
A HAP tutorial

(See also an older tutorial or mini-course
notes or related book) The HAP home

page is here

Graham Ellis

../www/SideLinks/About/aboutContents.html
https://global.oup.com/academic/product/an-invitation-to-computational-homotopy-9780198832980
../www/index.html
../www/index.html

Contents

1 Simplicial complexes & CW complexes 7
1.1 The Klein bottle as a simplicial complex . 7
1.2 Other simplicial surfaces . 8
1.3 The Quillen complex . 8
1.4 The Quillen complex as a reduced CW-complex 9
1.5 Simple homotopy equivalences . 9
1.6 Cellular simplifications preserving homeomorphism type 10
1.7 Constructing a CW-structure on a knot complement 10
1.8 Constructing a regular CW-complex by attaching cells 11
1.9 Constructing a regular CW-complex from its face lattice 12
1.10 Cup products . 13
1.11 Intersection forms of 4-manifolds . 18
1.12 Cohomology Rings . 19
1.13 Bockstein homomorphism . 20
1.14 Diagonal maps on associahedra and other polytopes 21
1.15 CW maps and induced homomorphisms . 21
1.16 Constructing a simplicial complex from a regular CW-complex 22
1.17 Some limitations to representing spaces as regular CW complexes 23
1.18 Equivariant CW complexes . 24
1.19 Orbifolds and classifying spaces . 26

2 Cubical complexes & permutahedral complexes 31
2.1 Cubical complexes . 31
2.2 Permutahedral complexes . 32
2.3 Constructing pure cubical and permutahedral complexes 34
2.4 Computations in dynamical systems . 35

3 Covering spaces 36
3.1 Cellular chains on the universal cover . 36
3.2 Spun knots and the Satoh tube map . 37
3.3 Cohomology with local coefficients . 39
3.4 Distinguishing between two non-homeomorphic homotopy equivalent spaces 40
3.5 Second homotopy groups of spaces with finite fundamental group 40
3.6 Third homotopy groups of simply connected spaces 41
3.7 Computing the second homotopy group of a space with infinite fundamental group . 43

2

A HAP tutorial 3

4 Three Manifolds 45
4.1 Dehn Surgery . 45
4.2 Connected Sums . 46
4.3 Dijkgraaf-Witten Invariant . 46
4.4 Cohomology rings . 47
4.5 Linking Form . 48
4.6 Determining the homeomorphism type of a lens space 49
4.7 Surgeries on distinct knots can yield homeomorphic manifolds 51
4.8 Finite fundamental groups of 3-manifolds . 52
4.9 Poincare’s cube manifolds . 53
4.10 There are at least 25 distinct cube manifolds . 54
4.11 There are at most 41 distinct cube manifolds . 60
4.12 There are precisely 18 orientable cube manifolds, of which 9 are spherical and 5 are

euclidean . 62
4.13 Cube manifolds with boundary . 64
4.14 Octahedral manifolds . 65
4.15 Dodecahedral manifolds . 65
4.16 Prism manifolds . 66
4.17 Bipyramid manifolds . 67

5 Topological data analysis 68
5.1 Persistent homology . 68
5.2 Mapper clustering . 69
5.3 Some tools for handling pure complexes . 70
5.4 Digital image analysis and persistent homology . 71
5.5 A second example of digital image segmentation 72
5.6 A third example of digital image segmentation . 73
5.7 Naive example of digital image contour extraction 74
5.8 Alternative approaches to computing persistent homology 75
5.9 Knotted proteins . 77
5.10 Random simplicial complexes . 78
5.11 Computing homology of a clique complex (Vietoris-Rips complex) 80

6 Group theoretic computations 82
6.1 Third homotopy group of a supsension of an Eilenberg-MacLane space 82
6.2 Representations of knot quandles . 82
6.3 Identifying knots . 83
6.4 Aspherical 2-complexes . 83
6.5 Group presentations and homotopical syzygies . 83
6.6 Bogomolov multiplier . 85
6.7 Second group cohomology and group extensions 85
6.8 Cocyclic groups: a convenient way of representing certain groups 88
6.9 Effective group presentations . 89
6.10 Second group cohomology and cocyclic Hadamard matrices 91
6.11 Third group cohomology and homotopy 2-types . 91

A HAP tutorial 4

7 Cohomology of groups (and Lie Algebras) 94
7.1 Finite groups . 94
7.2 Nilpotent groups . 98
7.3 Crystallographic and Almost Crystallographic groups 98
7.4 Arithmetic groups . 98
7.5 Artin groups . 99
7.6 Graphs of groups . 99
7.7 Lie algebra homology and free nilpotent groups . 100
7.8 Cohomology with coefficients in a module . 102
7.9 Cohomology as a functor of the first variable . 104
7.10 Cohomology as a functor of the second variable and the long exact coefficient sequence 105
7.11 Transfer Homomorphism . 106
7.12 Cohomology rings of finite fundamental groups of 3-manifolds 107
7.13 Explicit cocycles . 108
7.14 Quillen’s complex and the p-part of homology . 112
7.15 Homology of a Lie algebra . 115
7.16 Covers of Lie algebras . 116

8 Cohomology rings and Steenrod operations for groups 118
8.1 Mod-p cohomology rings of finite groups . 118
8.2 Poincare Series for Mod-p cohomology . 120
8.3 Functorial ring homomorphisms in Mod-p cohomology 121
8.4 Steenrod operations for finite 2-groups . 124
8.5 Steenrod operations on the classifying space of a finite p-group 125
8.6 Mod-p cohomology rings of crystallographic groups 125

9 Bredon homology 129
9.1 Davis complex . 129
9.2 Arithmetic groups . 129
9.3 Crystallographic groups . 130

10 Chain Complexes 131
10.1 Chain complex of a simplicial complex and simplicial pair 131
10.2 Chain complex of a cubical complex and cubical pair 132
10.3 Chain complex of a regular CW-complex . 133
10.4 Chain Maps of simplicial and regular CW maps . 134
10.5 Constructions for chain complexes . 134
10.6 Filtered chain complexes . 135
10.7 Sparse chain complexes . 136

11 Resolutions 138
11.1 Resolutions for small finite groups . 138
11.2 Resolutions for very small finite groups . 138
11.3 Resolutions for finite groups acting on orbit polytopes 140
11.4 Minimal resolutions for finite p-groups over Fp . 141
11.5 Resolutions for abelian groups . 141
11.6 Resolutions for nilpotent groups . 142

A HAP tutorial 5

11.7 Resolutions for groups with subnormal series . 143
11.8 Resolutions for groups with normal series . 143
11.9 Resolutions for polycyclic (almost) crystallographic groups 143
11.10Resolutions for Bieberbach groups . 144
11.11Resolutions for arbitrary crystallographic groups 145
11.12Resolutions for crystallographic groups admitting cubical fundamental domain . . . 145
11.13Resolutions for Coxeter groups . 146
11.14Resolutions for Artin groups . 146
11.15Resolutions for G = SL2(Z[1/m]) . 147
11.16Resolutions for selected groups G = SL2(O(Q(

√
d)) 147

11.17Resolutions for selected groups G = PSL2(O(Q(
√

d)) 147
11.18Resolutions for a few higher-dimensional arithmetic groups 148
11.19Resolutions for finite-index subgroups . 148
11.20Simplifying resolutions . 149
11.21Resolutions for graphs of groups and for groups with aspherical presentations 149
11.22Resolutions for FG-modules . 150

12 Simplicial groups 151
12.1 Crossed modules . 151
12.2 Eilenberg-MacLane spaces as simplicial groups (not recommended) 152
12.3 Eilenberg-MacLane spaces as simplicial free abelian groups (recommended) 152
12.4 Elementary theoretical information on H∗(K(π,n),Z) 154
12.5 The first three non-trivial homotopy groups of spheres 155
12.6 The first two non-trivial homotopy groups of the suspension and double suspension

of a K(G,1) . 156
12.7 Postnikov towers and π5(S3) . 156
12.8 Towards π4(ΣK(G,1)) . 158
12.9 Enumerating homotopy 2-types . 159
12.10Identifying cat1-groups of low order . 160
12.11Identifying crossed modules of low order . 161

13 Congruence Subgroups, Cuspidal Cohomology and Hecke Operators 163
13.1 Eichler-Shimura isomorphism . 163
13.2 Generators for SL2(Z) and the cubic tree . 164
13.3 One-dimensional fundamental domains and generators for congruence subgroups . . 165
13.4 Cohomology of congruence subgroups . 166
13.5 Cuspidal cohomology . 168
13.6 Hecke operators on forms of weight 2 . 170
13.7 Hecke operators on forms of weight ≥ 2 . 171
13.8 Reconstructing modular forms from cohomology computations 171
13.9 The Picard group . 173
13.10Bianchi groups . 174
13.11(Co)homology of Bianchi groups and SL2(O−d) . 176
13.12Some other infinite matrix groups . 181
13.13Ideals and finite quotient groups . 183
13.14Congruence subgroups for ideals . 184
13.15First homology . 185

A HAP tutorial 6

14 Fundamental domains for Bianchi groups 189
14.1 Bianchi groups . 189
14.2 Swan’s description of a fundamental domain . 189
14.3 Computing a fundamental domain . 190
14.4 Examples . 190
14.5 Establishing correctness of a fundamental domain 192
14.6 Computing a free resolution for SL2(O−d) . 192
14.7 Some sanity checks . 193
14.8 Group presentations . 195
14.9 Finite index subgroups . 197
14.10Totally real quadratic fields / Hilbert modular group 198
14.11Calling Magma’s Voronoi algorithm directly . 198

15 Parallel computation 200
15.1 An embarassingly parallel computation . 200
15.2 A non-embarassingly parallel computation . 200
15.3 Parallel persistent homology . 202

16 Regular CW-structure on knots (written by Kelvin Killeen) 203
16.1 Knot complements in the 3-ball . 203
16.2 Tubular neighbourhoods . 204
16.3 Knotted surface complements in the 4-ball . 207

References 217

Chapter 1

Simplicial complexes & CW complexes

1.1 The Klein bottle as a simplicial complex

The following example constructs the Klein bottle as a simplicial complex K on 9 vertices, and
then constructs the cellular chain complex C∗ = C∗(K) from which the integral homology groups
H1(K,Z) =Z2⊕Z, H2(K,Z) = 0 are computed. The chain complex D∗=C∗⊗ZZ2 is also constructed
and used to compute the mod-2 homology vector spaces H1(K,Z2) = Z2⊕Z2, H2(K,Z) = Z2. Fi-
nally, a presentation π1(K) = 〈x,y : yxy−1x〉 is computed for the fundamental group of K.

Example
gap> 2simplices:=

> [[1,2,5], [2,5,8], [2,3,8], [3,8,9], [1,3,9], [1,4,9],

> [4,5,8], [4,6,8], [6,8,9], [6,7,9], [4,7,9], [4,5,7],

> [1,4,6], [1,2,6], [2,6,7], [2,3,7], [3,5,7], [1,3,5]];;

gap> K:=SimplicialComplex(2simplices);

Simplicial complex of dimension 2.

gap> C:=ChainComplex(K);

Chain complex of length 2 in characteristic 0 .

gap> Homology(C,1);

[2, 0]

gap> Homology(C,2);

[]

gap> D:=TensorWithIntegersModP(C,2);

Chain complex of length 2 in characteristic 2 .

gap> Homology(D,1);

2

gap> Homology(D,2);

1

gap> G:=FundamentalGroup(K);

<fp group of size infinity on the generators [f1, f2]>

gap> RelatorsOfFpGroup(G);

[f2*f1*f2^-1*f1]

7

A HAP tutorial 8

1.2 Other simplicial surfaces

The following example constructs the real projective plane P, the Klein bottle K and the torus T as
simplicial complexes, using the surface genus g as input in the oriented case and −g as input in the
unoriented cases. It then confirms that the connected sums M = K#P and N = T #P have the same
integral homology.

Example
gap> P:=ClosedSurface(-1);

Simplicial complex of dimension 2.

gap> K:=ClosedSurface(-2);

Simplicial complex of dimension 2.

gap> T:=ClosedSurface(1);

Simplicial complex of dimension 2.

gap> M:=ConnectedSum(K,P);

Simplicial complex of dimension 2.

gap> N:=ConnectedSum(T,P);

Simplicial complex of dimension 2.

gap> Homology(M,0);

[0]

gap> Homology(N,0);

[0]

gap> Homology(M,1);

[2, 0, 0]

gap> Homology(N,1);

[2, 0, 0]

gap> Homology(M,2);

[]

gap> Homology(N,2);

[]

1.3 The Quillen complex

Given a group G one can consider the partially ordered set Ap(G) of all non-trivial elementary abelian
p-subgroups of G, the partial order being set inclusion. The order complex ∆Ap(G) is a simplicial
complex which is called the Quillen complex .

The following example constructs the Quillen complex ∆A2(S7) for the symmetric group of degree
7 and p = 2. This simplicial complex involves 11291 simplices, of which 4410 are 2-simplices..

Example
gap> K:=QuillenComplex(SymmetricGroup(7),2);

Simplicial complex of dimension 2.

gap> Size(K);

11291

A HAP tutorial 9

gap> K!.nrSimplices(2);

4410

1.4 The Quillen complex as a reduced CW-complex

Any simplicial complex K can be regarded as a regular CW complex. Different datatypes are used
in HAP for these two notions. The following continuation of the above Quillen complex example
constructs a regular CW complex Y isomorphic to (i.e. with the same face lattice as) K = ∆A2(S7).
An advantage to working in the category of CW complexes is that it may be possible to find a CW
complex X homotopy equivalent to Y but with fewer cells than Y . The cellular chain complex C∗(X) of
such a CW complex X is computed by the following commands. From the number of free generators
of C∗(X), which correspond to the cells of X , we see that there is a single 0-cell and 160 2-cells.
Thus the Quillen complex $$\Delta{\cal A}_2(S_7) \simeq \bigvee_{1\le i\le 160} S^2$$ has the
homotopy type of a wedge of 160 2-spheres. This homotopy equivalence is given in [Kso00, (15.1)]
where it was obtained by purely theoretical methods.

Example
gap> Y:=RegularCWComplex(K);

Regular CW-complex of dimension 2

gap> C:=ChainComplex(Y);

Chain complex of length 2 in characteristic 0 .

gap> C!.dimension(0);

1

gap> C!.dimension(1);

0

gap> C!.dimension(2);

160

1.5 Simple homotopy equivalences

For any regular CW complex Y one can look for a sequence of simple homotopy collapses Y ↘ Y1↘
Y2 ↘ . . .↘ YN = X with X a smaller, and typically non-regular, CW complex. Such a sequence of
collapses can be recorded using what is now known as a discrete vector field on Y . The sequence can,
for example, be used to produce a chain homotopy equivalence f :C∗Y →C∗X and its chain homotopy
inverse g:C∗X → C∗Y . The function ChainComplex(Y) returns the cellular chain complex C∗(X),
wheras the function ChainComplexOfRegularCWComplex(Y) returns the chain complex C∗(Y).

For the above Quillen complex Y = ∆A2(S7) the following commands produce the chain homo-
topy equivalence f :C∗Y → C∗X and g:C∗X → C∗Y . The number of generators of C∗Y equals the
number of cells of Y in each degree, and this number is listed for each degree.

Example
gap> K:=QuillenComplex(SymmetricGroup(7),2);;

gap> Y:=RegularCWComplex(K);;

gap> CY:=ChainComplexOfRegularCWComplex(Y);

Chain complex of length 2 in characteristic 0 .

A HAP tutorial 10

gap> CX:=ChainComplex(Y);

Chain complex of length 2 in characteristic 0 .

gap> equiv:=ChainComplexEquivalenceOfRegularCWComplex(Y);;

gap> f:=equiv[1];

Chain Map between complexes of length 2 .

gap> g:=equiv[2];

Chain Map between complexes of length 2 .

gap> CY!.dimension(0);

1316

gap> CY!.dimension(1);

5565

gap> CY!.dimension(2);

4410

1.6 Cellular simplifications preserving homeomorphism type

For some purposes one might need to simplify the cell structure on a regular CW-complex Y so as to
obtained a homeomorphic CW-complex W with fewer cells.

The following commands load a 4-dimensional simplicial complex Y representing the K3 complex
surface. Its simplicial structure is taken from [SK11] and involves 1704 cells of various dimensions.
The commands then convert the cell structure into that of a homeomorphic regular CW-complex W
involving 774 cells.

Example
gap> Y:=RegularCWComplex(SimplicialK3Surface());

Regular CW-complex of dimension 4

gap> Size(Y);

1704

gap> W:=SimplifiedComplex(Y);

Regular CW-complex of dimension 4

gap> Size(W);

774

1.7 Constructing a CW-structure on a knot complement

The following commands construct the complement M = S3\K of the trefoil knot K. This complement
is returned as a 3-manifold M with regular CW-structure involving four 3-cells.

Example
gap> arc:=ArcPresentation(PureCubicalKnot(3,1));

[[2, 5], [1, 3], [2, 4], [3, 5], [1, 4]]

gap> S:=SphericalKnotComplement(arc);

A HAP tutorial 11

Regular CW-complex of dimension 3

gap> S!.nrCells(3);

4

The following additional commands then show that M is homotopy equivalent to a reduced
CW-complex Y of dimension 2 involving one 0-cell, two 1-cells and one 2-cell. The fundamen-
tal group of Y is computed and used to calculate the Alexander polynomial of the trefoil knot.

Example
gap> Y:=ContractedComplex(S);

Regular CW-complex of dimension 2

gap> CriticalCells(Y);

[[2, 1], [1, 9], [1, 11], [0, 22]]

gap> G:=FundamentalGroup(Y);;

gap> AlexanderPolynomial(G);

x_1^2-x_1+1

1.8 Constructing a regular CW-complex by attaching cells

The following example creates the projective plane Y as a regular CW-complex, and tests that it has
the correct integral homology H0(Y,Z) = Z, H1(Y,Z) = Z2, H2(Y,Z) = 0.

Example
gap> attch:=RegularCWComplex_AttachCellDestructive;; #Function for attaching cells

gap> Y:=RegularCWDiscreteSpace(3); #Discrete CW-complex consisting of points {1,2,3}

Regular CW-complex of dimension 0

gap> e1:=attch(Y,1,[1,2]);; #Attach 1-cell

gap> e2:=attch(Y,1,[1,2]);; #Attach 1-cell

gap> e3:=attch(Y,1,[1,3]);; #Attach 1-cell

gap> e4:=attch(Y,1,[1,3]);; #Attach 1-cell

gap> e5:=attch(Y,1,[2,3]);; #Attach 1-cell

gap> e6:=attch(Y,1,[2,3]);; #Attach 1-cell

gap> f1:=attch(Y,2,[e1,e3,e5]);; #Attach 2-cell

gap> f2:=attch(Y,2,[e2,e4,e5]);; #Attach 2-cell

gap> f3:=attch(Y,2,[e2,e3,e6]);; #Attach 2-cell

gap> f4:=attch(Y,2,[e1,e4,e6]);; #Attach 2-cell

gap> Homology(Y,0);

[0]

gap> Homology(Y,1);

[2]

gap> Homology(Y,2);

[]`

The following example creates a 2-complex K corresponding to the group presentation
G = 〈x,y,z : xyx−1y−1 = 1,yzy−1z−1 = 1,zxz−1x−1 = 1〉.

A HAP tutorial 12

The complex is shown to have the correct fundamental group and homology (since it is the
2-skeleton of the 3-torus S1×S1×S1).

Example
gap> S1:=RegularCWSphere(1);;

gap> W:=WedgeSum(S1,S1,S1);;

gap> F:=FundamentalGroupWithPathReps(W);; x:=F.1;;y:=F.2;;z:=F.3;;

gap> K:=RegularCWComplexWithAttachedRelatorCells(W,F,Comm(x,y),Comm(y,z),Comm(x,z));

Regular CW-complex of dimension 2

gap> G:=FundamentalGroup(K);

<fp group on the generators [f1, f2, f3]>

gap> RelatorsOfFpGroup(G);

[f2^-1*f1*f2*f1^-1, f1^-1*f3*f1*f3^-1, f2^-1*f3*f2*f3^-1]

gap> Homology(K,1);

[0, 0, 0]

gap> Homology(K,2);

[0, 0, 0]

1.9 Constructing a regular CW-complex from its face lattice

The following example creats a 2-dimensional annulus A as a regular CW-complex, and testing that
it has the correct integral homology H0(A,Z) = Z, H1(A,Z) = Z, H2(A,Z) = 0.

Example
gap> FL:=[];; #The face lattice

gap> FL[1]:=[[1,0],[1,0],[1,0],[1,0]];;

gap> FL[2]:=[[2,1,2],[2,3,4],[2,1,4],[2,2,3],[2,1,4],[2,2,3]];;

gap> FL[3]:=[[4,1,2,3,4],[4,1,2,5,6]];;

gap> FL[4]:=[];;

gap> A:=RegularCWComplex(FL);

Regular CW-complex of dimension 2

gap> Homology(A,0);

[0]

gap> Homology(A,1);

[0]

gap> Homology(A,2);

[]

Next we construct the direct product Y = A×A×A×A×A of five copies of the annulus. This is a
10-dimensional CW complex involving 248832 cells. It will be homotopy equivalent Y ' X to a CW
complex X involving fewer cells. The CW complex X may be non-regular. We compute the cochain
complex D∗ = HomZ(C∗(X),Z) from which the cohomology groups
H0(Y,Z) = Z,
H1(Y,Z) = Z5,
H2(Y,Z) = Z10,
H3(Y,Z) = Z10,
H4(Y,Z) = Z5,

A HAP tutorial 13

H5(Y,Z) = Z,
H6(Y,Z) = 0
are obtained.

