap(Y);[127X[104X
[4X[28XMap of regular CW-complexes[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XF:=ChainMap(f);[127X[104X
[4X[28XChain Map between complexes of length 2 . [128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XH:=Homology(F,1);[127X[104X
[4X[28X[ g1, g2 ] -> [ g1^-1, g1^-1 ][128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XKernel(H);[127X[104X
[4X[28XPcp-group with orders [ 0 ][128X[104X
[4X[28X[128X[104X
[4X[32X[104X
[33X[0;0YThe command [10XChainMap(f)[110X can be used to construct the chain map [22XC_∗(K) →
C_∗(K')[122X induced by a map [22Xf: K→ K'[122X of simplicial complexes.[133X
[1X10.5 [33X[0;0YConstructions for chain complexes[133X[101X
[33X[0;0YIt is straightforward to implement basic constructions on chain complexes. A
few constructions are illustrated in the following example.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27Xres:=ResolutionFiniteGroup(SymmetricGroup(5),5);;[127X[104X
[4X[25Xgap>[125X [27XC:=TensorWithIntegers(res);[127X[104X
[4X[28XChain complex of length 5 in characteristic 0 . [128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XD:=ContractedComplex(C);#A chain homotopic complex[127X[104X
[4X[28XChain complex of length 5 in characteristic 0 . [128X[104X
[4X[25Xgap>[125X [27XList([0..5],C!.dimension);[127X[104X
[4X[28X[ 1, 4, 10, 20, 35, 56 ][128X[104X
[4X[25Xgap>[125X [27XList([0..5],D!.dimension);[127X[104X
[4X[28X[ 1, 1, 2, 4, 6, 38 ][128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XCxC:=TensorProduct(C,C);[127X[104X
[4X[28XChain complex of length 10 in characteristic 0 . [128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XSC:=SuspendedChainComplex(C);[127X[104X
[4X[28XChain complex of length 6 in characteristic 0 . [128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XRC:=ReducedSuspendedChainComplex(C);[127X[104X
[4X[28XChain complex of length 6 in characteristic 0 .[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XPC:=PathObjectForChainComplex(C);[127X[104X
[4X[28XChain complex of length 5 in characteristic 0 .[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XdualC:=HomToIntegers(C);[127X[104X
[4X[28XCochain complex of length 5 in characteristic 0 .[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XCxp:=TensorWithIntegersModP(C,5);[127X[104X
[4X[28XChain complex of length 5 in characteristic 5 .[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XCxQ:=TensorWithRationals(C); #The quirky -1/2 denotes rationals[127X[104X
[4X[28XChain complex of length 5 in characteristic -1/2 .[128X[104X
[4X[28X[128X[104X
[4X[32X[104X
[1X10.6 [33X[0;0YFiltered chain complexes[133X[101X
[33X[0;0YA sequence of inclusions of chain complexes [22XC_0,∗ ≤ C_1,∗ ≤ ⋯ ≤ C_T-1,∗ ≤
C_T,∗[122X in which the preferred basis of [22XC_k-1,ℓ[122X is the beginning of the
preferred basis of [22XC_k,ℓ[122X is referred to as a [13Xfiltered chain complex[113X.
Filtered chain complexes give rise to spectral sequences such as the
[13Xequivariant spectral sequence[113X of a [22XG-CW[122X-complex with subgroup [22XH < G[122X. A
particular case is the Lyndon-Hochschild-Serre spectral sequence for the
homology of a group extension [22XN ↣ G ↠ Q[122X with [22XE^2_p,q=H_p(Q,H_q(N, Z))[122X.[133X
[33X[0;0YThe following commands construct the filtered chain complex underlying the
Lyndon-Hochschild-Serre spectral sequence for the dihedral group [22XG=D_32[122X of
order 64 and its centre [22XN=Z(G)[122X.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XG:=DihedralGroup(64);;[127X[104X
[4X[25Xgap>[125X [27XN:=Center(G);;[127X[104X
[4X[25Xgap>[125X [27XR:=ResolutionNormalSeries([G,N],3);;[127X[104X
[4X[25Xgap>[125X [27XC:=FilteredTensorWithIntegersModP(R,2);[127X[104X
[4X[28XChain complex of length 3 in characteristic 2 .[128X[104X
[4X[28X[128X[104X
[4X[32X[104X
[33X[0;0YThe differentials [22Xd^r_p,q[122X in a given page [22XE^r[122X of the spectral sequence arise
from the induced homology homomorphisms [22Xι^s,t_ℓ: H_ℓ(C_s,∗) → H_ℓ(C_t,∗)[122X for
[22Xs≤ t[122X. Textbooks traditionally picture the differential in [22XE^r[122X as an array of
sloping arrows with non-zero groups [22XE^r_p,q≠ 0[122X represented by dots. An
alternative representation of this information is as a barcode (of the sort
used in Topological Data Analysis). The homomorphisms [22Xι^∗,∗_2[122X in the
example, with coefficients converted to mod [22X2[122X, are pictured by the bar code[133X
[33X[0;0Ywhich was produced by the following commands.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27Xp:=2;;k:=2;;[127X[104X
[4X[25Xgap>[125X [27XP:=PersistentHomologyOfFilteredChainComplex(C,k,p);;[127X[104X
[4X[25Xgap>[125X [27XBarCodeDisplay(P);[127X[104X
[4X[28X[128X[104X
[4X[32X[104X
