File: chap9.txt

package info (click to toggle)
gap-hap 1.74%2Bds-1
  • links: PTS
  • area: main
  • in suites: sid
  • size: 58,664 kB
  • sloc: xml: 16,678; sh: 197; javascript: 155; makefile: 121; ansic: 47; perl: 24
file content (80 lines) | stat: -rw-r--r-- 3,364 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
  
  9 Bredon homology
  
  
  9.1 Davis complex
  
  The following example computes the Bredon homology
  
  underline H_0(W,cal R) = Z^21
  
  for  the  infinite Coxeter group W associated to the Dynkin diagram shown in
  the computation, with coefficients in the complex representation ring.
  
    Example  
    gap> D:=[[1,[2,3]],[2,[3,3]],[3,[4,3]],[4,[5,6]]];;
    gap> CoxeterDiagramDisplay(D);
    
  
  
    Example  
    gap> C:=DavisComplex(D);;
    gap> D:=TensorWithComplexRepresentationRing(C);;
    gap> Homology(D,0);
    [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
    
  
  
  
  9.2 Arithmetic groups
  
  The following example computes the Bredon homology
  
  underline H_0(SL_2(cal O_-3),cal R) = Z_2⊕ Z^9
  
  underline H_1(SL_2(cal O_-3),cal R) = Z
  
  for  cal  O_-3 the ring of integers of the number field Q(sqrt-3), and cal R
  the complex reflection ring.
  
    Example  
    gap> R:=ContractibleGcomplex("SL(2,O-3)");;
    gap> IsRigid(R);
    false
    gap> S:=BaryCentricSubdivision(R);;
    gap> IsRigid(S);
    true
    gap> C:=TensorWithComplexRepresentationRing(S);;
    gap> Homology(C,0);
    [ 2, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
    gap> Homology(C,1);
    [ 0 ]
    
  
  
  
  9.3 Crystallographic groups
  
  The following example computes the Bredon homology
  
  underline H_0(G,cal R) = Z^17
  
  for  G  the second crystallographic group of dimension 4 in GAP's library of
  crystallographic groups, and for cal R the Burnside ring.
  
    Example  
    gap> G:=SpaceGroup(4,2);;
    gap> gens:=GeneratorsOfGroup(G);;
    gap> B:=CrystGFullBasis(G);;
    gap> R:=CrystGcomplex(gens,B,1);;
    gap> IsRigid(R);
    false
    gap> S:=CrystGcomplex(gens,B,0);;
    gap> IsRigid(S);
    true
    gap> D:=TensorWithBurnsideRing(S);;
    gap> Homology(D,0);
    [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]