Example
gap> Y:=DirectProduct(A,A,A,A,A);

Regular CW-complex of dimension 10

gap> Size(Y);

248832

gap> C:=ChainComplex(Y);

Chain complex of length 10 in characteristic 0 .

gap> D:=HomToIntegers(C);

Cochain complex of length 10 in characteristic 0 .

gap> Cohomology(D,0);

[0]

gap> Cohomology(D,1);

[0, 0, 0, 0, 0]

gap> Cohomology(D,2);

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

gap> Cohomology(D,3);

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

gap> Cohomology(D,4);

[0, 0, 0, 0, 0]

gap> Cohomology(D,5);

[0]

gap> Cohomology(D,6);

[]

1.10 Cup products

STRATEGY 1: USE GEOMETRIC GROUP THEORY IN LOW DIMENSIONS.
Continuing with the previous example, we consider the first and fifth generators g1

1,g
1
5 ∈

H1(Y,Z) = Z5 and establish that their cup product g1
1∪g1

5 =−g2
7 ∈ H2(Y,Z) = Z10 is equal to minus

the seventh generator of H2(Y,Z). We also verify that g1
5∪g1

1 =−g1
1∪g1

5.
Example

gap> cup11:=CupProduct(FundamentalGroup(Y));

function(a, b) ... end

gap> cup11([1,0,0,0,0],[0,0,0,0,1]);

[0, 0, 0, 0, 0, 0, -1, 0, 0, 0]

gap> cup11([0,0,0,0,1],[1,0,0,0,0]);

[0, 0, 0, 0, 0, 0, 1, 0, 0, 0]

A HAP tutorial 14

This computation of low-dimensional cup products is achieved using group-theoretic methods to
approximate the diagonal map ∆:Y → Y ×Y in dimensions ≤ 2. In order to construct cup products in
higher degrees HAP invokes three further strategies.

STRATEGY 2: IMPLEMENT THE ALEXANDER-WHITNEY MAP FOR SIMPLICIAL COMPLEXES.
For simplicial complexes the cup product is implemented using the standard formula for the

Alexander-Whitney chain map, together with homotopy equivalences to improve efficiency.
As a first example, the following commands construct simplicial complexes K = (S1×S1)#(S1×

S1) and L = (S1×S1)∨S1∨S1 and establish that they have the same cohomology groups. It is then
shown that the cup products ∪K :H2(K,Z)×H2(K,Z)→ H4(K,Z) and ∪L:H2(L,Z)×H2(L,Z)→
H4(L,Z) are antisymmetric bilinear forms of different ranks; hence K and L have different homotopy
types.

Example
gap> K:=ClosedSurface(2);

Simplicial complex of dimension 2.

gap> L:=WedgeSum(WedgeSum(ClosedSurface(1),Sphere(1)),Sphere(1));

Simplicial complex of dimension 2.

gap> Cohomology(K,0);Cohomology(L,0);

[0]

[0]

gap> Cohomology(K,1);Cohomology(L,1);

[0, 0, 0, 0]

[0, 0, 0, 0]

gap> Cohomology(K,2);Cohomology(L,2);

[0]

[0]

gap> gens:=[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]];;

gap> cupK:=CupProduct(K);;

gap> cupL:=CupProduct(L);;

gap> A:=NullMat(4,4);;B:=NullMat(4,4);;

gap> for i in [1..4] do

> for j in [1..4] do

> A[i][j]:=cupK(1,1,gens[i],gens[j])[1];

> B[i][j]:=cupL(1,1,gens[i],gens[j])[1];

> od;od;

gap> Display(A);

[[0, 0, 0, 1],

[0, 0, 1, 0],

[0, -1, 0, 0],

[-1, 0, 0, 0]]

gap> Display(B);

[[0, 1, 0, 0],

[-1, 0, 0, 0],

[0, 0, 0, 0],

[0, 0, 0, 0]]

gap> Rank(A);

4

gap> Rank(B);

2

A HAP tutorial 15

As a second example of the computation of cups products, the following commands construct
the connected sums V = M#M and W = M#M where M is the K3 complex surface which is stored
as a pure simplicial complex of dimension 4 and where M denotes the opposite orientation on M.
The simplicial structure on the K3 surface is taken from [SK11]. The commands then show that
H2(V,Z) = H2(W,Z) = Z44 and H4(V,Z) = H4(W,Z) = Z. The final commands compute the matrix
AV = (x∪ y) as x,y range over a generating set for H2(V,Z) and the corresponding matrix AW for W .
These two matrices are seen to have a different number of positive eigenvalues from which we can
conclude that V is not homotopy equivalent to W .

Example
gap> M:=SimplicialK3Surface();;

gap> V:=ConnectedSum(M,M,+1);

Simplicial complex of dimension 4.

gap> W:=ConnectedSum(M,M,-1);

Simplicial complex of dimension 4.

gap> Cohomology(V,2);

[0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

gap> Cohomology(W,2);

[0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

gap> Cohomology(V,4);

[0]

gap> Cohomology(W,4);

[0]

gap> cupV:=CupProduct(V);;

gap> cupW:=CupProduct(W);;

gap> AV:=NullMat(44,44);;

gap> AW:=NullMat(44,44);;

gap> gens:=IdentityMat(44);;

gap> for i in [1..44] do

> for j in [1..44] do

> AV[i][j]:=cupV(2,2,gens[i],gens[j])[1];

> AW[i][j]:=cupW(2,2,gens[i],gens[j])[1];

> od;od;

gap> SignatureOfSymmetricMatrix(AV);

rec(determinant := 1, negative_eigenvalues := 22, positive_eigenvalues := 22,

zero_eigenvalues := 0)

gap> SignatureOfSymmetricMatrix(AW);

rec(determinant := 1, negative_eigenvalues := 6, positive_eigenvalues := 38,

zero_eigenvalues := 0)

A cubical cubical version of the Alexander-Whitney formula, due to J.-P. Serre, could be used for
computing the cohomology ring of a regular CW-complex whose cells all have a cubical combi-
natorial face lattice. This has not been implemented in HAP. However, the following more general
approach has been implemented.

STRATEGY 3: IMPLEMENT A CELLULAR APPROXIMATION TO THE DIAGONAL MAP ON AN

ARBITRARY FINITE REGULAR CW-COMPLEX.
The following example calculates the cup product H2(W,Z)×H2(W,Z) → H4(W,Z) for the

A HAP tutorial 16

4-dimensional orientable manifold W = M×M where M is the closed surface of genus 2. The mani-
fold W is stored as a regular CW-complex.

Example
gap> M:=RegularCWComplex(ClosedSurface(2));;

gap> W:=DirectProduct(M,M);

Regular CW-complex of dimension 4

gap> Size(W);

5776

gap> W:=SimplifiedComplex(W);;

gap> Size(W);

1024

gap> Homology(W,2);

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

gap> Homology(W,4);

[0]

gap> cup:=CupProduct(W);;

gap> SecondCohomologtGens:=IdentityMat(18);;

gap> A:=NullMat(18,18);;

gap> for i in [1..18] do

> for j in [1..18] do

> A[i][j]:=cup(2,2,SecondCohomologtGens[i],SecondCohomologtGens[j])[1];

> od;od;

gap> Display(A);

[[0, -1, 0, 0, 0, 0, 3, -2, 0, 0, 0, 1, -1, 0, 0, 1, 0, 0],

[-1, -10, 1, 2, -2, 1, 6, -1, 0, -3, 4, -1, -1, -1, 4, -2, -2, 0],

[0, 1, -2, 1, 0, -1, 0, 0, 1, 0, -1, 1, 0, 0, 1, -1, 0, 0],

[0, 2, 1, -2, 1, 0, 0, -1, 0, 1, 0, 0, 0, 0, -1, 2, 0, 0],

[0, -2, 0, 1, 0, 0, 1, -1, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0],

[0, 1, -1, 0, 0, 0, 0, 1, -1, 1, 0, 0, 0, 0, 1, -1, 0, 0],

[3, 6, 0, 0, 1, 0, -4, 0, -1, 2, 4, -5, 2, -1, 1, 0, 3, 0],

[-2, -1, 0, -1, -1, 1, 0, 4, -2, 0, 0, 3, -1, 1, -1, 0, -2, 0],

[0, 0, 1, 0, 0, -1, -1, -2, 4, -3, -10, 1, 0, 0, -3, 3, 0, 0],

[0, -3, 0, 1, 0, 1, 2, 0, -3, 2, 3, 0, 0, 0, 1, -3, 0, 0],

[0, 4, -1, 0, -1, 0, 4, 0, -10, 3, 18, 1, 0, 0, 0, 4, 0, 1],

[1, -1, 1, 0, 0, 0, -5, 3, 1, 0, 1, 0, 0, 0, -2, -1, -1, 0],

[-1, -1, 0, 0, 0, 0, 2, -1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0],

[0, -1, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, -1, -1, 0],

[0, 4, 1, -1, 0, 1, 1, -1, -3, 1, 0, -2, 1, 0, 0, 2, 2, 0],

[1, -2, -1, 2, -1, -1, 0, 0, 3, -3, 4, -1, 0, -1, 2, 0, 0, 0],

[0, -2, 0, 0, 0, 0, 3, -2, 0, 0, 0, -1, 0, -1, 2, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]]

gap> SignatureOfSymmetricMatrix(A);

rec(determinant := -1, negative_eigenvalues := 9, positive_eigenvalues := 9,

zero_eigenvalues := 0)

The matrix A representing the cup product H2(W,Z)×H2(W,Z)→ H4(W,Z) is shown to have 9
positive eigenvalues, 9 negative eigenvalues, and no zero eigenvalue.

A HAP tutorial 17

STRATEGY 4: GUESS AND VERIFY A CELLULAR APPROXIMATION TO THE DIAGONAL MAP.
Many naturally occuring cell structures are neither simplicial nor cubical. For a general regular

CW-complex we can attempt to construct a cellular inclusion Y ↪→ Y ×Y with {(y,y) : y ∈ Y} ⊂ Y
and with projection p:Y � Y that induces isomorphisms on integral homology. The function
DiagonalApproximation(Y) constructs a candidate inclusion, but the projection p:Y � Y needs
to be tested for homology equivalence. If the candidate inclusion passes this test then the function
CupProductOfRegularCWComplex_alt(Y), involving the candidate space, can be used for cup prod-
ucts. (I think the test is passed for all regular CW-complexes that are subcomplexes of some Euclidean
space with all cells convex polytopes -- but a proof needs to be written down!)

The following example calculates g2
1∪g2

2 6= 0 where Y = T ×T is the direct product of two copies
of a simplicial torus T , and where gn

k denotes the k-th generator in some basis of Hn(Y,Z). The direct
product Y is a CW-complex which is not a simplicial complex.

Example
gap> K:=RegularCWComplex(ClosedSurface(1));;

gap> Y:=DirectProduct(K,K);;

gap> cup:=CupProductOfRegularCWComplex_alt(Y);;

gap> cup(2,2,[1,0,0,0,0,0],[0,1,0,0,0,0]);

[5]

gap> D:=DiagonalApproximation(Y);;

gap> p:=D!.projection;

Map of regular CW-complexes

gap> P:=ChainMap(p);

Chain Map between complexes of length 4 .

gap> IsIsomorphismOfAbelianFpGroups(Homology(P,0));

true

gap> IsIsomorphismOfAbelianFpGroups(Homology(P,2));

true

gap> IsIsomorphismOfAbelianFpGroups(Homology(P,3));

true

gap> IsIsomorphismOfAbelianFpGroups(Homology(P,4));

true

Of course, either of Strategies 2 or 3 could also be used for this example. To use the Alexan-
der-Whitney formula of Strategy 2 we would need to give the direct product Y = T ×T a simplicial
structure. This could be obtained using the function DirectProduct(T,T). The details are as follows.
(The result is consistent with the preceding computation since the choice of a basis for cohomology
groups is far from unique.)

Example
gap> K:=ClosedSurface(1);;

gap> KK:=DirectProduct(K,K);

Simplicial complex of dimension 4.

gap> cup:=CupProduct(KK);;

gap> cup(2,2,[1,0,0,0,0,0],[0,1,0,0,0,0]);

[0]

A HAP tutorial 18

1.11 Intersection forms of 4-manifolds

The cup product gives rise to the intersection form of a connected, closed, orientable 4-manifold Y is
a symmetric bilinear form

qY :H2(Y,Z)/Torsion×H2(Y,Z)/Torsion−→ Z
which we represent as a symmetric matrix.
The following example constructs the direct product L = S2×S2 of two 2-spheres, the connected

sum M =CP2#CP2 of the complex projective plane CP2 and its oppositely oriented version CP2, and
the connected sum N =CP2#CP2. The manifolds L, M and N are each shown to have a CW-structure
involving one 0-cell, two 1-cells and one 2-cell. They are thus simply connected and have identical
cohomology.

Example
gap> S:=Sphere(2);;

gap> S:=RegularCWComplex(S);;

gap> L:=DirectProduct(S,S);

Regular CW-complex of dimension 4

gap> M:=ConnectedSum(ComplexProjectiveSpace(2),ComplexProjectiveSpace(2),-1);

Simplicial complex of dimension 4.

gap> N:=ConnectedSum(ComplexProjectiveSpace(2),ComplexProjectiveSpace(2),+1);

Simplicial complex of dimension 4.

gap> CriticalCells(L);

[[4, 1], [2, 13], [2, 56], [0, 16]]

gap> CriticalCells(RegularCWComplex(M));

[[4, 1], [2, 109], [2, 119], [0, 8]]

gap> CriticalCells(RegularCWComplex(N));

[[4, 1], [2, 119], [2, 149], [0, 12]]

John Milnor showed (as a corollary to a theorem of J. H. C. Whitehead) that the homotopy type of a
simply connected 4-manifold is determined by its quadratic form. More precisely, a form is said to
be of type I (properly primitive) if some diagonal entry of its matrix is odd. If every diagonal entry is
even, then the form is of type II (improperly primitive). The index of a form is defined as the number
of positive diagonal entries minus the number of negative ones, after the matrix has been diagonalized
over the real numbers.

THEOREM. (Milnor [Mil58]) The oriented homotopy type of a simply connected, closed, ori-
entable 4-manifold is determined by its second Betti number and the index and type of its intersetion
form; except possibly in the case of a manifold with definite quadratic form of rank r > 9.

The following commands compute matrices representing the intersection forms qL, qM, qN.
Example

gap> qL:=IntersectionForm(L);;

gap> qM:=IntersectionForm(M);;

gap> qN:=IntersectionForm(N);;

gap> Display(qL);

[[-2, 1],

[1, 0]]

gap> Display(qM);

[[1, 0],

A HAP tutorial 19

[0, 1]]

gap> Display(qN);

[[1, 0],

[0, -1]]

Since qL is of type II, whereas qM and qN are of type I we see that the oriented homotopy type of L
is distinct to that of M and that of N. Since qM has index 2 and qN has index 0 we see that that M and
N also have distinct oriented homotopy types.

1.12 Cohomology Rings

The cup product gives the cohomology H∗(X ,R) of a space X with coefficients in a ring R the struc-
ture of a graded commutitive ring. The function CohomologyRing(Y,p) returns the cohomology as
an algebra for Y a simplicial complex and R = Zp the field of p elements. For more general reg-
ular CW-complexes or R = Z the cohomology ring structure can be determined using the function
CupProduct(Y).

The folowing commands compute the mod 2 cohomology ring H∗(W,Z2) of the above wedge sum
W = M∨N of a 2-dimensional orientable simplicial surface of genus 2 and the K3 complex simplicial
surface (of real dimension 4).

Example
gap> M:=ClosedSurface(2);;

gap> N:=SimplicialK3Surface();;

gap> W:=WedgeSum(M,N);;

gap> A:=CohomologyRing(W,2);

<algebra of dimension 29 over GF(2)>

gap> x:=Basis(A)[25];

v.25

gap> y:=Basis(A)[27];

v.27

gap> x*y;

v.29

The functions CupProduct and IntersectionForm can be used to determine integral cohomol-
ogy rings. For example, the integral cohomology ring of an arbitrary closed surface was calculated
in [GM15, Theorem 3.5]. For any given surface M this result can be recalculated using the intersec-
tion form. For instance, for an orientable surface of genus g it is well-known that H1(M,Z) = Z2g,
H2(M,Z) = Z. The ring structure multiplication is thus given by the matrix of the intersection form.
For say g= 3 the ring multiplication is given, with respect to some cohomology basis, in the following.

Example
gap> M:=ClosedSurface(3);;

gap> Display(IntersectionForm(M));

[[0, 0, 1, -1, -1, 0],

[0, 0, 0, 1, 1, 0],

[-1, 0, 0, 1, 1, -1],

[1, -1, -1, 0, 0, 1],

[1, -1, -1, 0, 0, 0],

[0, 0, 1, -1, 0, 0]]

A HAP tutorial 20

By changing the basis B for H1(M,Z) we obtain the following simpler matrix representing multipli-
cation in H∗(M,Z).

Example
gap> B:=[[0, 1, -1, -1, 1, 0],

> [1, 0, 1, 1, 0, 0],

> [0, 0, 1, 0, 0, 0],

> [0, 0, 0, 1, -1, 0],

> [0, 0, 1, 1, 0, 0],

> [0, 0, 1, 1, 0, 1]];;

gap> Display(IntersectionForm(M,B));

[[0, 1, 0, 0, 0, 0],

[-1, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 1, 0],

[0, 0, 0, 0, 0, 1],

[0, 0, -1, 0, 0, 0],

[0, 0, 0, -1, 0, 0]]

1.13 Bockstein homomorphism

The following example evaluates the Bockstein homomorphism β2:H∗(X ,Z2)→ H∗+1(X ,Z2) on an
additive basis for X =Σ100(RP2×RP2) the 100-fold suspension of the direct product of two projective
planes.

Example
gap> P:=SimplifiedComplex(RegularCWComplex(ClosedSurface(-1)));

Regular CW-complex of dimension 2

gap> PP:=DirectProduct(P,P);;

gap> SPP:=Suspension(PP,100);

Regular CW-complex of dimension 104

gap> A:=CohomologyRing(SPP,2);

<algebra of dimension 9 over GF(2)>

gap> List(Basis(A),x->Bockstein(A,x));

[0*v.1, v.4, v.6, 0*v.1, v.7+v.8, 0*v.1, v.9, v.9, 0*v.1]

If only the Bockstein homomorphism is required, and not the cohomology ring structure, then the
Bockstein could also be computedirectly from a chain complex. The following computes the Bock-
stein β2:H2(Y,Z2)→ H3(Y,Z2) for the direct product Y = K×K×K×K of four copies of the Klein
bottle represented as a regular CW-complex with 331776 cells. The order of the kernel and image of
β2 are computed.

Example
gap> K:=ClosedSurface(-2);;

gap> K:=SimplifiedComplex(RegularCWComplex(K));;

gap> KKKK:=DirectProduct(K,K,K,K);

Regular CW-complex of dimension 8

gap> Size(KKKK);

331776

gap> C:=ChainComplex(KKKK);;

gap> bk:=Bockstein(C,2,2);;

A HAP tutorial 21

gap> Order(Kernel(bk));

1024

gap> Order(Image(bk));

262144

1.14 Diagonal maps on associahedra and other polytopes

By a diagonal approximation on a regular CW-complex X we mean any cellular map ∆:X → X ×X
that is homotopic to the diagonal map X → X ×X ,x 7→ (x,x) and equal to the diagonal map when
restricted to the 0-skeleton. Theoretical formulae for diagonal maps on a polytope X can have inter-
esting combinatorial aspects. To illustrate this let us consider, for n = 3, the n-dimensional polytope
K n+2 known as the associahedron. The following commands display the 1-skeleton of K 5.

Example
gap> n:=3;;Y:=RegularCWAssociahedron(n+2);;

gap> Display(GraphOfRegularCWComplex(Y));

The induced chain map C∗(K n+2)→ C∗(K n+2×K n+2) sends the unique free generator en
1 of

Cn(K n+2) to a sum ∆(en
1) of a number of distinct free generators of Cn(K n+2×K n+2). Let |∆(en

1)|
denote the number of free generators. For n = 3 the following commands show that |∆(e3

1)|= 22 with
each free generator occurring with coefficient ±1.

Example
gap> n:=3;;Y:=RegularCWAssociahedron(n+2);;

gap> D:=DiagonalChainMap(Y);;Filtered(D!.mapping([1],n),x->x<>0);

[1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, 1, 1]

Repeating this example for 0 ≤ n ≤ 6 yields the sequence |∆(en
1)| : 1,2,6,22,91,408,1938, · · · . The

On-line Encyclopedia of Integer Sequences explains that this is the beginning of the sequence given
by the number of canopy intervals in the Tamari lattices.

Repeating the same experiment for the permutahedron, using the command
RegularCWPermutahedron(n), yields the sequence |∆(en

1)| : 1,2,8,50,432,4802, · · ·. The
On-line Encyclopedia of Integer Sequences explains that this is the beginning of the sequence given
by the number of spanning trees in the graph Kn/e, which results from contracting an edge e in the
complete graph Kn on n vertices.

Repeating the experiment for the cube, using the command RegularCWCube(n), yields the se-
quence |∆(en

1)| : 1,2,4,8,16,32, · · ·.
Repeating the experiment for the simplex, using the command RegularCWSimplex(n), yields the

sequence |∆(en
1)| : 1,2,3,4,5,6, · · ·.

1.15 CW maps and induced homomorphisms

A strictly cellular map f :X → Y of regular CW-complexes is a cellular map for which the image of
any cell is a cell (of possibly lower dimension). Inclusions of CW-subcomplexes, and projections

https://oeis.org/A000139
https://oeis.org/A007334

A HAP tutorial 22

from a direct product to a factor, are examples of such maps. Strictly cellular maps can be represented
in HAP, and their induced homomorphisms on (co)homology and on fundamental groups can be
computed.