[33X[0;0YLet us view a barcode as a graph with vertices arranged in columns. We then
refer to a connected component of this graph as a [13Xbar[113X. Let us say that any
bar with a vertex in the final (right-hand) column is of [13Xlength[113X [22X∞[122X. Let us
define the [13Xlength[113X of any other bar to be [22Xr-1[122X where [22Xr[122X is the number of
vertices in the bar. Theorem 3.1 in [RHM+13] implies that the differential
[22Xd^r_p,q=0[122X for [22Xp+q=k[122X if and only if there is no bar of length [22Xr[122X in the
barcode arising in this way for any degree [22Xk[122X homology barcode. So the
following commands demonstrate that [22Xd^r=0[122X for [22Xr≥ 2[122X at least for [22Xk≤ 7[122X.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27Xfor k in [1..7] do[127X[104X
[4X[25X>[125X [27XR:=ResolutionNormalSeries([G,N],k+1);;[127X[104X
[4X[25X>[125X [27XC:=FilteredTensorWithIntegersModP(R,2);[127X[104X
[4X[25X>[125X [27XP:=PersistentHomologyOfFilteredChainComplex(C,k,2);;[127X[104X
[4X[25X>[125X [27XBarCodeDisplay(P);[127X[104X
[4X[25X>[125X [27Xod;[127X[104X
[4X[28X[128X[104X
[4X[32X[104X
[1X10.7 [33X[0;0YSparse chain complexes[133X[101X
[33X[0;0YBoundary homomorphisms in all of the above examples of chain complexes are
represented by matrices. In cases where the matrices are large and have many
zero entries it is better to use sparse matrices.[133X
[33X[0;0YThe following commands demonstrate the conversion of the matrix[133X
[33X[0;0Y[22XA=(beginarrayccc 0 &2 &0 -3 &0 & 0 0 & 0 &4 endarray)[122X[133X
[33X[0;0Yto sparse form, and vice-versa.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XA:=[[0,2,0],[-3,0,0],[0,0,4]];;[127X[104X
[4X[25Xgap>[125X [27XS:=SparseMat(A);[127X[104X
[4X[28XSparse matrix with 3 rows and 3 columns in characteristic 0[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XNamesOfComponents(S);[127X[104X
[4X[28X[ "mat", "characteristic", "rows", "cols" ][128X[104X
[4X[25Xgap>[125X [27XS!.mat;[127X[104X
[4X[28X[ [ [ 2, 2 ] ], [ [ 1, -3 ] ], [ [ 3, 4 ] ] ][128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XB:=SparseMattoMat(S);[127X[104X
[4X[28X[ [ 0, 2, 0 ], [ -3, 0, 0 ], [ 0, 0, 4 ] ][128X[104X
[4X[28X[128X[104X
[4X[32X[104X
[33X[0;0YTo illustrate the use of sparse chain complexes we consider the data points
represented in the following digital image.[133X
[33X[0;0YThe following commands read in this image as a [22X2[122X-dimensional pure cubical
complex and store the Euclidean coordinates of the black pixels in a list.
Then 200 points are selected at random from this list and used to construct
a [22X200× 200[122X symmetric matrix [22XS[122X whose entries are the Euclidean distance
between the sample data points.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27Xfile:=HapFile("data500.png");;[127X[104X
[4X[25Xgap>[125X [27XM:=ReadImageAsPureCubicalComplex(file,400);;[127X[104X
[4X[25Xgap>[125X [27XA:=M!.binaryArray;;[127X[104X
[4X[25Xgap>[125X [27Xdata:=[];;[127X[104X
[4X[25Xgap>[125X [27Xfor i in [1..Length(A)] do[127X[104X
[4X[25X>[125X [27Xfor j in [1..Length(A[1])] do[127X[104X
[4X[25X>[125X [27Xif A[i][j]=1 then Add(data,[i,j]); fi;[127X[104X
[4X[25X>[125X [27Xod;[127X[104X
[4X[25X>[125X [27Xod;[127X[104X
[4X[25Xgap>[125X [27Xsample:=List([1..200],i->Random(data));;[127X[104X
[4X[25Xgap>[125X [27XS:=VectorsToSymmetricMatrix(sample,EuclideanApproximatedMetric);;[127X[104X
[4X[28X[128X[104X
[4X[32X[104X
[33X[0;0YThe symmetric distance matrix [22XS[122X is next converted to a filtered chain
complex arising from a filtered simplicial complex (using the standard
[13Xpersistent homology[113X pipeline).[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XG:=SymmetricMatrixToFilteredGraph(S,10,100);; [127X[104X
[4X[28X#Filtration length T=10, distances greater than 100 discarded.[128X[104X
[4X[25Xgap>[125X [27XN:=SimplicialNerveOfFilteredGraph(G,2);;[127X[104X
[4X[25Xgap>[125X [27XC:=SparseFilteredChainComplexOfFilteredSimplicialComplex(N);;[127X[104X
[4X[28XFiltered sparse chain complex of length 2 in characteristic 0 .[128X[104X
[4X[28X[128X[104X
[4X[32X[104X
[33X[0;0YNext, the induced homology homomorphisms in degrees 1 and 2, with rational
coefficients, are computed and displayed a barcodes.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XP0:=PersistentHomologyOfFilteredSparseChainComplex(C,0);;[127X[104X
[4X[25Xgap>[125X [27XP1:=PersistentHomologyOfFilteredSparseChainComplex(C,1);;[127X[104X
[4X[25Xgap>[125X [27XBarCodeCompactDisplay(P0);[127X[104X
[4X[28X[128X[104X
[4X[32X[104X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XBarCodeCompactDisplay(P1);[127X[104X
[4X[28X[128X[104X
[4X[32X[104X
[33X[0;0YThe barcodes are consistent with the data points having been sampled from a
space with the homotopy type of an annulus.[133X
|