The following example begins by visualizing the trefoil knot κ ∈ R3. It then constructs a
regular CW structure on the complement Y = D3 \Nbhd(κ) of a small tubular open neighbour-
hood of the knot lying inside a large closed ball D3. The boundary of this tubular neighbour-
hood is a 2-dimensional CW-complex B homeomorphic to a torus S1×S1 with fundamental group
π1(B) =< a,b : aba−1b−1 = 1 >. The inclusion map f :B ↪→ Y is constructed. Then a presentation
π1(Y) =< x,y |xy−1x−1yx−1y−1 > and the induced homomorphism $$\pi_1(B)\rightarrow \pi_1(Y),
a\mapsto y^{-1}xy^2xy^{-1}, b\mapsto y $$ are computed. This induced homomorphism is an
example of a peripheral system and is known to contain sufficient information to characterize the knot
up to ambient isotopy.

Finally, it is verified that the induced homology homomorphism H2(B,Z)→ H2(Y,Z) is an iso-
momorphism.

Example
gap> K:=PureCubicalKnot(3,1);;

gap> ViewPureCubicalKnot(K);;

Example
gap> K:=PureCubicalKnot(3,1);;

gap> f:=KnotComplementWithBoundary(ArcPresentation(K));

Map of regular CW-complexes

gap> G:=FundamentalGroup(Target(f));

<fp group of size infinity on the generators [f1, f2]>

gap> RelatorsOfFpGroup(G);

[f1*f2^-1*f1^-1*f2*f1^-1*f2^-1]

gap> F:=FundamentalGroup(f);

[f1, f2] -> [f2^-1*f1*f2^2*f1*f2^-1, f1]

gap> phi:=ChainMap(f);

Chain Map between complexes of length 2 .

gap> H:=Homology(phi,2);

[g1] -> [g1]

1.16 Constructing a simplicial complex from a regular CW-complex

The following example constructs a 3-dimensional pure regular CW-complex K whose 3-cells are
permutahedra. It then constructs the simplicial complex B by taking barycentric subdivision. It then
constructes a smaller, homotopy equivalent, simplicial complex N by taking the nerve of the cover of
K by the closures of its 3-cells.

Example
gap> K:=RegularCWComplex(PureComplexComplement(PurePermutahedralKnot(3,1)));

Regular CW-complex of dimension 3

A HAP tutorial 23

gap> Size(K);

77923

gap> B:=BarycentricSubdivision(K);

Simplicial complex of dimension 3.

gap> Size(B);

1622517

gap> N:=Nerve(K);

Simplicial complex of dimension 3.

gap> Size(N);

48745

1.17 Some limitations to representing spaces as regular CW complexes

By a classifying space for a group G we mean a path-connected space BG with fundamental group
π1(BG)∼= G isomorphic to G and with higher homotopy groups πn(BG) = 0 trivial for all n≥ 2. The
homology of the group G can be defined to be the homology of BG: Hn(G,Z) = Hn(BG,Z).

In principle BG can always be constructed as a regular CW-complex. For instance, the following
extremely slow commands construct the 5-skeleton Y 5 of a regular CW-classifying space Y = BG for
the dihedral group of order 16 and use it to calculate H1(G,Z) = Z2⊕Z2, H2(G,Z) = Z2, H3(G,Z) =
Z2⊕Z2⊕Z8, H4(G,Z) = Z2⊕Z2. The final command shows that the constructed space Y 5 in this
example is a 5-dimensional regular CW-complex with a total of 15289 cells.

Example
gap> Y:=ClassifyingSpaceFiniteGroup(DihedralGroup(16),5);

Regular CW-complex of dimension 5

gap> Homology(Y,1);

[2, 2]

gap> Homology(Y,2);

[2]

gap> Homology(Y,3);

[2, 2, 8]

gap> Homology(Y,4);

[2, 2]

gap> Size(Y);

15289

The n-skeleton of a regular CW-classifying space of a finite group necessarily involves a large number
of cells. For the group G =C2 of order two a classifying space can be take to be real projective space
BG = RP∞ with n-skeleton BGn = RPn. To realize BGn = RPn as a simplicial complex it is known
that one needs at least 6 vertices for n = 2, at least 11 vertices for n = 3 and at least 16 vertices
for n = 4. One can do a bit better by allowing BG to be a regular CW-complex. For instance, the
following creates RP4 as a regular CW-complex with 5 vertices. This construction of RP4 involves a
total of 121 cells. A minimal triangulation of RP4 would require 991 simplices.

A HAP tutorial 24

Example
gap> Y:=ClassifyingSpaceFiniteGroup(CyclicGroup(2),4);

Regular CW-complex of dimension 4

gap> Y!.nrCells(0);

5

gap> Y!.nrCells(1);

20

gap> Y!.nrCells(2);

40

gap> Y!.nrCells(3);

40

gap> Y!.nrCells(4);

16

The space RPn can be given the structure of a regular CW-complex with n+1 vertices. Kuehnel has
described a triangulation of RPn with 2n+1−1 vertices.

The above examples suggest that it is inefficient/impractical to attempt to compute the n-th ho-
mology of a group G by first constructing a regular CW-complex corresponding for the n+ 1 of a
classifying space BG, even for quite small groups G, since such spaces seem to require a large number
of cells in each dimension. On the other hand, by dropping the requirement that BG must be regular
we can obtain much smaller CW-complexes. The following example constructs RP9 as a regular
CW-complex and then shows that it can be given a non-regular CW-structure with just one cell in
each dimension.

Example
gap> Y:=ClassifyingSpaceFiniteGroup(CyclicGroup(2),9);

Regular CW-complex of dimension 9

gap> Size(Y);

29524

gap> CriticalCells(Y);

[[9, 1], [8, 124], [7, 1215], [6, 1246], [5, 487], [4, 254],

[3, 117], [2, 54], [1, 9], [0, 10]]

It is of course well-known that RP∞ admits a theoretically described CW-structure with just one cell
in each dimension. The question is: how best to represent this on a computer?

1.18 Equivariant CW complexes

As just explained, the representations of spaces as simplicial complexes and regular CW complexes
have their limitations. One limitation is that the number of cells needed to describe a space can be
unnecessarily large. A minimal simplicial complex structure for the torus has 7 vertices, 21 edges and
14 triangles. A minimal regular CW-complex structure for the torus has 4 vertices, 8 edges and 4 cells
of dimension 2. By using simplicial sets (which are like simplicial complexes except that they allow
the freedom to attach simplicial cells by gluing their boundary non-homeomorphically) one obtains
a minimal triangulation of the torus involving 1 vertex, 3 edges and 2 cells of dimension 2. By using
non-regular CW-complexes one obtains a minimal cell structure involving 1 vertex, 2 edges and 1 cell
of dimension 2. Minimal cell structures (in the four different categories) for the torus are illustrated as
follows.

A HAP tutorial 25

A second limitation to our representations of simplicial and regular CW-complexes is that they
apply only to structures with finitely many cells. They do no apply, for instance, to the simplicial
complex structure on the real line R in which each each integer n is a vertex and each interval [n,n+1]
is an edge.

Simplicial sets provide one approach to the efficient combinatorial representation of certain spaces.
So too do cubical sets (the analogues of simplicial sets in which each cell has the combinatorics of an
n-cube rather than an n-simplex). Neither of these two approaches has been implemented in HAP.

Simplicial sets endowed with the action of a (possibly infinite) group G provide for an efficient
representation of (possibly infinite) cell structures on a wider class of spaces. Such a structure can
be made precise and is known as a simplicial group. Some functionality for simplicial groups is
implemented in HAP and described in Chapter 12.

A regular CW-complex endowed with the action of a (possibly infinite) group G is an alternative
approach to the efficient combinatorial representation of (possibly infinite) cell structures on spaces.
Much of HAP is focused on this approach. As a first example of the idea, the following commands
construct the infinite regular CW-complex Y = T̃ arising as the universal cover of the torus T = S1×S1

where T is given the above minimal non-regular CW structure involving 1 vertex, 2 edges, and 1 cell
of dimension 2. The homology Hn(T,Z) is computed and the fundamental group of the torus T is
recovered.

Example
gap> F:=FreeGroup(2);;x:=F.1;;y:=F.2;;

gap> G:=F/[x*y*x^-1*y^-1];;

gap> Y:=EquivariantTwoComplex(G);

Equivariant CW-complex of dimension 2

gap> C:=ChainComplexOfQuotient(Y);

Chain complex of length 2 in characteristic 0 .

gap> Homology(C,0);

[0]

gap> Homology(C,1);

[0, 0]

gap> Homology(C,2);

[0]

gap> FundamentalGroupOfQuotient(Y);

<fp group of size infinity on the generators [f1, f2]>

As a second example, the following comands load group number 9 in the library of 3-dimensional
crystallographic groups. They verify that G acts freely on R3 (i.e. G is a Bieberbach group) and
then construct a G-equivariant CW-complex Y = R3 corresponding to the tessellation of R3 by a
fundamental domain for G. Finally, the cohomology Hn(M,Z) of the 3-dimensional closed manifold
M = R3/G is computed. The manifold M is seen to be non-orientable (since it’s top-dimensional
homology is trivial) and has a non-regular CW structure with 1 vertex, 3 edges, 3 cells of dimension
2, and 1 cell of dimension 3. (This example uses Polymake software.)

Example
gap> G:=SpaceGroup(3,9);;

gap> IsAlmostBieberbachGroup(Image(IsomorphismPcpGroup(G)));

true

gap> Y:=EquivariantEuclideanSpace(G,[0,0,0]);

Equivariant CW-complex of dimension 3

A HAP tutorial 26

gap> Y!.dimension(0);

1

gap> Y!.dimension(1);

3

gap> Y!.dimension(2);

3

gap> Y!.dimension(3);

1

gap> C:=ChainComplexOfQuotient(Y);

Chain complex of length 3 in characteristic 0 .

gap> Homology(C,0);

[0]

gap> Homology(C,1);

[0, 0]

gap> Homology(C,2);

[2, 0]

gap> Homology(C,3);

[]

The fundamental domain for the action of G in the above example is constructed to be the Dirich-
let-Voronoi region in R3 whose points are closer to the origin v = (0,0,0) than to any other point vg

in the orbit of the origin under the action of G. This fundamental domain can be visualized as follows.
Example

gap> F:=FundamentalDomainStandardSpaceGroup([0,0,0],G);

<polymake object>

gap> Polymake(F,"VISUAL");

Other fundamental domains for the same group action can be obtained by choosing some other
starting vector v. For example:

Example
gap> F:=FundamentalDomainStandardSpaceGroup([1/2,1/3,1/5],G);;

gap> Polymake(F,"VISUAL");

gap> F:=FundamentalDomainStandardSpaceGroup([1/7,1/2,1/2],G);

gap> Polymake(F,"VISUAL");

1.19 Orbifolds and classifying spaces

If a discrete group G acts on Euclidean space or hyperbolic space with finite stabilizer groups then we
say that the quotient space obtained by killing the action of G an an orbifold. If the stabilizer groups
are all trivial then the quotient is of course a manifold.

An orbifold is represented as a G-equivariant regular CW-complex together with the stabilizer
group for a representative of each orbit of cells and its subgroup consisting of those group elements
that preserve the cell orientation. HAP stores orbifolds using the data type of non-free resolution and
uses them mainly as a first step in constructing free ZG-resolutions of Z.

A HAP tutorial 27

The following commands use an 8-dimensional equivariant deformation retract of a
GL3(Z[i])-orbifold structure on hyperbolic space to compute H5(GL3(Z[i],Z) = Z5

2⊕Z2
4. (The defor-

mation retract is stored in a library and was supplied by Mathieu Dutour Sikiric.)
Example

gap> Orbifold:=ContractibleGcomplex("PGL(3,Z[i])");

Non-free resolution in characteristic 0 for matrix group .

No contracting homotopy available.

gap> R:=FreeGResolution(Orbifold,6);

Resolution of length 5 in characteristic 0 for matrix group .

No contracting homotopy available.

gap> Homology(TensorWithIntegers(R),5);

[2, 2, 2, 2, 2, 4, 4]

The next example computes an orbifold structure on R4, and then the first 12 degrees of a free resolu-
tion/classifying space, for the second 4-dimensional crystallographic group G in the library of crystal-
lographic groups. The resolution is shown to be periodic of period 2 in degrees ≥ 5. The cohomology
is seen to have 11 ring generators in degree 2 and no further ring generators. The cohomology groups
are: $$H^n(G,\mathbb Z) =\left(\begin{array}{ll} 0, & {\rm odd~} n\ge 1\\ \mathbb Z_2^5
\oplus \mathbb Z^6, & n=2\\ \mathbb Z_2^{15}\oplus \mathbb Z, & n=4\\ \mathbb Z_2^{16},
& {\rm even~} n \ge 6 .\\ \end{array}\right.$$

Example
gap> G:=SpaceGroup(4,2);;

gap> R:=ResolutionCubicalCrystGroup(G,12);

Resolution of length 12 in characteristic 0 for <matrix group with

5 generators> .

gap> R!.dimension(5);

16

gap> R!.dimension(7);

16

gap> List([1..16],k->R!.boundary(5,k)=R!.boundary(7,k));

[true, true, true, true, true, true, true, true, true, true, true, true,

true, true, true, true]

gap> C:=HomToIntegers(R);

Cochain complex of length 12 in characteristic 0 .

gap> Cohomology(C,0);

[0]

gap> Cohomology(C,1);

[]

gap> Cohomology(C,2);

[2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0]

gap> Cohomology(C,3);

[]

gap> Cohomology(C,4);

[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0]

gap> Cohomology(C,5);

[]

A HAP tutorial 28

gap> Cohomology(C,6);

[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]

gap> Cohomology(C,7);

[]

gap> IntegralRingGenerators(R,1);

[]

gap> IntegralRingGenerators(R,2);

[[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]]

gap> IntegralRingGenerators(R,3);

[]

gap> IntegralRingGenerators(R,4);

[]

gap> IntegralRingGenerators(R,5);

[]

gap> IntegralRingGenerators(R,6);

[]

gap> IntegralRingGenerators(R,7);

[]

gap> IntegralRingGenerators(R,8);

[]

gap> IntegralRingGenerators(R,9);

[]

gap> IntegralRingGenerators(R,10);

[]

A group G with a finite index torsion free nilpotent subgroup admits a resolution which is peri-
odic in sufficiently high degrees if and only if all of its finite index subgroups admit periodic resolu-
tions. The following commands identify the 99 3-dimensional space groups (respectively, the 1191
4-dimensional space groups) that admit a resolution which is periodic in degrees > 3 (respectively, in
degrees > 4).

Example
gap> L3:=Filtered([1..219],k->IsPeriodicSpaceGroup(SpaceGroup(3,k)));

[1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 17, 18, 19, 21, 24, 26, 27, 28,

29, 30, 31, 32, 33, 34, 36, 37, 39, 40, 41, 43, 45, 46, 52, 54, 55, 56, 58,

61, 62, 74, 75, 76, 77, 78, 79, 80, 81, 84, 85, 87, 89, 92, 98, 101, 102,

107, 111, 119, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151,

152, 153, 154, 155, 157, 159, 161, 162, 163, 164, 165, 166, 168, 171, 172,

174, 175, 176, 178, 180, 186, 189, 192, 196, 198, 209]

gap> L4:=Filtered([1..4783],k->IsPeriodicSpaceGroup(SpaceGroup(4,k)));

[1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 16, 17, 18, 19, 20, 22, 23, 25,

26, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 42, 43, 44, 46, 47, 48,

49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70,

71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 89, 90, 91,

A HAP tutorial 29

93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 110,

111, 113, 115, 116, 118, 119, 120, 121, 122, 124, 126, 127, 128, 130, 131,

134, 141, 144, 145, 149, 151, 153, 154, 155, 156, 157, 158, 159, 160, 162,

163, 165, 167, 168, 169, 170, 171, 172, 173, 174, 176, 178, 179, 180, 187,

188, 197, 198, 202, 204, 205, 206, 211, 212, 219, 220, 222, 226, 233, 237,

238, 239, 240, 241, 242, 243, 244, 245, 247, 248, 249, 250, 251, 253, 254,

255, 256, 257, 259, 260, 261, 263, 264, 265, 266, 267, 269, 270, 271, 273,

275, 277, 278, 279, 281, 283, 285, 290, 292, 296, 297, 298, 299, 300, 301,

303, 304, 305, 314, 316, 317, 319, 327, 328, 329, 333, 335, 342, 355, 357,

358, 359, 361, 362, 363, 365, 366, 367, 368, 369, 370, 372, 374, 376, 378,

381, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397,

398, 399, 400, 401, 402, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413,

414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 427, 428, 429,

430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 442, 443, 444, 445,

446, 447, 448, 450, 451, 458, 459, 462, 464, 465, 466, 467, 469, 470, 473,

477, 478, 479, 482, 483, 484, 485, 486, 493, 495, 497, 501, 502, 503, 504,

505, 507, 508, 512, 514, 515, 516, 517, 522, 524, 525, 526, 527, 533, 537,

539, 540, 541, 542, 543, 544, 546, 548, 553, 555, 558, 562, 564, 565, 566,

567, 568, 571, 572, 573, 574, 576, 577, 580, 581, 582, 589, 590, 591, 593,

596, 598, 599, 612, 613, 622, 623, 624, 626, 632, 641, 647, 649, 651, 652,

654, 656, 657, 658, 659, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671,

672, 674, 676, 677, 678, 679, 680, 682, 683, 684, 686, 688, 689, 690, 691,

692, 694, 696, 697, 698, 699, 700, 702, 708, 710, 712, 714, 716, 720, 722,

728, 734, 738, 739, 741, 742, 744, 745, 752, 754, 756, 757, 758, 762, 763,

769, 770, 778, 779, 784, 788, 790, 800, 801, 843, 845, 854, 855, 856, 857,

865, 874, 900, 904, 909, 911, 913, 915, 916, 917, 919, 920, 921, 922, 923,

924, 925, 926, 927, 929, 931, 932, 933, 934, 936, 938, 940, 941, 943, 945,

946, 953, 955, 956, 958, 963, 966, 972, 973, 978, 979, 981, 982, 983, 985,

987, 988, 989, 991, 992, 993, 995, 996, 998, 999, 1000, 1003, 1011, 1022,

1024, 1025, 1026, 1162, 1167, 1236, 1237, 1238, 1239, 1240, 1241, 1242,

1243, 1244, 1246, 1248, 1250, 1255, 1264, 1267, 1270, 1273, 1279, 1280,

1281, 1283, 1284, 1289, 1291, 1293, 1294, 1324, 1325, 1326, 1327, 1328,

1329, 1330, 1331, 1332, 1333, 1334, 1335, 1336, 1337, 1338, 1339, 1340,

1341, 1343, 1345, 1347, 1348, 1349, 1350, 1351, 1352, 1354, 1356, 1357,

1358, 1359, 1361, 1363, 1365, 1367, 1372, 1373, 1374, 1375, 1376, 1377,

1378, 1379, 1380, 1381, 1382, 1383, 1384, 1385, 1386, 1387, 1388, 1389,

1390, 1393, 1395, 1397, 1399, 1400, 1401, 1404, 1405, 1408, 1410, 1419,

1420, 1421, 1422, 1424, 1425, 1426, 1428, 1429, 1438, 1440, 1441, 1442,

1443, 1444, 1445, 1449, 1450, 1451, 1456, 1457, 1460, 1461, 1462, 1464,

1465, 1470, 1472, 1473, 1477, 1480, 1481, 1487, 1488, 1489, 1493, 1494,

1495, 1501, 1503, 1506, 1509, 1512, 1515, 1518, 1521, 1524, 1527, 1530,

1532, 1533, 1534, 1537, 1538, 1541, 1542, 1544, 1547, 1550, 1552, 1553,

1554, 1558, 1565, 1566, 1568, 1573, 1644, 1648, 1673, 1674, 1700, 1702,

1705, 1713, 1714, 1735, 1738, 1740, 1741, 1742, 1743, 1744, 1745, 1746,

1747, 1748, 1749, 1750, 1751, 1752, 1753, 1754, 1755, 1756, 1757, 1759,

1761, 1762, 1763, 1765, 1767, 1768, 1769, 1770, 1771, 1772, 1773, 1774,

1775, 1778, 1779, 1782, 1783, 1785, 1787, 1788, 1789, 1791, 1793, 1795,

1797, 1798, 1799, 1800, 1801, 1803, 1806, 1807, 1809, 1810, 1811, 1813,

1815, 1821, 1822, 1823, 1828, 1829, 1833, 1837, 1839, 1842, 1845, 1848,

1850, 1851, 1852, 1854, 1856, 1857, 1858, 1859, 1860, 1861, 1863, 1866,

1870, 1873, 1874, 1877, 1880, 1883, 1885, 1886, 1887, 1889, 1892, 1895,

1915, 1918, 1920, 1923, 1925, 1927, 1928, 1930, 1952, 1953, 1954, 1955,

A HAP tutorial 30

2045, 2047, 2049, 2051, 2053, 2054, 2055, 2056, 2057, 2059, 2067, 2068,

2072, 2075, 2076, 2079, 2084, 2087, 2088, 2092, 2133, 2135, 2136, 2137,

2139, 2140, 2170, 2171, 2196, 2224, 2234, 2236, 2238, 2254, 2355, 2356,

2386, 2387, 2442, 2445, 2448, 2451, 2478, 2484, 2487, 2490, 2493, 2496,

2499, 2502, 2508, 2511, 2514, 2517, 2520, 2523, 2550, 2553, 2559, 2621,

2624, 2648, 2650, 3046, 3047, 3048, 3049, 3050, 3051, 3052, 3053, 3054,

3055, 3056, 3057, 3058, 3059, 3060, 3061, 3062, 3063, 3064, 3065, 3066,

3067, 3068, 3069, 3070, 3071, 3072, 3073, 3074, 3075, 3076, 3077, 3078,

3079, 3080, 3081, 3082, 3083, 3084, 3085, 3086, 3087, 3089, 3090, 3091,

3094, 3095, 3096, 3099, 3100, 3101, 3104, 3105, 3106, 3109, 3110, 3111,

3112, 3113, 3114, 3115, 3117, 3119, 3120, 3121, 3122, 3123, 3124, 3125,

3127, 3128, 3129, 3130, 3131, 3132, 3133, 3135, 3137, 3139, 3141, 3142,

3143, 3144, 3145, 3149, 3151, 3152, 3153, 3154, 3155, 3157, 3159, 3160,

3161, 3162, 3163, 3169, 3170, 3171, 3172, 3173, 3174, 3175, 3177, 3179,

3180, 3181, 3182, 3183, 3184, 3185, 3187, 3188, 3189, 3190, 3191, 3192,

3193, 3195, 3197, 3199, 3200, 3201, 3204, 3206, 3207, 3208, 3209, 3210,

3212, 3214, 3215, 3216, 3217, 3218, 3226, 3234, 3235, 3236, 3244, 3252,

3253, 3254, 3260, 3268, 3269, 3270, 3278, 3280, 3281, 3282, 3283, 3284,

3285, 3286, 3287, 3288, 3289, 3290, 3291, 3292, 3295, 3296, 3298, 3299,

3302, 3303, 3306, 3308, 3309, 3310, 3311, 3312, 3313, 3314, 3315, 3316,

3317, 3318, 3319, 3320, 3322, 3324, 3326, 3327, 3329, 3330, 3338, 3345,

3346, 3347, 3348, 3350, 3351, 3352, 3354, 3355, 3356, 3359, 3360, 3361,

3362, 3374, 3375, 3383, 3385, 3398, 3399, 3417, 3418, 3419, 3420, 3422,

3424, 3426, 3428, 3446, 3447, 3455, 3457, 3469, 3471, 3521, 3523, 3524,

3525, 3530, 3531, 3534, 3539, 3542, 3545, 3548, 3550, 3551, 3554, 3557,

3579, 3580, 3830, 3831, 3832, 3833, 3835, 3837, 3839, 3849, 3851, 3877,

3938, 3939, 3949, 3951, 3952, 3958, 3960, 3962, 3963, 3964, 3966, 3968,

3972, 3973, 3975, 4006, 4029, 4030, 4033, 4034, 4037, 4038, 4046, 4048,

4050, 4062, 4064, 4067, 4078, 4081, 4089, 4090, 4114, 4138, 4139, 4140,

4141, 4146, 4147, 4148, 4149, 4154, 4155, 4169, 4171, 4175, 4180, 4183,

4188, 4190, 4204, 4205, 4223, 4224, 4225, 4254, 4286, 4289, 4391, 4397,

4496, 4499, 4500, 4501, 4502, 4504, 4508, 4510, 4521, 4525, 4544, 4559,

4560, 4561, 4562, 4579, 4580, 4581, 4583, 4587, 4597, 4598, 4599, 4600,

4651, 4759, 4760, 4761, 4762, 4766]

Chapter 2

Cubical complexes & permutahedral
complexes

2.1 Cubical complexes

A finite simplicial complex can be defined to be a CW-subcomplex of the canonical regular
CW-structure on a simplex ∆n of some dimension n. Analogously, a finite cubical complex is
a CW-subcomplex of the regular CW-structure on a cube [0,1]n of some dimension n. Equiv-
alently, but more conveniently, we can replace the unit interval [0,1] by an interval [0,k] with
CW-structure involving 2k + 1 cells, namely one 0-cell for each integer 0 ≤ j ≤ k and one 1-cell
for each open interval (j, j + 1) for 0 ≤ j ≤ k− 1. A finite cuical complex M is a CW-subcompex
M ⊂ [0,k1]× [0,k2]× ·· · [0,kn] of a direct product of intervals, the direct product having the usual
direct product CW-structure. The equivalence of these two definitions follows from the Gray code
embedding of a mesh into a hypercube. We say that the cubical complex has ambient dimension n. A
cubical complex M of ambient dimension n is said to be pure if each cell lies in the boundary of an
n-cell. In other words, M is pure if it is a union of unit n-cubes in Rn, each unit cube having vertices
with integer coordinates.

HAP has a datatype for finite cubical complexes, and a slightly different datatype for pure cubical
complexes.

The following example constructs the granny knot (the sum of a trefoil knot with its reflection) as
a 3-dimensional pure cubical complex, and then displays it.

Example
gap> K:=PureCubicalKnot(3,1);

prime knot 1 with 3 crossings

gap> L:=ReflectedCubicalKnot(K);

Reflected(prime knot 1 with 3 crossings)

gap> M:=KnotSum(K,L);

prime knot 1 with 3 crossings + Reflected(prime knot 1 with 3 crossings)

gap> Display(M);

Next we construct the complement Y = D3 \ M̊ of the interior of the pure cubical complex M.
Here D3 is a rectangular region with M ⊂ D̊3. This pure cubical complex Y is a union of 5891 unit

31

A HAP tutorial 32

3-cubes. We contract Y to get a homotopy equivalent pure cubical complex YY consisting of the union
of just 775 unit 3-cubes. Then we convert YY to a regular CW-complex W involving 11939 cells. We
contract W to obtain a homotopy equivalent regular CW-complex WW involving 5993 cells. Finally
we compute the fundamental group of the complement of the granny knot, and use the presentation of
this group to establish that the Alexander polynomial P(x) of the granny is

P(x) = x4−2x3 +3x2−2x+1 .
Example

gap> Y:=PureComplexComplement(M);

Pure cubical complex of dimension 3.

gap> Size(Y);

5891

gap> YY:=ZigZagContractedComplex(Y);

Pure cubical complex of dimension 3.

gap> Size(YY);

775

gap> W:=RegularCWComplex(YY);

Regular CW-complex of dimension 3

gap> Size(W);

11939

gap> WW:=ContractedComplex(W);

Regular CW-complex of dimension 2

gap> Size(WW);

5993

gap> G:=FundamentalGroup(WW);

<fp group of size infinity on the generators [f1, f2, f3]>

gap> AlexanderPolynomial(G);

x_1^4-2*x_1^3+3*x_1^2-2*x_1+1

2.2 Permutahedral complexes

A finite pure cubical complex is a union of finitely many cubes in a tessellation of Rn by unit cubes.
One can also tessellate Rn by permutahedra, and we define a finite n-dimensional pure permutahedral
complex to be a union of finitely many permutahdra from such a tessellation. There are two features
of pure permutahedral complexes that are particularly useful in some situations:

• Pure permutahedral complexes are topological manifolds with boundary.

• The method used for finding a smaller pure cubical complex M′ homotopy equivalent to a given
pure cubical complex M retains the homeomorphism type, and not just the homotopy type, of
the space M.

A HAP tutorial 33

EXAMPLE 1
To illustrate these features the following example begins by reading in a protein backbone from

the online Protein Database, and storing it as a pure cubical complex K. The ends of the protein have
been joined, and the homology Hi(K,Z) = Z, i = 0,1 is seen to be that of a circle. We can thus regard
the protein as a knot K ⊂ R3. The protein is visualized as a pure permutahedral complex.

Example
gap> file:=HapFile("data1V2X.pdb");;

gap> K:=ReadPDBfileAsPurePermutahedralComplex("file");

Pure permutahedral complex of dimension 3.

gap> Homology(K,0);

[0]

gap> Homology(K,1);

[0]

Display(K);

An alternative method for seeing that the pure permutahedral complex K has the homotopy type
of a circle is to note that it is covered by open permutahedra (small open neighbourhoods of the
closed 3-dimensional permutahedral titles) and to form the nerve N =Nerve(U) of this open covering
U . The nerve N has the same homotopy type as K. The following commands establish that N is a
1-dimensional simplicial complex and display N as a circular graph.

Example
gap> N:=Nerve(K);

Simplicial complex of dimension 1.

gap> Display(GraphOfSimplicialComplex(N));

The boundary of the pure permutahedral complex K is a 2-dimensional CW-complex B home-
omorphic to a torus. We next use the advantageous features of pure permutahedral complexes to
compute the homomorphism

φ :π1(B)→ π1(R3 \ K̊),a 7→ yx−3y2x−2yxy−1,b 7→ yx−1y−1x2y−1

where
π1(B) =< a,b : aba−1b−1 = 1 >,
π1(R3 \ K̊)∼=< x,y : y2x−2yxy−1 = 1,yx−2y−1x(xy−1)2 = 1 >.

Example
gap> Y:=PureComplexComplement(K);

Pure permutahedral complex of dimension 3.

gap> Size(Y);

418922

gap> YY:=ZigZagContractedComplex(Y);

Pure permutahedral complex of dimension 3.

gap> Size(YY);

3438

gap> W:=RegularCWComplex(YY);

Regular CW-complex of dimension 3

https://www.rcsb.org/

A HAP tutorial 34

gap> f:=BoundaryMap(W);

Map of regular CW-complexes

gap> CriticalCells(Source(f));

[[2, 1], [2, 261], [1, 1043], [1, 1626], [0, 2892], [0, 24715]]

gap> F:=FundamentalGroup(f,2892);

[f1, f2] -> [f2*f1^-3*f2^2*f1^-2*f2*f1*f2^-1, f2*f1^-1*f2^-1*f1^2*f2^-1]

gap> G:=Target(F);

<fp group on the generators [f1, f2]>

gap> RelatorsOfFpGroup(G);

[f2^2*f1^-2*f2*f1*f2^-1, f2*f1^-2*f2^-1*f1*(f1*f2^-1)^2]

EXAMPLE 2
The next example of commands begins by readng two synthetic knots from a CSV file (containing

the coordinates of the two sequences of vertices) and producing a pure permutahedral complex model
of the two knots. The linking number of two knots is given by the low-dimension cup product of the
complement of the knots. This linking number is computed to be 6.

Example
gap> file1:=HapFile("data175_1.csv");;

gap> file2:=HapFile("data175_2.csv");;

gap> K:=ReadCSVfileAsPureCubicalKnot([file1, file2]);;

gap> K:=PurePermutahedralComplex(K!.binaryArray);;

gap> K:=ThickenedPureComplex(K);;

gap> K:=ContractedComplex(K);;

gap> #K is a permutahedral complex model of the two input knots

gap> Display(K);

gap> Y:=PureComplexComplement(K);;

gap> W:=ZigZagContractedComplex(Y,2);;

gap> W:=RegularCWComplex(W);;

gap> W:=ContractedComplex(W);;

gap> G:=FundamentalGroup(W);;

gap> cup:=CupProduct(G);;

gap> cup([1,0],[0,1]);

[-6, 0]

2.3 Constructing pure cubical and permutahedral complexes

An n-dimensional pure cubical or permutahedral complex can be created from an n-dimensional array
of 0s and 1s. The following example creates and displays two 3-dimensional complexes.

Example
gap> A:=[[[0,0,0],[0,0,0],[0,0,0]],

> [[1,1,1],[1,0,1],[1,1,1]],

A HAP tutorial 35

> [[0,0,0],[0,0,0],[0,0,0]]];;

gap> M:=PureCubicalComplex(A);

Pure cubical complex of dimension 3.

gap> P:=PurePermutahedralComplex(A);

Pure permutahedral complex of dimension 3.

gap> Display(M);

gap> Display(P);

2.4 Computations in dynamical systems

Pure cubical complexes can be useful for rigourous interval arithmetic calculations in numerical anal-
ysis. They can also be useful for trying to estimate approximations of certain numerical quantities. To
illustrate the latter we consider the Henon map

f :R2→ R2,

(
x
y

)
7→
(

y+1−ax2

bx

)
.

Starting with (x0,y0) = (0,0) and iterating (xn+1,yn+1) = f (xn,yn) with the parameter values a =
1.4, b = 0.3 one obtains a sequence of points which is known to be dense in the so called strange
attractor A of the Henon map. The first 10 million points in this sequence are plotted in the following
example, with arithmetic performed to 100 decimal places of accuracy. The sequence is stored as a
2-dimensional pure cubical complex where each 2-cell is square of side equal to ε = 1/500.

Example
gap> M:=HenonOrbit([0,0],14/10,3/10,10^7,500,100);

Pure cubical complex of dimension 2.

gap> Size(M);

10287

gap> Display(M);

Repeating the computation but with squares of side ε = 1/1000
Example

gap> M:=HenonOrbit([0,0],14/10,3/10,10^7,1000,100);

gap> Size(M);

24949

we obtain the heuristic estimate
δ ' log24949−log10287

log2 = 1.277
for the box-counting dimension of the attractor A .

Chapter 3

Covering spaces

Let Y denote a finite regular CW-complex. Let Ỹ denote its universal covering space. The covering
space inherits a regular CW-structure which can be computed and stored using the datatype of a
π1Y-equivariant CW-complex. The cellular chain complex C∗Ỹ of Ỹ can be computed and stored as
an equivariant chain complex. Given an admissible discrete vector field on Y, we can endow Y with a
smaller non-regular CW-structre whose cells correspond to the critical cells in the vector field. This
smaller CW-structure leads to a more efficient chain complex C∗Ỹ involving one free generator for
each critical cell in the vector field.

3.1 Cellular chains on the universal cover

The following commands construct a 6-dimensional regular CW-complex Y ' S1×S1×S1 homotopy
equivalent to a product of three circles.

Example
gap> A:=[[1,1,1],[1,0,1],[1,1,1]];;

gap> S:=PureCubicalComplex(A);;

gap> T:=DirectProduct(S,S,S);;

gap> Y:=RegularCWComplex(T);;

Regular CW-complex of dimension 6

gap> Size(Y);

110592

The CW-somplex Y has 110592 cells. The next commands construct a free π1Y-equivariant
chain complex C∗Ỹ homotopy equivalent to the chain complex of the universal cover of Y . The chain
complex C∗Ỹ has just 8 free generators.

Example
gap> Y:=ContractedComplex(Y);;

gap> CU:=ChainComplexOfUniversalCover(Y);;

gap> List([0..Dimension(Y)],n->CU!.dimension(n));

[1, 3, 3, 1]

The next commands construct a subgroup H < π1Y of index 50 and the chain complex C∗Ỹ ⊗ZH
Z which is homotopy equivalent to the cellular chain complex C∗ỸH of the 50-fold cover ỸH of Y
corresponding to H.

36

A HAP tutorial 37

Example
gap> L:=LowIndexSubgroupsFpGroup(CU!.group,50);;

gap> H:=L[Length(L)-1];;

gap> Index(CU!.group,H);

50

gap> D:=TensorWithIntegersOverSubgroup(CU,H);

Chain complex of length 3 in characteristic 0 .

gap> List([0..3],D!.dimension);

[50, 150, 150, 50]

General theory implies that the 50-fold covering space ỸH should again be homotopy equivalent
to a product of three circles. In keeping with this, the following commands verify that ỸH has the same
integral homology as S1×S1×S1.

Example
gap> Homology(D,0);

[0]

gap> Homology(D,1);

[0, 0, 0]

gap> Homology(D,2);

[0, 0, 0]

gap> Homology(D,3);

[0]

3.2 Spun knots and the Satoh tube map

We’ll contruct two spaces Y,W with isomorphic fundamental groups and isomorphic intergal homol-
ogy, and use the integral homology of finite covering spaces to establsh that the two spaces have
distinct homotopy types.

By spinning a link K ⊂ R3 about a plane P⊂ R3 with P∩K = /0, we obtain a collection Sp(K)⊂
R4 of knotted tori. The following commands produce the two tori obtained by spinning the Hopf
link K and show that the space Y = R4 \ Sp(K) = Sp(R3 \K) is connected with fundamental group
π1Y = Z×Z and homology groups H0(Y) = Z, H1(Y) = Z2, H2(Y) = Z4, H3(Y,Z) = Z2. The space
Y is only constructed up to homotopy, and for this reason is 3-dimensional.

Example
gap> Hopf:=PureCubicalLink("Hopf");

Pure cubical link.

gap> Y:=SpunAboutInitialHyperplane(PureComplexComplement(Hopf));

Regular CW-complex of dimension 3

gap> Homology(Y,0);

[0]

gap> Homology(Y,1);

[0, 0]

gap> Homology(Y,2);

[0, 0, 0, 0]

gap> Homology(Y,3);

A HAP tutorial 38

[0, 0]

gap> Homology(Y,4);

[]

gap> GY:=FundamentalGroup(Y);;

gap> GeneratorsOfGroup(GY);

[f2, f3]

gap> RelatorsOfFpGroup(GY);

[f3^-1*f2^-1*f3*f2]

An alternative embedding of two tori L ⊂ R4 can be obtained by applying the ’tube map’ of Shin
Satoh to a welded Hopf link [Sat00]. The following commands construct the complement W =R4 \L
of this alternative embedding and show that W has the same fundamental group and integral homology
as Y above.

Example
gap> L:=HopfSatohSurface();

Pure cubical complex of dimension 4.

gap> W:=ContractedComplex(RegularCWComplex(PureComplexComplement(L)));

Regular CW-complex of dimension 3

gap> Homology(W,0);

[0]

gap> Homology(W,1);

[0, 0]

gap> Homology(W,2);

[0, 0, 0, 0]

gap> Homology(W,3);

[0, 0]

gap> Homology(W,4);

[]

gap> GW:=FundamentalGroup(W);;

gap> GeneratorsOfGroup(GW);

[f1, f2]

gap> RelatorsOfFpGroup(GW);

[f1^-1*f2^-1*f1*f2]

Despite having the same fundamental group and integral homology groups, the above two spaces
Y and W were shown by Kauffman and Martins [KFM08] to be not homotopy equivalent. Their
technique involves the fundamental crossed module derived from the first three dimensions of the
universal cover of a space, and counts the representations of this fundamental crossed module into a
given finite crossed module. This homotopy inequivalence is recovered by the following commands
which involves the 5-fold covers of the spaces.

Example
gap> CY:=ChainComplexOfUniversalCover(Y);

Equivariant chain complex of dimension 3

gap> LY:=LowIndexSubgroups(CY!.group,5);;

gap> invY:=List(LY,g->Homology(TensorWithIntegersOverSubgroup(CY,g),2));;

A HAP tutorial 39

gap> CW:=ChainComplexOfUniversalCover(W);

Equivariant chain complex of dimension 3

gap> LW:=LowIndexSubgroups(CW!.group,5);;

gap> invW:=List(LW,g->Homology(TensorWithIntegersOverSubgroup(CW,g),2));;

gap> SSortedList(invY)=SSortedList(invW);

false

3.3 Cohomology with local coefficients

The π1Y-equivariant cellular chain complex C∗Ỹ of the universal cover Ỹ of a regular CW-complex Y
can be used to compute the homology Hn(Y,A) and cohomology Hn(Y,A) of Y with local coefficients
in a Zπ1Y-module A. To illustrate this we consister the space Y arising as the complement of the
trefoil knot, with fundamental group π1Y = 〈x,y : xyx = yxy〉. We take A = Z to be the integers with
non-trivial π1Y-action given by x.1 =−1,y.1 =−1. We then compute

H0(Y,A) = Z2 ,
H1(Y,A) = Z3 ,
H2(Y,A) = Z .

Example
gap> K:=PureCubicalKnot(3,1);;

gap> Y:=PureComplexComplement(K);;

gap> Y:=ContractedComplex(Y);;

gap> Y:=RegularCWComplex(Y);;

gap> Y:=SimplifiedComplex(Y);;

gap> C:=ChainComplexOfUniversalCover(Y);;

gap> G:=C!.group;;

gap> GeneratorsOfGroup(G);

[f1, f2]

gap> RelatorsOfFpGroup(G);

[f2^-1*f1^-1*f2^-1*f1*f2*f1, f1^-1*f2^-1*f1^-1*f2*f1*f2]

gap> hom:=GroupHomomorphismByImages(G,Group([[-1]]),[G.1,G.2],[[[-1]],[[-1]]]);;

gap> A:=function(x); return Determinant(Image(hom,x)); end;;

gap> D:=TensorWithTwistedIntegers(C,A); #Here the function A represents

gap> #the integers with twisted action of G.

Chain complex of length 3 in characteristic 0 .

gap> Homology(D,0);

[2]

gap> Homology(D,1);

[3]

gap> Homology(D,2);

[0]

A HAP tutorial 40

3.4 Distinguishing between two non-homeomorphic homotopy equiva-
lent spaces

The granny knot is the sum of the trefoil knot and its mirror image. The reef knot is the sum of
two identical copies of the trefoil knot. The following commands show that the degree 1 homology
homomorphisms

H1(p−1(B),Z)→ H1(X̃H ,Z)
distinguish between the homeomorphism types of the complements X ⊂ R3 of the granny knot

and the reef knot, where B ⊂ X is the knot boundary, and where p: X̃H → X is the covering map
corresponding to the finite index subgroup H < π1X . More precisely, p−1(B) is in general a union of
path components

p−1(B) = B1∪B2∪·· ·∪Bt .
The function FirstHomologyCoveringCokernels(f,c) inputs an integer c and the inclusion

f :B ↪→ X of a knot boundary B into the knot complement X . The function returns the ordered list of
the lists of abelian invariants of cokernels

coker(H1(p−1(Bi),Z)→ H1(X̃H ,Z))
arising from subgroups H < π1X of index c. To distinguish between the granny and reef knots we

use index c = 6.
Example

gap> K:=PureCubicalKnot(3,1);;

gap> L:=ReflectedCubicalKnot(K);;

gap> granny:=KnotSum(K,L);;

gap> reef:=KnotSum(K,K);;

gap> fg:=KnotComplementWithBoundary(ArcPresentation(granny));;

gap> fr:=KnotComplementWithBoundary(ArcPresentation(reef));;

gap> a:=FirstHomologyCoveringCokernels(fg,6);;

gap> b:=FirstHomologyCoveringCokernels(fr,6);;

gap> a=b;

false

3.5 Second homotopy groups of spaces with finite fundamental group

If p : Ỹ →Y is the universal covering map, then the fundamental group of Ỹ is trivial and the Hurewicz
homomorphism π2Ỹ →H2(Ỹ ,Z) from the second homotopy group of Ỹ to the second integral homol-
ogy of Ỹ is an isomorphism. Furthermore, the map p induces an isomorphism π2Ỹ → π2Y . Thus
H2(Ỹ ,Z) is isomorphic to the second homotopy group π2Y .

If the fundamental group of Y happens to be finite, then in principle we can calculate H2(Ỹ ,Z)∼=
π2Y . We illustrate this computation for Y equal to the real projective plane. The above computation
shows that Y has second homotopy group π2Y ∼= Z.

Example
gap> K:=[[1,2,3], [1,3,4], [1,2,6], [1,5,6], [1,4,5],

> [2,3,5], [2,4,5], [2,4,6], [3,4,6], [3,5,6]];;

gap> K:=MaximalSimplicesToSimplicialComplex(K);

Simplicial complex of dimension 2.

gap> Y:=RegularCWComplex(K);

A HAP tutorial 41

Regular CW-complex of dimension 2

gap> # Y is a regular CW-complex corresponding to the projective plane.

gap> U:=UniversalCover(Y);

Equivariant CW-complex of dimension 2

gap> G:=U!.group;;

gap> # G is the fundamental group of Y, which by the next command

gap> # is finite of order 2.

gap> Order(G);

2

gap> U:=EquivariantCWComplexToRegularCWComplex(U,Group(One(G)));

Regular CW-complex of dimension 2

gap> #U is the universal cover of Y

gap> Homology(U,0);

[0]

gap> Homology(U,1);

[]

gap> Homology(U,2);

[0]

3.6 Third homotopy groups of simply connected spaces

3.6.1 First example: Whitehead’s certain exact sequence

For any path connected space Y with universal cover Ỹ there is an exact sequence
→ π4Ỹ → H4(Ỹ ,Z)→ H4(K(π2Ỹ ,2),Z)→ π3Ỹ → H3(Ỹ ,Z)→ 0
due to J.H.C.Whitehead. Here K(π2(Ỹ),2) is an Eilenberg-MacLane space with second homotopy

group equal to π2Ỹ .
Continuing with the above example where Y is the real projective plane, we see that H4(Ỹ ,Z) =

H3(Ỹ ,Z) = 0 since Ỹ is a 2-dimensional CW-space. The exact sequence implies π3Ỹ ∼=
H4(K(π2Ỹ ,2),Z). Furthermore, π3Ỹ = π3Y . The following commands establish that π3Y ∼= Z .

Example
gap> A:=AbelianPcpGroup([0]);

Pcp-group with orders [0]

gap> K:=EilenbergMacLaneSimplicialGroup(A,2,5);;

gap> C:=ChainComplexOfSimplicialGroup(K);

Chain complex of length 5 in characteristic 0 .

gap> Homology(C,4);

[0]

A HAP tutorial 42

3.6.2 Second example: the Hopf invariant

The following commands construct a 4-dimensional simplicial complex Y with 9 vertices and 36
4-dimensional simplices, and establish that

π1Y = 0,π2Y = Z,H3(Y,Z) = 0,H4(Y,Z) = Z.
Example

gap> smp:=[[1, 2, 4, 5, 6], [1, 2, 4, 5, 9], [1, 2, 5, 6, 8],

> [1, 2, 6, 4, 7], [2, 3, 4, 5, 8], [2, 3, 5, 6, 4],

> [2, 3, 5, 6, 7], [2, 3, 6, 4, 9], [3, 1, 4, 5, 7],

> [3, 1, 5, 6, 9], [3, 1, 6, 4, 5], [3, 1, 6, 4, 8],

> [4, 5, 7, 8, 3], [4, 5, 7, 8, 9], [4, 5, 8, 9, 2],

> [4, 5, 9, 7, 1], [5, 6, 7, 8, 2], [5, 6, 8, 9, 1],

> [5, 6, 8, 9, 7], [5, 6, 9, 7, 3], [6, 4, 7, 8, 1],

> [6, 4, 8, 9, 3], [6, 4, 9, 7, 2], [6, 4, 9, 7, 8],

> [7, 8, 1, 2, 3], [7, 8, 1, 2, 6], [7, 8, 2, 3, 5],

> [7, 8, 3, 1, 4], [8, 9, 1, 2, 5], [8, 9, 2, 3, 1],

> [8, 9, 2, 3, 4], [8, 9, 3, 1, 6], [9, 7, 1, 2, 4],

> [9, 7, 2, 3, 6], [9, 7, 3, 1, 2], [9, 7, 3, 1, 5]];;

gap> K:=MaximalSimplicesToSimplicialComplex(smp);

Simplicial complex of dimension 4.

gap> Y:=RegularCWComplex(Y);

Regular CW-complex of dimension 4

gap> Order(FundamentalGroup(Y));

1

gap> Homology(Y,2);

[0]

gap> Homology(Y,3);

[]

gap> Homology(Y,4);

[0]

Previous commands have established H4(K(Z,2),Z) =Z. So Whitehead’s sequence reduces to an
exact sequence

Z→ Z→ π3Y → 0
in which the first map is H4(Y,Z) = Z→ H4(K(π2Y,2),Z) = Z. Hence π3Y is cyclic.
HAP is currently unable to compute the order of π3Y directly from Whitehead’s sequence. Instead,

we can use the Hopf invariant. For any map φ :S3→ S2 we consider the space C(φ)= S2∪φ e4 obtained
by attaching a 4-cell e4 to S2 via the attaching map φ . The cohomology groups H2(C(φ),Z) = Z,
H4(C(φ),Z) = Z are generated by elements α,β say, and the cup product has the form
−∪−:H2(C(φ),Z)×H2(C(φ),Z)→ H4(C(φ),Z),(α,α) 7→ hφ β

for some integer hφ . The integer hφ is the HOPF INVARIANT. The function h:π3(S3)→ Z is a
homomorphism and there is an isomorphism

π3(S2∪ e4)∼= Z/〈hφ 〉.
The following commands begin by simplifying the cell structure on the above CW-complex Y ∼=K

to obtain a homeomorphic CW-complex W with fewer cells. They then create a space S by removing
one 4-cell from W . The space S is seen to be homotopy equivalent to a CW-complex e2∪ e0 with a

A HAP tutorial 43

single 0-cell and single 2-cell. Hence S ' S2 is homotopy equivalent to the 2-sphere. Consequently
Y 'C(φ) = S2∪φ e4 for some map φ :S3→ S2.

Example
gap> W:=SimplifiedComplex(Y);

Regular CW-complex of dimension 4

gap> S:=RegularCWComplexWithRemovedCell(W,4,6);

Regular CW-complex of dimension 4

gap> CriticalCells(S);

[[2, 6], [0, 5]]

The next commands show that the map φ in the construction Y ' C(φ) has Hopf invariant -1.
Hence h:π3(S3)→ Z is an isomorphism. Therefore π3Y = 0.

Example
gap> IntersectionForm(K);

[[-1]]

[The simplicial complex K in this second example is due to W. Kuehnel and T. F. Banchoff and is
homeomorphic to the complex projective plane.]

3.7 Computing the second homotopy group of a space with infinite fun-
damental group

The following commands compute the second integral homology
H2(π1W,Z) = Z
of the fundamental group π1W of the complement W of the Hopf-Satoh surface.

Example
gap> L:=HopfSatohSurface();

Pure cubical complex of dimension 4.

gap> W:=ContractedComplex(RegularCWComplex(PureComplexComplement(L)));

Regular CW-complex of dimension 3

gap> GW:=FundamentalGroup(W);;

gap> IsAspherical(GW);

Presentation is aspherical.

true

gap> R:=ResolutionAsphericalPresentation(GW);;

gap> Homology(TensorWithIntegers(R),2);

[0]

From Hopf’s exact sequence
π2W h−→ H2(W,Z)� H2(π1W,Z)→ 0
and the computation H2(W,Z) = Z4 we see that the image of the Hurewicz homomorphism is

im(h) = Z3 . The image of h is referred to as the subgroup of spherical homology classes and often
denoted by Σ2W .

A HAP tutorial 44

The following command computes the presentation of π1W corresponding to the 2-skeleton W 2

and establishes that W 2 = S2∨S2∨S2∨ (S1×S1) is a wedge of three spheres and a torus.
Example

gap> F:=FundamentalGroupOfRegularCWComplex(W,"no simplification");

< fp group on the generators [f1, f2]>

gap> RelatorsOfFpGroup(F);

[< identity ...>, f1^-1*f2^-1*f1*f2, < identity ...>, <identity ...>]

The next command shows that the 3-dimensional space W has two 3-cells each of which is
attached to the base-point of W with trivial boundary (up to homotopy in W 2). Hence W =
S3∨S3∨S2∨S2∨S2∨ (S1×S1).

Example
gap> CriticalCells(W);

[[3, 1], [3, 3148], [2, 6746], [2, 20510], [2, 33060],

[2, 50919], [1, 29368], [1, 50822], [0, 21131]]

gap> CriticalBoundaryCells(W,3,1);

[]

gap> CriticalBoundaryCells(W,3,3148);

[-50919, 50919]

Therefore π1W is the free abelian group on two generators, and π2W is the free Zπ1W-module on
three free generators.

Chapter 4

Three Manifolds

4.1 Dehn Surgery

The following example constructs, as a regular CW-complex, a closed orientable 3-manifold W ob-
tained from the 3-sphere by drilling out a tubular neighbourhood of a trefoil knot and then gluing
a solid torus to the boundary of the cavity via a homeomorphism corresponding to a Dehn surgery
coefficient p/q = 17/16.

Example
gap> ap:=ArcPresentation(PureCubicalKnot(3,1));;

gap> p:=17;;q:=16;;

gap> W:=ThreeManifoldViaDehnSurgery(ap,p,q);

Regular CW-complex of dimension 3

The next commands show that this 3-manifold W has integral homology
H0(W,Z) = Z, H1(W,Z) = Z16, H2(W,Z) = 0, H3(W,Z) = Z
and that the fundamental group π1(W) is non-abelian.

Example
gap> Homology(W,0);Homology(W,1);Homology(W,2);Homology(W,3);

[0]

[16]

[]

[0]

gap> F:=FundamentalGroup(W);;

gap> L:=LowIndexSubgroupsFpGroup(F,10);;

gap> List(L,AbelianInvariants);

[[16], [3, 8], [3, 4], [2, 3], [16, 43], [8, 43, 43]]

The following famous result of Lickorish and (independently) Wallace shows that Dehn surgery
on knots leads to an interesting range of spaces.

THEOREM: Every closed, orientable, connected 3-manifold can be obtained by surgery on a
link in S3. (Moreover, one can always perform the surgery with surgery coefficients ±1 and with each
individual component of the link unknotted.)

45

A HAP tutorial 46

4.2 Connected Sums

The following example constructs the connected sum W = A#B of two 3-manifolds, where A is ob-
tained from a 5/1 Dehn surgery on the complement of the first prime knot on 11 crossings and B is
obtained by a 5/1 Dehn surgery on the complement of the second prime knot on 11 crossings. The
homology groups

H1(W,Z) = Z2⊕Z594, H2(W,Z) = 0, H3(W,Z) = Z
are computed.

Example
gap> ap1:=ArcPresentation(PureCubicalKnot(11,1));;

gap> A:=ThreeManifoldViaDehnSurgery(ap1,5,1);;

gap> ap2:=ArcPresentation(PureCubicalKnot(11,2));;

gap> B:=ThreeManifoldViaDehnSurgery(ap2,5,1);;

gap> W:=ConnectedSum(A,B); #W:=ConnectedSum(A,B,-1) would yield A#-B where -B has the opposite orientation

Regular CW-complex of dimension 3

gap> Homology(W,1);

[2, 594]

gap> Homology(W,2);

[]

gap> Homology(W,3);

[0]

4.3 Dijkgraaf-Witten Invariant

Given a closed connected orientable 3-manifold W , a finite group G and a 3-cocycle α ∈
H3(BG,U(1)) Dijkgraaf and Witten define the complex number

$$ Z^{G,\alpha}(W) = \frac{1}{|G|}\sum_{\gamma\in {\rm Hom}(\pi_1W, G)} \langle
\gamma^\ast[\alpha], [M]\rangle \ \in\ \mathbb C\ $$ where γ ranges over all group homomor-
phisms γ:π1W → G. This complex number is an invariant of the homotopy type of W and is useful
for distinguishing between certain homotopically distinct 3-manifolds.

A homology version of the Dijkgraaf-Witten invariant can be defined as the set of homol-
ogy homomorphisms $$D_G(W) =\{ \gamma_\ast\colon H_3(W,\mathbb Z) \longrightarrow
H_3(BG,\mathbb Z) \}_{\gamma\in {\rm Hom}(\pi_1W, G)}.$$ Since H3(W,Z)∼=Z we represent
DG(W) by the set DG(W) = {γ∗(1)}γ∈Hom(π1W,G) where 1 denotes one of the two possible generators
of H3(W,Z).

For any coprime integers p,q≥ 1 the lens space L(p,q) is obtained from the 3-sphere by drilling
out a tubular neighbourhood of the trivial knot and then gluing a solid torus to the boundary of the
cavity via a homeomorphism corresponding to a Dehn surgery coefficient p/q. Lens spaces have
cyclic fundamental group π1(L(p,q)) = Cp and homology H1(L(p,q),Z) ∼= Zp, H2(L(p,q),Z) ∼= 0,
H3(L(p,q),Z)∼= Z. It was proved by J.H.C. Whitehead that two lens spaces L(p,q) and L(p′,q′) are
homotopy equivalent if and only if p = p′ and qq′ ≡±n2 mod p for some integer n.

The following session constructs the two lens spaces L(5,1) and L(5,2). The homology version
of the Dijkgraaf-Witten invariant is used with G =C5 to demonstrate that the two lens spaces are not
homotopy equivalent.

Example
gap> ap:=[[2,1],[2,1]];; #Arc presentation for the trivial knot

A HAP tutorial 47

gap> L51:=ThreeManifoldViaDehnSurgery(ap,5,1);;

gap> D:=DijkgraafWittenInvariant(L51,CyclicGroup(5));

[g1^4, g1^4, g1, g1, id]

gap> L52:=ThreeManifoldViaDehnSurgery(ap,5,2);;

gap> D:=DijkgraafWittenInvariant(L52,CyclicGroup(5));

[g1^3, g1^3, g1^2, g1^2, id]

A theorem of Fermat and Euler states that if a prime p is congruent to 3 modulo 4, then for any q
exactly one of ±q is a quadratic residue mod p. For all other primes p either both or neither of ±q is a
quadratic residue mod p. Thus for fixed p≡ 3 mod 4 the lens spaces L(p,q) form a single homotopy
class. There are precisely two homotopy classes of lens spaces for other p.

The following commands confirm that L(13,1) 6' L(13,2).
Example

gap> L13_1:=ThreeManifoldViaDehnSurgery([[1,2],[1,2]],13,1);;

gap> DijkgraafWittenInvariant(L13_1,CyclicGroup(13));

[g1^12, g1^12, g1^10, g1^10, g1^9, g1^9, g1^4, g1^4, g1^3, g1^3, g1, g1, id]

gap> L13_2:=ThreeManifoldViaDehnSurgery([[1,2],[1,2]],13,2);;

gap> DijkgraafWittenInvariant(L13_2,CyclicGroup(13));

[g1^11, g1^11, g1^8, g1^8, g1^7, g1^7, g1^6, g1^6, g1^5, g1^5, g1^2, g1^2,

id]

4.4 Cohomology rings

The following commands construct the multiplication table (with respect to some basis) for the co-
homology rings H∗(L(13,1),Z13) and H∗(L(13,2),Z13). These rings are isomorphic and so fail to
distinguish between the homotopy types of the lens spaces L(13,1) and L(13,2).

Example
gap> L13_1:=ThreeManifoldViaDehnSurgery([[1,2],[1,2]],13,1);;

gap> L13_2:=ThreeManifoldViaDehnSurgery([[1,2],[1,2]],13,2);;

gap> L13_1:=BarycentricSubdivision(L13_1);;

gap> L13_2:=BarycentricSubdivision(L13_2);;

gap> A13_1:=CohomologyRing(L13_1,13);;

gap> A13_2:=CohomologyRing(L13_2,13);;

gap> M13_1:=List([1..4],i->[]);;

gap> B13_1:=CanonicalBasis(A13_1);;

gap> M13_2:=List([1..4],i->[]);;

gap> B13_2:=CanonicalBasis(A13_2);;

gap> for i in [1..4] do

> for j in [1..4] do

> M13_1[i][j]:=B13_1[i]*B13_1[j];

> od;od;

gap> for i in [1..4] do

> for j in [1..4] do

> M13_2[i][j]:=B13_2[i]*B13_2[j];

> od;od;

gap> Display(M13_1);

[[v.1, v.2, v.3, v.4],

A HAP tutorial 48

[v.2, 0*v.1, (Z(13)^6)*v.4, 0*v.1],

[v.3, (Z(13)^6)*v.4, 0*v.1, 0*v.1],

[v.4, 0*v.1, 0*v.1, 0*v.1]]

gap> Display(M13_2);

[[v.1, v.2, v.3, v.4],

[v.2, 0*v.1, (Z(13))*v.4, 0*v.1],

[v.3, (Z(13))*v.4, 0*v.1, 0*v.1],

[v.4, 0*v.1, 0*v.1, 0*v.1]]

4.5 Linking Form

Given a closed connected ORIENTED 3-manifold W let τH1(W,Z) denote the torsion subgroup of the
first integral homology. The linking form is a bilinear mapping

LkW :τH1(W,Z)× τH1(W,Z)−→Q/Z.
To construct this form note that we have a Poincare duality isomorphism
ρ:H2(W,Z)

∼=−→ H1(W,Z),z 7→ z∩ [W]
involving the cap product with the fundamental class [W]∈H3(W,Z). That is, [M] is the generator

of H3(W,Z)∼= Z determining the orientation. The short exact sequence Z�Q�Q/Z gives rise to
a cohomology exact sequence

→ H1(W,Q)→ H1(W,Q/Z) β−→ H2(W,Z)→ H2(W,Q)→
from which we obtain the isomorphism β :τH1(W,Q/Z)

∼=−→ τH2(W,Z). The linking form LkW

can be defined as the composite

LkW :τH1(W,Z)×τH1(W,Z) 1×ρ−1

−→ τH1(W,Z)×τH2(W,Z) 1×β−1

−→ τH1(W,Z)×τH1(W,Q/Z) ev−→
Q/Z

where ev(x,α) evaluates a 1-cocycle α on a 1-cycle x.
The linking form can be used to define the set
IO(W) = {LkW (g,g) : g ∈ τH1(W,Z)}
which is an oriented-homotopy invariant of W . Letting W+ and W− denote the two possible

orientations on the manifold, the set
I(W) = {IO(W+), IO(W−)}
is a homotopy invariant of W which in this manual we refer to as the linking form homotopy

invariant.
The following commands compute the linking form homotopy invariant for the lens spaces

L(13,q) with 1≤ q≤ 12. This invariant distinguishes between the two homotopy types that arise.
Example

gap> LensSpaces:=[];;

gap> for q in [1..12] do

> Add(LensSpaces,ThreeManifoldViaDehnSurgery([[1,2],[1,2]],13,q));

> od;

gap> Display(List(LensSpaces,LinkingFormHomotopyInvariant));;

[[[0, 1/13, 1/13, 3/13, 3/13, 4/13, 4/13, 9/13, 9/13, 10/13, 10/13, 12/13, 12/13],

[0, 1/13, 1/13, 3/13, 3/13, 4/13, 4/13, 9/13, 9/13, 10/13, 10/13, 12/13, 12/13]],

[[0, 2/13, 2/13, 5/13, 5/13, 6/13, 6/13, 7/13, 7/13, 8/13, 8/13, 11/13, 11/13], [0, 2/13,

2/13, 5/13, 5/13, 6/13, 6/13, 7/13, 7/13, 8/13, 8/13, 11/13, 11/13]],

A HAP tutorial 49

[[0, 1/13, 1/13, 3/13, 3/13, 4/13, 4/13, 9/13, 9/13, 10/13, 10/13, 12/13, 12/13],

[0, 1/13, 1/13, 3/13, 3/13, 4/13, 4/13, 9/13, 9/13, 10/13, 10/13, 12/13, 12/13]],

[[0, 1/13, 1/13, 3/13, 3/13, 4/13, 4/13, 9/13, 9/13, 10/13, 10/13, 12/13, 12/13],

[0, 1/13, 1/13, 3/13, 3/13, 4/13, 4/13, 9/13, 9/13, 10/13, 10/13, 12/13, 12/13]],

[[0, 2/13, 2/13, 5/13, 5/13, 6/13, 6/13, 7/13, 7/13, 8/13, 8/13, 11/13, 11/13],

[0, 2/13, 2/13, 5/13, 5/13, 6/13, 6/13, 7/13, 7/13, 8/13, 8/13, 11/13, 11/13]],

[[0, 2/13, 2/13, 5/13, 5/13, 6/13, 6/13, 7/13, 7/13, 8/13, 8/13, 11/13, 11/13],

[0, 2/13, 2/13, 5/13, 5/13, 6/13, 6/13, 7/13, 7/13, 8/13, 8/13, 11/13, 11/13]],

[[0, 2/13, 2/13, 5/13, 5/13, 6/13, 6/13, 7/13, 7/13, 8/13, 8/13, 11/13, 11/13],

[0, 2/13, 2/13, 5/13, 5/13, 6/13, 6/13, 7/13, 7/13, 8/13, 8/13, 11/13, 11/13]],

[[0, 2/13, 2/13, 5/13, 5/13, 6/13, 6/13, 7/13, 7/13, 8/13, 8/13, 11/13, 11/13],

[0, 2/13, 2/13, 5/13, 5/13, 6/13, 6/13, 7/13, 7/13, 8/13, 8/13, 11/13, 11/13]],

[[0, 1/13, 1/13, 3/13, 3/13, 4/13, 4/13, 9/13, 9/13, 10/13, 10/13, 12/13, 12/13],

[0, 1/13, 1/13, 3/13, 3/13, 4/13, 4/13, 9/13, 9/13, 10/13, 10/13, 12/13, 12/13]],

[[0, 1/13, 1/13, 3/13, 3/13, 4/13, 4/13, 9/13, 9/13, 10/13, 10/13, 12/13, 12/13],

[0, 1/13, 1/13, 3/13, 3/13, 4/13, 4/13, 9/13, 9/13, 10/13, 10/13, 12/13, 12/13]],

[[0, 2/13, 2/13, 5/13, 5/13, 6/13, 6/13, 7/13, 7/13, 8/13, 8/13, 11/13, 11/13],

[0, 2/13, 2/13, 5/13, 5/13, 6/13, 6/13, 7/13, 7/13, 8/13, 8/13, 11/13, 11/13]],

[[0, 1/13, 1/13, 3/13, 3/13, 4/13, 4/13, 9/13, 9/13, 10/13, 10/13, 12/13, 12/13],

[0, 1/13, 1/13, 3/13, 3/13, 4/13, 4/13, 9/13, 9/13, 10/13, 10/13, 12/13, 12/13]]]

4.6 Determining the homeomorphism type of a lens space

In 1935 K. Reidemeister [Rei35] classified lens spaces up to orientation preserving
PL-homeomorphism. This was generalized by E. Moise [Moi52] in 1952 to a classification up
to homeomorphism -- his method requred the proof of the Hauptvermutung for 3-dimensional
manifolds. In 1960, following a suggestion of R. Fox, a proof was given by E.J. Brody [Bro60]
that avoided the need for the Hauptvermutung. Reidemeister’s method, using what is know termed
Reidermeister torsion, and Brody’s method, using tubular neighbourhoods of 1-cycles, both require
identifying a suitable "preferred" generator of H1(L(p,q),Z). In 2003 J. Przytycki and A. Yasukhara
[PY03] provided an alternative method for classifying lens spaces, which uses the linking form and
again requires the identification of a "preferred" generator of H1(L(p,q),Z).

Przytycki and Yasukhara proved the following.
THEOREM. Let ρ:S3→ L(p,q) be the p-fold cyclic cover and K a knot in L(p,q) that represents

a generator of H1(L(p,q),Z). If ρ−1(K) is the trivial knot, then LkL(p,q)([K], [K]) = q/p or = q/p ∈
Q/Z where qq≡ 1 mod p.

The ingredients of this theorem can be applied in HAP, but at present only to small examples
of lens spaces. The obstruction to handling large examples is that the current default method for

A HAP tutorial 50

computing the linking form involves barycentric subdivision to produce a simplicial complex from a
regular CW-complex, and then a homotopy equivalence from this typically large simplicial complex to
a smaller non-regular CW-complex. However, for homeomorphism invariants that are not homotopy
invariants there is a need to avoid homotopy equivalences. In the current version of HAP this means
that in order to obtain delicate homeomorphism invariants we have to perform homology computations
on typically large simplicial complexes. In a future version of HAP we hope to avoid the obstruction
by implementing cup products, cap products and linking forms entirely within the category of regular
CW-complexes.

The following commands construct a small lens space L = L(p,q) with unknown values of p,q.
Subsequent commands will determine the homeomorphism type of L.

Example
gap> p:=Random([2,3,5,7,11,13,17]);;

gap> q:=Random([1..p-1]);;

gap> L:=ThreeManifoldViaDehnSurgery([[1,2],[1,2]],p,q);

Regular CW-complex of dimension 3

We can readily determine the value of p = 11 by calculating the order of π1(L).
Example

gap> F:=FundamentalGroupWithPathReps(L);;

gap> StructureDescription(F);

"C11"

The next commands take the default edge path γ:S1 → L representing a generator of the cyclic
group π1(L) and lift it to an edge path γ̃:S1→ L̃.

Example
gap> U:=UniversalCover(L);;

gap> G:=U!.group;;

gap> p:=EquivariantCWComplexToRegularCWMap(U,Group(One(G)));;

gap> U:=Source(p);;

gap> gamma:=[];;

gap> gamma[2]:=F!.loops[1];;

gap> gamma[2]:=List(gamma[2],AbsInt);;

gap> gamma[1]:=List(gamma[2],k->L!.boundaries[2][k]);;

gap> gamma[1]:=SSortedList(Flat(gamma[1]));;

gap>

gap> gammatilde:=[[],[],[],[]];;

gap> for k in [1..U!.nrCells(0)] do

> if p!.mapping(0,k) in gamma[1] then Add(gammatilde[1],k); fi;

> od;

gap> for k in [1..U!.nrCells(1)] do

> if p!.mapping(1,k) in gamma[2] then Add(gammatilde[2],k); fi;

> od;

gap> gammatilde:=CWSubcomplexToRegularCWMap([U,gammatilde]);

Map of regular CW-complexes

The next commands check that the path γ̃ is unknotted in L̃∼= S3 by checking that π1(L̃\ image(γ̃))
is infinite cyclic.

A HAP tutorial 51

Example
gap> C:=RegularCWComplexComplement(gammatilde);

Regular CW-complex of dimension 3

gap> G:=FundamentalGroup(C);

<fp group of size infinity on the generators [f2]>

Since γ̃ is unkotted the cycle γ represents the preferred generator [γ] ∈ H1(L,Z). The next com-
mands compute LkL([γ], [γ]) = 7/11.

Example
gap> LinkingFormHomeomorphismInvariant(L);

[7/11]

The classification of Moise/Brody states that L(p,q) ∼= L(p,q′) if and only if qq′ ≡ ±1 mod p.
Hence the lens space L has the homeomorphism type

L∼= L(11,7)∼= L(11,8)∼= L(11,4)∼= L(11,3).

4.7 Surgeries on distinct knots can yield homeomorphic manifolds

The lens space L(5,1) is a quotient of the 3-sphere S3 by a certain action of the cyclic group C5. It
can be realized by a p/q = 5/1 Dehn filling of the complement of the trivial knot. It can also be
realized by Dehn fillings of other knots. To see this, the following commands compute the manifold
W obtained from a p/q = 1/5 Dehn filling of the complement of the trefoil and show that W at least
has the same integral homology and same fundamental group as L(5,1).

Example
gap> ap:=ArcPresentation(PureCubicalKnot(3,1));;

gap> W:=ThreeManifoldViaDehnSurgery(ap,1,5);;

gap> Homology(W,1);

[5]

gap> Homology(W,2);

[]

gap> Homology(W,3);

[0]

gap> F:=FundamentalGroup(W);;

gap> StructureDescription(F);

"C5"

The next commands construct the universal cover W̃ and show that it has the same homology as
S3 and trivivial fundamental group π1(W̃) = 0.

Example
gap> U:=UniversalCover(W);;

gap> G:=U!.group;;

gap> Wtilde:=EquivariantCWComplexToRegularCWComplex(U,Group(One(G)));

Regular CW-complex of dimension 3

A HAP tutorial 52

gap> Homology(Wtilde,1);

[]

gap> Homology(Wtilde,2);

[]

gap> Homology(Wtilde,3);

[0]

gap> F:=FundamentalGroup(Wtilde);

<fp group on the generators []>

By construction the space W̃ is a manifold. Had we not known how the regular CW-complex W̃
had been constructed then we could prove that it is a closed 3-manifold by creating its barycentric
subdivision K = sdW̃ , which is homeomorphic to W̃ , and verifying that the link of each vertex in the
simplicial complex sdW̃ is a 2-sphere. The following command carries out this proof.

Example
gap> IsClosedManifold(Wtilde);

true

The Poincare conjecture (now proven) implies that W̃ is homeomorphic to S3. Hence W = S3/C5 is a
quotient of the 3-sphere by an action of C5 and is hence a lens space L(5,q) for some q.

The next commands determine that W is homeomorphic to L(5,4)∼= L(5,1).
Example

gap> Lk:=LinkingFormHomeomorphismInvariant(W);

[0, 4/5]

Moser [Mos71] gives a precise decription of the lens spaces arising from surgery on the trefoil
knot and more generally from surgery on torus knots. Greene [Gre13] determines the lens spaces that
arise by integer Dehn surgery along a knot in the three-sphere

4.8 Finite fundamental groups of 3-manifolds

Lens spaces are examples of 3-manifolds with finite fundamental groups. The complete list of finite
groups G arising as fundamental groups of closed connected 3-manifolds is recalled in 7.12 where
one method for computing their cohomology rings is presented. Their cohomology could also be
computed from explicit 3-manifolds W with π1W = G. For instance, the following commands realize
a closed connected 3-manifold W with π1W =C11×SL2(Z5).

Example
gap> ap:=ArcPresentation(PureCubicalKnot(3,1));;

gap> W:=ThreeManifoldViaDehnSurgery(ap,1,11);;

gap> F:=FundamentalGroup(W);;

gap> Order(F);

1320

gap> AbelianInvariants(F);

[11]

gap> StructureDescription(F);

A HAP tutorial 53

"C11 x SL(2,5)"

Hence the group G =C11×SL2(Z5) of order 1320 acts freely on the 3-sphere W̃ . It thus has periodic
cohomology with

Hn(G,Z) =


Z11 n≡ 1 mod 4
0 n≡ 2 mod 4
Z1320 n≡ 3 mod 4
0 n≡ 0 mod 4

for n > 0.

4.9 Poincare’s cube manifolds

In his seminal paper on "Analysis situs", published in 1895, Poincare constructed a series of closed
3-manifolds which played an important role in the development of his theory. A good account of these
manifolds is given in the online Manifold Atlas Project (MAP). Most of his examples are constructed
by identifications on the faces of a (solid) cube. The function PoincareCubeCWComplex() can be
used to construct any 3-dimensional CW-complex arising from a cube by identifying the six faces
pairwise; the vertices and faces of the cube are numbered as follows

and barycentric subdivision is used to ensure that the quotient is represented as a regular
CW-complex.

Examples 3 and 4 from Poincare’s paper, described in the following figures taken from MAP,
are constructed in the following example. Both are checked to be orientable manifolds, and are

shown to have different homology. (Note that the second example in Poincare’s paper is not a manifold
-- the links of some of its vertices are not homeomorphic to a 2-sphere.)

Example
gap> A:=1;;C:=2;;D:=3;;B:=4;;

gap> Ap:=5;;Cp:=6;;Dp:=7;;Bp:=8;;

gap> L:=[[A,B,D,C],[Bp,Dp,Cp,Ap]];;

gap> M:=[[A,B,Bp,Ap],[Cp,C,D,Dp]];;

gap> N:=[[A,C,Cp,Ap],[D,Dp,Bp,B]];;

gap> Ex3:=PoincareCubeCWComplex(L,M,N);

Regular CW-complex of dimension 3

gap> IsClosedManifold(Ex3);

true

gap> L:=[[A,B,D,C],[Bp,Dp,Cp,Ap]];;

gap> M:=[[A,B,Bp,Ap],[C,D,Dp,Cp]];;

gap> N:=[[A,C,Cp,Ap],[B,D,Dp,Bp]];;

gap> Ex4:=PoincareCubeCWComplex(L,M,N);

Regular CW-complex of dimension 3

gap> IsClosedManifold(Ex4);

true

gap> List([0..3],k->Homology(Ex3,k));

http://www.map.mpim-bonn.mpg.de/Poincar%C3%A9%27s_cube_manifolds
http://www.map.mpim-bonn.mpg.de/Poincar%C3%A9%27s_cube_manifolds

A HAP tutorial 54

[[0], [2, 2], [], [0]]

gap> List([0..3],k->Homology(Ex4,k));

[[0], [2, 0], [0], [0]]

4.10 There are at least 25 distinct cube manifolds

The function PoincareCubeCWComplex(A,G) can also be applied to two inputs where A is a pairing
of the six faces such as A = [[1,2], [3,4], [5,6]] and G is a list of three elements of the dihedral group
of order 8 such as G = [(2,4),(2,4),(2,4) ∗ (1,3)]. The dihedral elements specify how each pair of
faces are glued together. With these inputs it is easy to iterate over all possible values of A and G in
order to construct all possible closed 3-manifolds arising from the pairwise identification of faces of
a cube. We call such a manifold a CUBE MANIFOLD. Distinct values of A and G can of course yield
homeomorphic spaces. To ensure that each possible cube manifold is constructed, at least once, up to
homeomorphism it suffices to consider

A = [[1,2], [3,4], [5,6]], A = [[1,2], [3,5], [4,6]], A = [[1,4], [2,6], [3,5]]
and all G in D8×D8×D8.
The following commands iterate through these 3× 83 = 1536 pairs (A,G) and show that in pre-

cisely 163 cases (just over 10% of cases) the quotient CW-complex is a closed 3-manifold.
Example

gap> A1:= [[1,2], [3,4], [5,6]];;

gap> A2:=[[1,2], [3,5], [4,6]];;

gap> A3:=[[1,4], [2,6], [3,5]];;

gap> D8:=DihedralGroup(IsPermGroup,8);;

gap> Manifolds:=[];;

gap> for A in [A1,A2,A3] do

> for x in D8 do

> for y in D8 do

> for z in D8 do

> G:=[x,y,z];

> F:=PoincareCubeCWComplex(A,G);

> b:=IsClosedManifold(F);

> if b=true then Add(Manifolds,F); fi;

> od;od;od;od;

gap> Size(Manifolds);

163

The following additional commands use integral homology and low index subgroups of fundamental
groups to establish that the 163 cube manifolds represent at least 25 distinct homotopy equivalence
classes of manifolds. One homotopy class is represented by up to 40 of the manifolds, and at least
four of the homotopy classes are each represented by a single manifold..

Example
gap> invariant1:=function(m);

> return List([1..3],k->Homology(m,k));

> end;;

A HAP tutorial 55

gap> C:=Classify(Manifolds,invariant1);;

gap> invariant2:=function(m)

> local L;

> L:=FundamentalGroup(m);

> if GeneratorsOfGroup(L)= [] then return [];fi;

> L:=LowIndexSubgroupsFpGroup(L,5);

> L:=List(L,AbelianInvariants);

> L:=SortedList(L);

> return L;

> end;;

gap> D:=RefineClassification(C,invariant2);;

gap> List(D,Size);

[40, 2, 10, 15, 8, 6, 2, 6, 2, 5, 7, 1, 4, 11, 7, 7, 10, 4, 4, 2, 1, 3, 1,

1, 4]

The next commands construct a list of 18 orientable cube manifolds and a list of 7 non-orientable
cube manifolds.

Example
gap> Manifolds:=List(D,x->x[1]);;

gap> OrientableManifolds:=Filtered(Manifolds,m->Homology(m,3)=[0]);;

gap> NonOrientableManifolds:=Filtered(Manifolds,m->Homology(m,3)=[]);;

gap> Length(OrientableManifolds);

18

gap> Length(NonOrientableManifolds);

7

The next commands show that the 7 non-orientable cube manifolds all have infinite fundamental
groups.

Example
gap> List(NonOrientableManifolds,m->IsFinite(FundamentalGroup(m)));

[false, false, false, false, false, false, false]

The final commands show that (at least) 9 of the orientable manifolds have finite fundamental groups
and list the isomorphism types of these finite groups. Note that it is now known that any closed
3-manifold with finite fundamental group is spherical (i.e. is a quotient of the 3-sphere). Spherical
manifolds with cyclic fundamental group are, by definition, lens spaces.

Example
gap> List(OrientableManifolds{[4,8,10,11,12,13,15,16,18]},m->

IsFinite(FundamentalGroup(m)));

[true, true, true, true, true, true, true, true, true]

gap> List(OrientableManifolds{[4,8,10,11,12,13,15,16,18]},m->

StructureDescription(FundamentalGroup(m)));

["Q8", "C2", "C4", "C3 : C4", "C12", "C8", "C14", "C6", "1"]

A HAP tutorial 56

4.10.1 Face pairings for 25 distinct cube manifolds

The following are the face pairings of 25 non-homeomorphic cube manifolds, with vertices of the
cube numbered as describe above.

Example
gap> for i in [1..25] do

> p:=Manifolds[i]!.cubeFacePairings;

> Print("Manifold ",i," has face pairings:\n");

> Print(p[1],"\n",p[2],"\n",p[3],"\n");

> Print("Fundamental group is: ");

> if i in [1, 9, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25] then

> Print(StructureDescription(FundamentalGroup(Manifolds[i])),"\n");

> else Print("infinite non-cyclic\n"); fi;

> if Homology(Manifolds[i],3)=[0] then Print("Orientable, ");

> else Print("Non orientable, "); fi;

> Print(ManifoldType(Manifolds[i]),"\n");

> for x in Manifolds[i]!.edgeDegrees do

> Print(x[2]," edges of \"degree\" ",x[1],", ");

> od;

> Print("\n\n");

> od;

Manifold 1 has face pairings:

[[1, 5, 6, 2], [3, 7, 8, 4]]

[[1, 2, 3, 4], [5, 8, 7, 6]]

[[1, 4, 8, 5], [3, 2, 6, 7]]

Fundamental group is: Z x C2

Non orientable, other

4 edges of "degree" 2, 4 edges of "degree" 4,

Manifold 2 has face pairings:

[[1, 5, 6, 2], [7, 8, 4, 3]]

[[1, 2, 3, 4], [1, 5, 8, 4]]

[[5, 8, 7, 6], [7, 6, 2, 3]]

Fundamental group is: infinite non-cyclic

Non orientable, other

2 edges of "degree" 1, 2 edges of "degree" 3, 2 edges of "degree" 8,

Manifold 3 has face pairings:

[[1, 5, 6, 2], [3, 7, 8, 4]]

[[1, 2, 3, 4], [5, 6, 7, 8]]

[[1, 4, 8, 5], [2, 3, 7, 6]]

Fundamental group is: infinite non-cyclic

Non orientable, euclidean

6 edges of "degree" 4,

Manifold 4 has face pairings:

[[1, 5, 6, 2], [3, 7, 8, 4]]

[[1, 2, 3, 4], [5, 6, 7, 8]]

[[1, 4, 8, 5], [6, 7, 3, 2]]

Fundamental group is: infinite non-cyclic

Non orientable, euclidean

6 edges of "degree" 4,

A HAP tutorial 57

Manifold 5 has face pairings:

[[1, 5, 6, 2], [3, 7, 8, 4]]

[[1, 2, 3, 4], [6, 5, 8, 7]]

[[1, 4, 8, 5], [2, 6, 7, 3]]

Fundamental group is: infinite non-cyclic

Non orientable, euclidean

6 edges of "degree" 4,

Manifold 6 has face pairings:

[[1, 5, 6, 2], [3, 4, 8, 7]]

[[1, 2, 3, 4], [5, 6, 7, 8]]

[[1, 4, 8, 5], [2, 3, 7, 6]]

Fundamental group is: infinite non-cyclic

Orientable, euclidean

6 edges of "degree" 4,

Manifold 7 has face pairings:

[[1, 5, 6, 2], [7, 3, 4, 8]]

[[1, 2, 3, 4], [1, 5, 8, 4]]

[[5, 8, 7, 6], [7, 6, 2, 3]]

Fundamental group is: infinite non-cyclic

Orientable, other

2 edges of "degree" 1, 2 edges of "degree" 3, 2 edges of "degree" 8,

Manifold 8 has face pairings:

[[1, 5, 6, 2], [3, 4, 8, 7]]

[[1, 2, 3, 4], [7, 8, 5, 6]]

[[1, 4, 8, 5], [7, 6, 2, 3]]

Fundamental group is: infinite non-cyclic

Orientable, other

4 edges of "degree" 2, 2 edges of "degree" 8,

Manifold 9 has face pairings:

[[1, 5, 6, 2], [3, 4, 8, 7]]

[[1, 2, 3, 4], [8, 5, 6, 7]]

[[1, 4, 8, 5], [6, 2, 3, 7]]

Fundamental group is: Q8

Orientable, spherical

8 edges of "degree" 3,

Manifold 10 has face pairings:

[[1, 5, 6, 2], [4, 8, 7, 3]]

[[1, 2, 3, 4], [7, 8, 5, 6]]

[[1, 4, 8, 5], [7, 6, 2, 3]]

Fundamental group is: infinite non-cyclic

Orientable, other

4 edges of "degree" 2, 4 edges of "degree" 4,

Manifold 11 has face pairings:

[[1, 5, 6, 2], [4, 3, 7, 8]]

[[1, 2, 3, 4], [5, 6, 7, 8]]

A HAP tutorial 58

[[1, 4, 8, 5], [2, 3, 7, 6]]

Fundamental group is: infinite non-cyclic

Non orientable, euclidean

6 edges of "degree" 4,

Manifold 12 has face pairings:

[[1, 5, 6, 2], [4, 8, 7, 3]]

[[1, 2, 3, 4], [5, 6, 7, 8]]

[[1, 4, 8, 5], [2, 3, 7, 6]]

Fundamental group is: Z x Z x Z

Orientable, euclidean

6 edges of "degree" 4,

Manifold 13 has face pairings:

[[1, 5, 6, 2], [4, 8, 7, 3]]

[[1, 2, 3, 4], [5, 6, 7, 8]]

[[1, 4, 8, 5], [7, 6, 2, 3]]

Fundamental group is: infinite non-cyclic

Orientable, euclidean

6 edges of "degree" 4,

Manifold 14 has face pairings:

[[1, 5, 6, 2], [7, 3, 4, 8]]

[[1, 2, 3, 4], [7, 8, 5, 6]]

[[1, 4, 8, 5], [7, 6, 2, 3]]

Fundamental group is: C2

Orientable, spherical

12 edges of "degree" 2,

Manifold 15 has face pairings:

[[1, 5, 6, 2], [3, 7, 8, 4]]

[[1, 2, 3, 4], [1, 5, 8, 4]]

[[5, 8, 7, 6], [2, 3, 7, 6]]

Fundamental group is: Z

Non orientable, other

4 edges of "degree" 1, 2 edges of "degree" 2, 2 edges of "degree" 8,

Manifold 16 has face pairings:

[[1, 5, 6, 2], [3, 4, 8, 7]]

[[1, 2, 3, 4], [1, 5, 8, 4]]

[[5, 8, 7, 6], [2, 3, 7, 6]]

Fundamental group is: Z

Orientable, other

4 edges of "degree" 1, 2 edges of "degree" 2, 2 edges of "degree" 8,

Manifold 17 has face pairings:

[[1, 5, 6, 2], [3, 4, 8, 7]]

[[1, 2, 3, 4], [1, 5, 8, 4]]

[[5, 8, 7, 6], [3, 7, 6, 2]]

Fundamental group is: C4

Orientable, spherical

2 edges of "degree" 1, 2 edges of "degree" 3, 2 edges of "degree" 8,

A HAP tutorial 59

Manifold 18 has face pairings:

[[1, 5, 6, 2], [3, 4, 8, 7]]

[[1, 2, 3, 4], [8, 4, 1, 5]]

[[5, 8, 7, 6], [6, 2, 3, 7]]

Fundamental group is: C3 : C4

Orientable, spherical

2 edges of "degree" 2, 4 edges of "degree" 5,

Manifold 19 has face pairings:

[[1, 5, 6, 2], [3, 4, 8, 7]]

[[1, 2, 3, 4], [8, 4, 1, 5]]

[[5, 8, 7, 6], [3, 7, 6, 2]]

Fundamental group is: C12

Orientable, spherical

2 edges of "degree" 2, 2 edges of "degree" 3, 2 edges of "degree" 7,

Manifold 20 has face pairings:

[[1, 5, 6, 2], [3, 4, 8, 7]]

[[1, 2, 3, 4], [5, 8, 4, 1]]

[[5, 8, 7, 6], [3, 7, 6, 2]]

Fundamental group is: C8

Orientable, spherical

8 edges of "degree" 3,

Manifold 21 has face pairings:

[[1, 5, 6, 2], [7, 3, 4, 8]]

[[1, 2, 3, 4], [8, 4, 1, 5]]

[[5, 8, 7, 6], [7, 6, 2, 3]]

Fundamental group is: infinite non-cyclic

Orientable, euclidean

6 edges of "degree" 4,

Manifold 22 has face pairings:

[[1, 5, 6, 2], [5, 6, 7, 8]]

[[3, 7, 8, 4], [7, 6, 2, 3]]

[[1, 2, 3, 4], [8, 4, 1, 5]]

Fundamental group is: C14

Orientable, spherical

2 edges of "degree" 2, 4 edges of "degree" 5,

Manifold 23 has face pairings:

[[1, 5, 6, 2], [5, 6, 7, 8]]

[[3, 7, 8, 4], [7, 6, 2, 3]]

[[1, 2, 3, 4], [5, 8, 4, 1]]

Fundamental group is: C6

Orientable, spherical

6 edges of "degree" 2, 2 edges of "degree" 6,

Manifold 24 has face pairings:

[[1, 5, 6, 2], [7, 8, 5, 6]]

[[3, 7, 8, 4], [2, 3, 7, 6]]

A HAP tutorial 60

[[1, 2, 3, 4], [4, 1, 5, 8]]

Fundamental group is: infinite non-cyclic

Orientable, euclidean

6 edges of "degree" 4,

Manifold 25 has face pairings:

[[1, 5, 6, 2], [6, 7, 8, 5]]

[[3, 7, 8, 4], [3, 7, 6, 2]]

[[1, 2, 3, 4], [1, 5, 8, 4]]

Fundamental group is: 1

Orientable, spherical

4 edges of "degree" 1, 4 edges of "degree" 5,

4.10.2 Platonic cube manifolds

A platonic solid is a convex, regular polyhedron in 3-dimensional euclidean E3 or spherical S3 or
hyperbolic space H3. Being regular means that all edges are congruent, all faces are congruent, all
angles between adjacent edges in a face are congruent, all dihedral angles between adjacent faces are
congruent. A platonic cube in euclidean space has six congruent square faces with diherdral angle
π/2. A platonic cube in spherical space has dihedral angles 2π/3. A platonic cube in hyperbolic
space has dihedral angles 2π/5. This can alternatively be expressed by saying that in a tessellation of
E3 by platonic cubes each edge is adjacent to 4 square faces. In a tessellation of S3 by platonic cubes
each edge is adjacent to 3 square faces. In a tessellation of H3 by platonic cubes each edge is adjacent
to 5 five square faces.

Any cube manifold M induces a cubical CW-decomposition of its universal cover M̃. We say that
M is a platonic cube manifold if every edge in M̃ is adjacent to 4 faces in the euclidean case M̃ =E3, is
adjacent to 3 faces in the spherical case M̃ = S3, is adjacent to 5 faces in the hyperbolic case M̃ =H3.

In the above list of 25 cube manifolds we see that the euclidean manifolds 3, 4, 5, 6, 11 are platonic
and that the spherical manifolds 9, 20 are platonic.

4.11 There are at most 41 distinct cube manifolds

Using the Simpcomp package for GAP we can show that many of the 163 cube manifolds constructed
above are homeomorphic. We do this by showing that barycentric subdivisions of many of the mani-
folds are combinatorially the same.

The following commands establish homeomorphisms (simplicial complex isomorphisms) between
manifolds in each equivalence class D[i] above for 1 ≤ i ≤ 25, and then discard all but one manifold
in each homeomorphism class. We are left with 59 cube manifolds, some of which may be homeo-
morphic, representing at least 25 distinct homeomorphism classes. The 59 manifolds are stored in the
list DD of length 25 each of whose terms is a list of cube manifolds.

Example
gap> LoadPackage("Simpcomp");;

gap> inv3:=function(m)

> local K;

> K:=BarycentricSubdivision(m);

> K:=MaximalSimplicesOfSimplicialComplex(K);

https://simpcomp-team.github.io/simpcomp/README.html

A HAP tutorial 61

> K:=SC(K);

> if not SCIsStronglyConnected(K) then Print("WARNING!\n"); fi;

> return SCExportIsoSig(K);

> end;

function(m) ... end

gap> DD:=[];;

gap> for x in D do

> y:=Classify(x,inv3);

> Add(DD,List(y,z->z[1]));

> od;

gap> List(DD,Size);

[9, 1, 3, 3, 3, 1, 1, 1, 1, 1, 2, 1, 2, 7, 4, 4, 3, 1, 1, 1, 1, 3, 1, 1, 3]

The function PoincareCubeCWCompex() applies cell simplifications in its construction of the quo-
tient of a CW-complex. A variant PoincareCubeCWCompexNS() performs no cell simplifications
and thus returns a bigger cell complex which we can attempt to use to establish further homeomor-
phisms. This is done in the following session and succeeds in showing that there are at most 51 distinct
homeomorphism types of cube manifolds.

Example
gap> DD:=List(DD,x->List(x,y->PoincareCubeCWComplexNS(

> y!.cubeFacePairings[1],y!.cubeFacePairings[2],y!.cubeFacePairings[3])));;

gap> D:=[];;

gap> for x in DD do

> y:=Classify(x,inv3);

> Add(D,List(y,z->z[1]));

>od;;

gap> List(D,Size);

[8, 1, 3, 3, 2, 1, 1, 1, 1, 1, 2, 1, 2, 4, 4, 4, 3, 1, 1, 1, 1, 1, 1, 1, 2]

Making further modifications to the cell structures of the manifolds that leave their homeomorphism
types unchanged can help to identify further simplicial isomorphisms between barycentric subdivi-
sions. For instance, the following commands succeed in establishing that there are at most 45 distinct
homeomorphism types of cube manifolds.

Example
gap> DD:=[];;

gap> for x in D do

> if Length(x)>1 then

> Add(DD, List(x,y->BarycentricallySimplifiedComplex(y)));

> else Add(DD,x);

> fi;

> od;

gap> D:=[];;

gap> for x in DD do

> y:=Classify(x,inv3);

A HAP tutorial 62

> Add(D,List(y,z->z[1]));

> od;

gap> List(D,Size);

[7, 1, 3, 3, 2, 1, 1, 1, 1, 1, 2, 1, 2, 2, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 2]

gap> DD:=List(D,x->List(x,y->PoincareCubeCWComplexNS(

> y!.cubeFacePairings[1],y!.cubeFacePairings[2],y!.cubeFacePairings[3])));;

gap> D1:=[];;

gap> for x in DD do

> if Length(x)>1 then

> Add(D1, List(x,y->BarycentricallySimplifiedComplex(RegularCWComplex(BarycentricSubdivision(y)))));

> else Add(D1,x);

> fi;

> od;

gap> DD:=[];;

gap> for x in D1 do

> y:=Classify(x,inv3);

> Add(DD,List(y,z->z[1]));

> od;;

gap> Print(List(DD,Size),"\n");

[6, 1, 3, 3, 2, 1, 1, 1, 1, 1, 2, 1, 2, 2, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 2]

The two manifolds in DD[14] have fundamental group C2 and are thus lens spaces. There is
only one homeomorphism class of such lens spaces and so these two manifolds are homeomorphic.
The three manifolds in DD[17] are lens spaces with fundamental group C4. Again, there is only
one homeomorphism class of such lens spaces and so these three manifolds are homeomorphic. The
two manifolds in DD[25] have trivial fundamental group and are hence both homeomorphic to the
3-sphere. These observations mean that there are at most 41 closed manifolds arising from a cube by
identifying the cube’s faces pairwise.

These observations can be incorporated into our list DD of equivalence classes of manifolds as
follows.

Example
gap> DD[14]:=DD[14]{[1]};;

gap> DD[17]:=DD[17]{[1]};;

gap> DD[25]:=DD[25]{[1]};;

gap> List(DD,Size);

[6, 1, 3, 3, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1]

4.12 There are precisely 18 orientable cube manifolds, of which 9 are
spherical and 5 are euclidean

The following commands show that there are at least 18 and at most 21 orientable cube manifolds.

A HAP tutorial 63

Example
gap> DDorient:=Filtered(DD,x->Homology(x[1],3)=[0]);;

gap> List(DDorient,Size);

[1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1]

The next commands show that the fundamental groups of the two manifolds in DDorient[7] are iso-
morphic to Z×Z : Z, and that the fundamental groups of the three manifolds in DDorient[9] are
isomorphic to Z.

Example
gap> g1:=FundamentalGroup(DDorient[7][1]);;

gap> g2:=FundamentalGroup(DDorient[7][2]);;

gap> RelatorsOfFpGroup(g1);

[f1^-1*f2*f1*f2^-1, f3^-1*f1*f3*f1, f3^-1*f2^-1*f3*f2^-1]

gap> RelatorsOfFpGroup(g2);

[f1*f2*f1^-1*f2^-1, f1^-1*f3*f1^-1*f3^-1, f3*f2*f3^-1*f2]

gap> h1:=FundamentalGroup(DDorient[9][1]);;

gap> h2:=FundamentalGroup(DDorient[9][2]);;

gap> h3:=FundamentalGroup(DDorient[9][3]);;

gap> StructureDescription(h1);

"Z"

gap> StructureDescription(h2);

"Z"

gap> StructureDescription(h3);

"Z"

Since neither Z×Z :Z nor Z is a free product of two non-trivial groups we conclude that the manifolds
in DDorient[7] and DDorient[9] are prime. Since oriented prime 3-manifolds are determined up to
homeomorphism by their fundamental groups we can conclude that there are precisely 18 orientable
closed manifolds arising from a cube by identifying the cube’s faces pairwise.

A compact 3-manifold M is spherical if it is of the form M = S3/Γ where Γ is a finite group acting
freely as rotations on S3. The fundamental group of M is then the finite group Γ. Perelmen showed
that a compact 3-manifold is spherical if and only if its fundamental group is finite.

A compact 3-manifold is euclidean if it is of the form M = R3/Γ where Γ is a group of affine
transformations acting freely on R3. The fundamental group is then Γ and is called a Bieberbach group
of dimension 3. It can be shown that a group Γ is isomorphic to a Bieberbach group of dimension n if
and only if there is a short exact sequence Zn � Γ � P with P a finite group.

The following command establishes that there are precisely 9 orientable spherical manifolds and
5 closed orientable euclidean manifolds arising from pairwise identifications of the faces of the cube.

Example
gap> List(OrientableManifolds,ManifoldType);

["euclidean", "other", "other", "spherical", "other", "euclidean",

"euclidean", "spherical", "other", "spherical", "spherical", "spherical",

"spherical", "euclidean", "spherical", "spherical", "euclidean", "spherical"]

A HAP tutorial 64

4.13 Cube manifolds with boundary

If a space Y obtained from identifying faces of the cube fails to be a manifold then it fails because one
or more vertices of Y fail to have a spherical link. By using barycentric subdivision if necessary, we
can ensure that the stars of any two non-manifold vertices of Y have trivial intersection. Removing
the stars of the non-manifold vertices from Y yields a 3-manifold with boundary Ŷ .

The following commands show that there are 367 combinatorially different regular
CW-complexes Y that arise by identifying faces of a cube in pairs and which fail to be manifolds.
The commands also show that these spaces give rise to at least 180 non-homeomorphic manifolds Ŷ
with boundary.

Example
gap> A1:= [[1,2], [3,4], [5,6]];;

gap> A2:=[[1,2], [3,5], [4,6]];;

gap> A3:=[[1,4], [2,6], [3,5]];;

gap> D8:=DihedralGroup(IsPermGroup,8);;

gap> NonManifolds:=[];;

gap> for A in [A1,A2,A3] do

> for x in D8 do

> for y in D8 do

> for z in D8 do

> G:=[x,y,z];

> F:=PoincareCubeCWComplex(A,G);

> b:=IsClosedManifold(F);

> if b=false then Add(NonManifolds,F); fi;

> od;od;od;od;

gap> D:=Classify(NonManifolds,inv3); #See above for inv3

gap> D:=List(D,x->x[1]);;

gap> Size(D);

367

gap> M:=List(D,ThreeManifoldWithBoundary);;

gap> C:=Classify(M,invariant1);; #See above for invariant1

gap> List(C,Size);

[33, 13, 3, 18, 21, 7, 6, 13, 51, 2, 1, 15, 11, 11, 1, 35, 2, 2, 6, 15,

17, 2, 3, 2, 14, 17, 3, 1, 25, 8, 4, 1, 4]

gap> inv5:=function(m)

> local B;

> B:=BoundaryOfPureRegularCWComplex(m);;

> return invariant1(B);

> end;;

gap> CC:=RefineClassification(C,inv5);;

gap> List(CC,Size);

[25, 5, 3, 5, 4, 4, 2, 1, 11, 3, 4, 7, 3, 6, 4, 1, 5, 1, 1, 5, 1, 13, 4,

6, 40, 1, 2, 1, 11, 4, 5, 3, 1, 2, 7, 4, 1, 14, 11, 10, 2, 2, 6, 9, 3, 3,

2, 15, 2, 3, 2, 14, 17, 2, 1, 1, 4, 7, 14, 8, 3, 1, 1, 4]

gap> CC:=RefineClassification(CC,invariant2);;

gap> List(CC,Size);

A HAP tutorial 65

[1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 3, 1, 1, 2, 1, 2, 1, 4, 2, 3, 2, 3,

4, 3, 2, 1, 1, 3, 2, 4, 3, 1, 1, 5, 1, 1, 3, 1, 1, 1, 13, 3, 1, 4, 2, 1,

2, 2, 3, 3, 3, 4, 4, 2, 4, 4, 4, 4, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 2, 3, 4, 3, 1, 2, 3, 2, 3, 4, 3, 3, 2, 2, 1, 1, 2, 1, 1, 2,

1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 10, 5, 2, 3, 2, 14, 17, 1, 1, 1,

1, 4, 5, 2, 9, 1, 4, 7, 1, 3, 1, 1, 4]

gap> Length(CC);

180

4.14 Octahedral manifolds

The above construction of 3-manifolds as quotients of a cube can be extended to other poly-
topes. A polytope of particular interest, and one that appears several times in the clas-
sic book on Three-Manifolds by William Thurston [Thu02], is the octahedron. The function
PoincareOctahahedronCWComplex() can be used to construct any 3-dimensional CW-complex
arising from an octahedron by identifying the eight faces pairwise; the vertices and faces of the octa-
hedron are numbered as follows.

The following commands construct a spherical 3-manifold Y with fundamental group equal to the
binary tetrahedral group G. The commands then use the universal cover of this manifold to construct
the first four terms of a free periodic ZG-resolution of Z of period 4. The resolution has one free
generator in dimensions 4n and 4n+3 for n≥ 0. It has two free generators in dimensions 4n+1 and
4n+2.

Example
gap> L:=[[1, 4, 5], [2, 6, 3]];;

gap> M:=[[3, 4, 5], [6, 1, 2]];;

gap> N:=[[2, 3, 5], [6, 4, 1]];;

gap> P:=[[1, 2, 5], [6, 3, 4]];;

gap> Y:=PoincareOctahedronCWComplex(L,M,N,P);;

gap> IsClosedManifold(Y);

true

gap> G:=FundamentalGroup(Y);;

gap> StructureDescription(G);

"SL(2,3)"

gap> R:=ChainComplexOfUniversalCover(Y);

Equivariant chain complex of dimension 3

gap> List([0..3],R!.dimension);

[1, 2, 2, 1]

4.15 Dodecahedral manifolds

Another polytope of interest, and one that can be used to construct the Poincare homology sphere,
is the dodecahedron. The function PoincareDodecahedronCWComplex() can be used to construct

A HAP tutorial 66

any 3-dimensional CW-complex arising from a dodecahedron by identifying the 12 pentagonal faces
pairwise; the vertices of the prism are numbered as follows.

The following commands construct the Poincare homology 3-sphere (with fundamental group
equal to the binary icosahedral group of order 120).

Example
gap> Y:=PoincareDodecahedronCWComplex(

> [[1,2,3,4,5],[6,7,8,9,10]],

> [[1,11,16,12,2],[19,9,8,18,14]],

> [[2,12,17,13,3],[20,10,9,19,15]],

> [[3,13,18,14,4],[16,6,10,20,11]],

> [[4,14,19,15,5],[17,7,6,16,12]],

> [[5,15,20,11,1],[18,8,7,17,13]]);

Regular CW-complex of dimension 3

gap> IsClosedManifold(Y);

true

gap> List([0..3],n->Homology(Y,n));

[[0], [], [], [0]]

gap> StructureDescription(FundamentalGroup(Y));

"SL(2,5)"

The following commands construct Seifert-Weber space, a rational homology sphere.
Example

gap> W:=PoincareDodecahedronCWComplex(

> [[1,2,3,4,5],[7,8,9,10,6]],

> [[1,11,16,12,2],[9,8,18,14,19]],

> [[2,12,17,13,3],[10,9,19,15,20]],

> [[3,13,18,14,4],[6,10,20,11,16]],

> [[4,14,19,15,5],[7,6,16,12,17]],

> [[5,15,20,11,1],[8,7,17,13,18]]);

Regular CW-complex of dimension 3

gap> IsClosedManifold(W);

true

gap> List([0..3],n->Homology(W,n));

[[0], [5, 5, 5], [], [0]]

4.16 Prism manifolds

Another polytope of interest is the prism constructed as the direct product Dn× [0,1] of an n-gonal
disk Dn with the unit interval. The function PoincarePrismCWComplex() can be used to construct
any 3-dimensional CW-complex arising from a prism with even n≥ 4 by identifying the n+2 faces
pairwise; the vertices of the prism are numbered as follows.

The case n = 4 is that of a cube. The following commands construct a manifold Y arising from
a hexagonal prism (n = 6) with fundamental group π1Y =C5×Q32 equal to the direct product of the
cyclic group of order 5 and the quaternion group of order 32.

Example
gap> L:=[[1,2,3,4,5,6],[11,12,7,8,9,10]];;

gap> M:=[[1,7,8,2],[4,5,11,10]];;

gap> N:=[[2,8,9,3],[6,1,7,12]];;

A HAP tutorial 67

gap> P:=[[3,9,10,4],[6,12,11,5]];;

gap> Y:=PoincarePrismCWComplex(L,M,N,P);;

gap> IsClosedManifold(Y);

true

gap> G:=FundamentalGroup(Y);;

gap> StructureDescription(G);

"C5 x Q32"

An exhaustive search through all manifolds constructed from a hexagonal prism by identify faces
pairwise shows that the finite groups arising as fundamental groups are precisely: Q8, Q16, C4, C3 : C4,
C5 : C4, C8, C16, C12, C20, C2, C6, C3×Q8, C3×Q16, C5×Q32. Each of these finite groups G = π1Y
is either cyclic (in which case the corresponding manifold is a lens space) or else has the propert
that G/Z(G) is dihedral (in which case the corresponding manifold is called a prism manifold). The
majority of the manifolds arising from a hexagonal prism have infinite fundamental group.

Infinite families of spherical 3-maniolds can be constructed from the infinite family of prisms.
For instance, a prism manifold which we denote by Pr can be obtained from a prism D2r× [0,1] by
identifying the left and right side under a twist of π/r, and identifying opposite square faces under
a twist of π/2. Its fundamental group π1Pr is the binary dihedral group of order 4r. The following
commands construct Pr for r = 3.

Example
gap> L:=[[1,2,3,4,5,6],[8,9,10,11,12,7]];;

gap> M:=[[1,7,8,2],[11,10,4,5]];;

gap> N:=[[2,8,9,3],[12,11,5,6]];;

gap> P:=[[3,9,10,4],[7,12,6,1]];;

gap> Y:=PoincarePrismCWComplex(L,M,N,P);;

gap> IsClosedManifold(Y);

true

gap> StructureDescription(FundamentalGroup(Y));

"C3 : C4"

4.17 Bipyramid manifolds

Yet another polytope of interest is the bipyramid constructed as the suspension of an n-gonal disk
Dn. The function PoincareBipyramidCWComplex() can be used to construct any 3-dimensional
CW-complex arising from a bipyramid with n ≥ 3 by identifying the 2n faces pairwise; the vertices
of the prism are numbered as follows.

For n = 4 the bipyramid is the octahedron.

Chapter 5

Topological data analysis

5.1 Persistent homology

Pairwise distances between 74 points from some metric space have been recorded and stored in a
74×74 matrix D. The following commands load the matrix, construct a filtration of length 100 on the
first two dimensions of the assotiated clique complex (also known as the Vietoris-Rips Complex), and
display the resulting degree 0 persistent homology as a barcode. A single bar with label n denotes n
bars with common starting point and common end point.

Example
gap> file:=HapFile("data253a.txt");;

gap> Read(file);

gap> G:=SymmetricMatrixToFilteredGraph(D,100);

Filtered graph on 74 vertices.

gap> K:=FilteredRegularCWComplex(CliqueComplex(G,2));

Filtered regular CW-complex of dimension 2

gap> P:=PersistentBettiNumbers(K,0);;

gap> BarCodeCompactDisplay(P);

The first 54 terms in the filtration each have 74 path components -- one for each point in the
sample. During the next 9 filtration terms the number of path components reduces, meaning that
sample points begin to coalesce due to the formation of edges in the simplicial complexes. Then, two
path components persist over an interval of 18 filtration terms, before they eventually coalesce.

The next commands display the resulting degree 1 persistent homology as a barcode.
Example

gap> P:=PersistentBettiNumbers(K,1);;

gap> BarCodeCompactDisplay(P);

Interpreting short bars as noise, we see for instance that the 65th term in the filtration could be
regarded as noiseless and belonging to a "stable interval" in the filtration with regards to first and
second homology functors. The following command displays (up to homotopy) the 1 skeleton of the
simplicial complex arizing as the 65-th term in the filtration on the clique complex.

68

A HAP tutorial 69

Example
gap> Y:=FiltrationTerm(K,65);

Regular CW-complex of dimension 1

gap> Display(HomotopyGraph(Y));

These computations suggest that the dataset contains two persistent path components (or clusters),
and that each path component is in some sense periodic. The final command displays one possible
representation of the data as points on two circles.

5.1.1 Background to the data

Each point in the dataset was an image consisting of 732× 761 pixels. This point was regarded as
a vector in R557052 = R732×761 and the matrix D was constructed using the Euclidean metric. The
images were the following:

5.2 Mapper clustering

The following example reads in a set S of vectors of rational numbers. It uses the Euclidean distance
d(u,v) between vectors. It fixes some vector u0 ∈ S and uses the associated function f :D→ [0,b] ⊂
R,v 7→ d(u0,v). In addition, it uses an open cover of the interval [0,b] consisting of 100 uniformly
distributed overlapping open subintervals of radius r = 29. It also uses a simple clustering algorithm
implemented in the function cluster.

These ingredients are input into the Mapper clustering procedure to produce a simplicial complex
M which is intended to be a representation of the data. The complex M is 1-dimensional and the final
command uses GraphViz software to visualize the graph. The nodes of this simplicial complex are
"buckets" containing data points. A data point may reside in several buckets. The number of points in
the bucket determines the size of the node. Two nodes are connected by an edge when they contain
common data points.

Example
gap> file:=HapFile("data134.txt");;

gap> Read(file);

gap> dx:=EuclideanApproximatedMetric;;

gap> dz:=EuclideanApproximatedMetric;;

gap> L:=List(S,x->Maximum(List(S,y->dx(x,y))));;

gap> n:=Position(L,Minimum(L));;

gap> f:=function(x); return [dx(S[n],x)]; end;;

gap> P:=30*[0..100];; P:=List(P, i->[i]);;

gap> r:=29;;

gap> epsilon:=75;;

gap> cluster:=function(S)

> local Y, P, C;

> if Length(S)=0 then return S; fi;

> Y:=VectorsToOneSkeleton(S,epsilon,dx);

> P:=PiZero(Y);

> C:=Classify([1..Length(S)],P[2]);

> return List(C,x->S{x});

> end;;

A HAP tutorial 70

gap> M:=Mapper(S,dx,f,dz,P,r,cluster);

Simplicial complex of dimension 1.

gap> Display(GraphOfSimplicialComplex(M));

5.2.1 Background to the data

The datacloud S consists of the 400 points in the plane shown in the following picture.

5.3 Some tools for handling pure complexes

A CW-complex X is said to be pure if all of its top-dimensional cells have a common dimension.
There are instances where such a space X provides a convenient ambient space whose subspaces can be
used to model experimental data. For instance, the plane X = R2 admits a pure regular CW-structure
whose 2-cells are open unit squares with integer coordinate vertices. An alternative, and sometimes
preferrable, pure regular CW-structure on R2 is one where the 2-cells are all reguar hexagons with
sides of unit length. Any digital image can be thresholded to produce a black-white image and this
black-white image can naturally be regared as a finite pure cellular subcomplex of either of the two
proposed CW-structures on R2. Analogously, thresholding can be used to represent 3-dimensional
greyscale images as finite pure cellular subspaces of cubical or permutahedral CW-structures on R3,
and to represent RGB colour photographs as analogous subcomplexes of R5.

In this section we list a few functions for performing basic operations on n-dimensional pure
cubical and pure permutahedral finite subcomplexes M of X = Rn. We refer to M simply as a pure
complex. In subsequent sections we demonstrate how these few functions on pure complexes allow
for in-depth analysis of experimental data.

(ASIDE. The basic operations could equally well be implemented for other CW-decompositions
of X = Rn such as the regular CW-decompositions arising as the tessellations by a fundamental do-
main of a Bieberbach group (=torsion free crytallographic group). Moreover, the basic operations
could also be implemented for other manifolds such as an n-torus X = S1×S1×·· ·×S1 or n-sphere
X = Sn or for X the universal cover of some interesting hyperbolic 3-manifold. An example use of the
ambient manifold X = S1×S1×S1 could be for the construction of a cellular subspace recording the
time of day, day of week and week of the year of crimes committed in a population.)

BASIC OPERATIONS RETURNING PURE COMPLEXES. (Function descriptions available here.)

• PureCubicalComplex(binary array)

• PurePermutahedralComplex(binary array)

• ReadImageAsPureCubicalComplex(file,threshold)

• ReadImageSquenceAsPureCubicalComplex(file,threshold)

• PureComplexBoundary(M)

• PureComplexComplement(M)

• PureComplexRandomCell(M)

../doc/chap1_mj.html#X7FD50DF6782F00A0

A HAP tutorial 71

• PureComplexThickened(M)

• ContractedComplex(M, optional subcomplex of M)

• ExpandedComplex(M, optional supercomplex of M)

• PureComplexUnion(M,N)

• PureComplexIntersection(M,N)

• PureComplexDifference(M,N)

• FiltrationTerm(F,n)

BASIC OPERATIONS RETURNING FILTERED PURE COMPLEXES.

• PureComplexThickeningFiltration(M,length)

• ReadImageAsFilteredPureCubicalComplex(file,length)

5.4 Digital image analysis and persistent homology

The following example reads in a digital image as a filtered pure cubical complexex. The filtration
is obtained by thresholding at a sequence of uniformly spaced values on the greyscale range. The
persistent homology of this filtered complex is calculated in degrees 0 and 1 and displayed as two
barcodes.

Example
gap> file:=HapFile("image1.3.2.png");;

gap> F:=ReadImageAsFilteredPureCubicalComplex(file,40);

Filtered pure cubical complex of dimension 2.

gap> P:=PersistentBettiNumbers(F,0);;

gap> BarCodeCompactDisplay(P);

Example
gap> P:=PersistentBettiNumbers(F,1);;

gap> BarCodeCompactDisplay(P);

The 20 persistent bars in the degree 0 barcode suggest that the image has 20 objects. The degree 1
barcode suggests that there are 14 (or possibly 17) holes in these 20 objects.

5.4.1 Naive example of image segmentation by automatic thresholding

Assuming that short bars and isolated points in the barcodes represent noise while long bars represent
essential features, a "noiseless" representation of the image should correspond to a term in the filtration
corresponding to a column in the barcode incident with all the long bars but incident with no short
bars or isolated points. There is no noiseless term in the above filtration of length 40. However
(in conjunction with the next subsection) the following commands confirm that the 64th term in the
filtration of length 500 is such a term and display this term as a binary image.

A HAP tutorial 72

Example
gap> F:=ReadImageAsFilteredPureCubicalComplex(file,500);;

gap> Y:=FiltrationTerm(F,64);

Pure cubical complex of dimension 2.

gap> BettiNumber(Y,0);

20

gap> BettiNumber(Y,1);

14

gap> Display(Y);

5.4.2 Refining the filtration

The first filtration for the image has 40 terms. One may wish to investigate a filtration with more terms,
say 500 terms, with a view to analysing, say, those 1-cycles that are born by term 25 of the filtration
and that die between terms 50 and 60. The following commands produce the relevant barcode showing
that there is precisely one such 1-cycle.

Example
gap> F:=ReadImageAsFilteredPureCubicalComplex(file,500);;

gap> L:=[20,60,61,62,63,64,65,66,67,68,69,70];;

gap> T:=FiltrationTerms(F,L);;

gap> P0:=PersistentBettiNumbers(T,0);;

gap> BarCodeCompactDisplay(P0);

gap> P1:=PersistentBettiNumbers(T,1);;

gap> BarCodeCompactDisplay(P1);

β0:
β1:

5.4.3 Background to the data

The following image was used in the example.

5.5 A second example of digital image segmentation

In order to automatically count the number of coins in this picture
we can load the image as a filtered pure cubical complex F of filtration length 40 say, and observe

the degree zero persistent Betti numbers to establish that the 28-th term or so of F seems to be ’noise
free’ in degree zero. We can then set M equal to the 28-th term of F and thicken M a couple of times
say to remove any tiny holes it may have. We can then construct the complement C of M. Then we
can construct a ’neighbourhood thickening’ filtration T of C with say 50 consecutive thickenings. The
degree one persistent barcode for T has 24 long bars, suggesting that the original picture consists of
24 coins.

Example
gap> F:=ReadImageAsFilteredPureCubicalComplex("my_coins.png",40);;

gap> M:=FiltrationTerm(F,24);; #Chosen after viewing degree 0 barcode for F

gap> M:=PureComplexThickened(M);;

gap> M:=PureComplexThickened(M);;

A HAP tutorial 73

gap> C:=PureComplexComplement(M);;

gap> T:=ThickeningFiltration(C,50);;

gap> P:=PersistentBettiNumbers(T,1);;

gap> BarCodeCompactDisplay(P);

The pure cubical complex W:=PureComplexComplement(FiltrationTerm(T,25)) has the cor-
rect number of path components, namely 25, but its path components are very much subsets of the
regions in the image corresponding to coins. The complex W can be thickened repeatedly, subject to
no two path components being allowed to merge, in order to obtain a more realistic image segmenta-
tion with path components corresponding more closely to coins. This is done in the follow commands
which use a makeshift function Basins(L) available here. The commands essentially implement a
standard watershed segmentation algorithm but do so by using the language of filtered pure cubical
complexes.

Example
gap> W:=PureComplexComplement(FiltrationTerm(T,25));;

gap> L:=[];;

gap> for i in [1..PathComponentOfPureComplex(W,0)] do

gap> P:=PathComponentOfPureComplex(W,i);;

gap> Q:=ThickeningFiltration(P,50,M);;

gap> Add(L,Q);;

gap> od;;

gap> B:=Basins(L);

gap> Display(B);

5.6 A third example of digital image segmentation

The following image is number 3096 in the BSDS500 database of images [MFTM01].
A common first step in segmenting such an image is to appropriately threshold the corresponding

gradient image.
The following commands use the thresholded gradient image to produce an outline of the aero-

plane. The outline is a pure cubical complex with one path component and with first Betti number
equal to 1.

Example
gap> file:=Filename(DirectoriesPackageLibrary("HAP"),"../tutorial/images/3096b.jpg");;

gap> F:=ReadImageAsFilteredPureCubicalComplex(file,30);;

gap> F:=ComplementOfFilteredPureCubicalComplex(F);;

gap> M:=FiltrationTerm(F,27);; #Thickening chosen based on degree 0 barcode

gap> Display(M);;

gap> P:=List([1..BettiNumber(M,0)],n->PathComponentOfPureComplex(M,n));;

gap> P:=Filtered(P,m->Size(m)>10);;

gap> M:=P[1];;

gap> for m in P do

> M:=PureComplexUnion(M,m);;

> od;

gap> T:=ThickeningFiltration(M,50);;

gap> BettiNumber(FiltrationTerm(T,11),0);

tutex/basins.g
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/

A HAP tutorial 74

1

gap> BettiNumber(FiltrationTerm(T,11),1);

1

gap> BettiNumber(FiltrationTerm(T,12),1);

0

gap> #Confirmation that 11-th filtration term has one hole and the 12-th term is contractible.

gap> C:=FiltrationTerm(T,11);;

gap> for n in Reversed([1..10]) do

> C:=ContractedComplex(C,FiltrationTerm(T,n));

> od;

gap> C:=PureComplexBoundary(PureComplexThickened(C));;

gap> H:=HomotopyEquivalentMinimalPureCubicalSubcomplex(FiltrationTerm(T,12),C);;

gap> B:=ContractedComplex(PureComplexBoundary(H));;

gap> Display(B);

5.7 Naive example of digital image contour extraction

The following greyscale image is available from the online appendix to the paper [CKL14].
The following commands produce a picture of contours from this image based on greyscale val-

ues. They also produce a picture of just the closed contours (the non-closed contours having been
homotopy collapsed to points).

Example
gap> file:=Filename(DirectoriesPackageLibrary("HAP"),"../tutorial/images/circularGradient.png");;

gap> L:=[];;

gap> for n in [1..15] do

> M:=ReadImageAsPureCubicalComplex(file,n*30000);

> M:=PureComplexBoundary(M);;

> Add(L,M);

> od;;

gap> C:=L[1];;

gap> for n in [2..Length(L)] do C:=PureComplexUnion(C,L[n]); od;

gap> Display(C);

gap> Display(ContractedComplex(C));

Contours from the above greyscale image:
Closed contours from the above greyscale image:
Very similar results are obtained when applied to the file circularGradientNoise.png, con-

taining noise, available from the online appendix to the paper [CKL14].
The number of distinct "light sources" in the image can be read from the countours. Alternatively,

this number can be read directly from the barcode produced by the following commands.
Example

gap> F:=ReadImageAsFilteredPureCubicalComplex(file,20);;

gap> P:=PersistentBettiNumbersAlt(F,1);;

gap> BarCodeCompactDisplay(P);

The seventeen bars in the barcode correspond to seventeen light sources. The length of a bar is a
measure of the "persistence" of the corresponding light source. A long bar may initially represent a

http://www.ipol.im/pub/art/2014/74/FrechetAndConnectedCompDemo.tgz
http://www.ipol.im/pub/art/2014/74/FrechetAndConnectedCompDemo.tgz

A HAP tutorial 75

cluster of several lights whose members may eventually be distinguished from each other as new bars
(or persistent homology classes) are created.

Here the command PersistentBettiNumbersAlt has been used. This command is explained in
the following section.

The follwowing commands use a watershed method to partition the digital image into regions, one
region per light source. A makeshift function Basins(L), available here, is called. (The efficiency of
the example could be easily improved. For simplicity it uses generic commands which, in principle,
can be applied to cubical or permutarhedral complexes of higher dimensions.)

Example
gap> file:=Filename(DirectoriesPackageLibrary("HAP"),"../tutorial/images/circularGradient.png");;

gap> F:=ReadImageAsFilteredPureCubicalComplex(file,20);;

gap> FF:=ComplementOfFilteredPureCubicalComplex(F);

gap> W:=(FiltrationTerm(FF,3));

gap> for n in [4..23] do

> L:=[];;

> for i in [1..PathComponentOfPureComplex(W,0)] do

> P:=PathComponentOfPureComplex(W,i);;

> Q:=ThickeningFiltration(P,150,FiltrationTerm(FF,n));;

> Add(L,Q);;

> od;;

> W:=Basins(L);

> od;

gap> C:=PureComplexComplement(W);;

gap> T:=PureComplexThickened(C);; C:=ContractedComplex(T,C);;

gap> Display(C);

5.8 Alternative approaches to computing persistent homology

From any sequence X0 ⊂ X1 ⊂ X2 ⊂ ·· · ⊂ XT of cellular spaces (such as pure cubical complexes,
or cubical complexes, or simplicial complexes, or regular CW complexes) we can construct a fil-
tered chain complex C∗X0 ⊂ C∗X1 ⊂ C∗X2 ⊂ ·· ·C∗XT . The induced homology homomorphisms
Hn(C∗X0,F)→ Hn(C∗X1,F)→ Hn(C∗X2,F)→ ··· → Hn(C∗XT ,F) with coefficients in a field F can
be computed by applying an appropriate sequence of elementary row operations to the boundary ma-
trices in the chain complex C∗XT ⊗F; the boundary matrices are sparse and are best represented as
such; the row operations need to be applied in a fashion that respects the filtration. This method is
used in the above examples of persistent homology. The method is not practical when the number of
cells in XT is large.

An alternative approach is to construct an admissible discrete vector field on each term Xk in the
filtration. For each vector field there is a non-regular CW-complex Yk whose cells correspond to the
critical cells in Xk and for which there is a homotopy equivalence Xk ' Yk. For each k the composite
homomorphism Hn(C∗Yk,F)

∼=→Hn(C∗Xk,F)→Hn(C∗Xk+1,F)
∼=→Hn(C∗Yk+1,F) can be computed and

the persistent homology can be derived from these homology homomorphisms. This method is imple-
mented in the function PersistentBettiNUmbersAlt(X,n,p) where p is the characteristic of the
field, n is the homology degree, and X can be a filtered pure cubical complex, or a filtered simplicial
complex, or a filtered regular CW complex, or indeed a filtered chain complex (represented in sparse

tutex/basins.g

A HAP tutorial 76

form). This function incorporates the functions ContractedFilteredPureCubicalComplex(X)

and ContractedFilteredRegularComplex(X)which respectively input a filtered pure cubical com-
plex and filtered regular CW-complex and return a filtered complex of the same data type in which
each term of the output filtration is a deformation retract of the corresponding term in the input filtra-
tion.

In this approach the vector fields on the various spaces Xk are completely independent and so
the method lends itself to a degree of easy parallelism. This is not incorporated into the current
implementation.

As an illustration we consider a synthetic data set S consisting of 3527 points sampled, with errors,
from an ‘unknown’ manifold M in R3. From such a data set one can associate a 3-dimensional cubical
complex X0 consisting of one unit cube centred on each (suitably scaled) data point. A visualization
of X0 is shown below.

Given a pure cubical complex Xs we construct Xs+1 = Xs∪{e3
λ
}λ∈Λ by adding to Xs each closed

unit cube e3
λ

in R3 that intersects non-trivially with Xs. We construct the filtered cubical complex
X∗ = {Xi}0≤i≤19 and compute the persistence matrices β ∗∗d for d = 0,1,2 and for Z2 coefficients. The
filtered complex X∗ is quite large. In particular, the final space X19 in the filtration involves 1092727
vertices, 3246354 edges, 3214836 faces of dimension 2 and 1061208 faces of dimension 3. The usual
matrix reduction approach to computing persistent Betti numbers would involve an appropriate row
reduction of sparse matrices one of which has over 3 million rows and 3 million columns.

Example
gap> file:=HapFile("data247.txt");;

gap> Read(file);;

gap> F:=ThickeningFiltration(T,20);;

gap> P:=PersistentBettiNumbersAlt(F,[0,1,2]);;

gap> BarCodeCompactDisplay(P);

The barcodes suggest that the data points might have been sampled from a manifold with the
homotopy type of a torus.

5.8.1 Non-trivial cup product

Of course, a wedge S2 ∨ S1 ∨ S1 has the same homology as the torus S1× S1. By establishing that a
’noise free’ model for our data points, say the 10-th term X10 in the filtration, has a non-trivial cup
product ∪:H1(X10,Z)×H1(X10,Z)→ H2(X10,Z) we can eliminate S2∨ S1 ∨ S1 as a candidate from
which the data was sampled.

Example
gap> X10:=RegularCWComplex(FiltrationTerm(F,10));;

gap> cup:=LowDimensionalCupProduct(X10);;

gap> cup([1,0],[0,1]);

[1]

5.8.2 Explicit homology generators

It could be desirable to obtain explicit representatives of the persistent homology generators that
"persist" through a significant sequence of filtration terms. There are two such generators in de-
gree 1 and one such generator in degree 2. The explicit representatives in degree n could consist of

A HAP tutorial 77

an inclusion of pure cubical complexes Yn ⊂ X10 for which the incuced homology homomorphism
Hn(Yn,Z)→Hn(X10,Z) is an isomorphism, and for which Yn is minimal in the sense that its homotopy
type changes if any one or more of its top dimensional cells are removed. Ideally the space Yn should
be "close to the original dataset" X0. The following commands first construct an explicit degree 2 ho-
mology generator representative Y2⊂ X10 where Y2 is homotopy equivalent to X10. They then construct
an explicit degree 1 homology generators representative Y1 ⊂ X10 where Y1 is homotopy equivalent to
a wedge of two circles. The final command displays the homology generators representative Y1.

Example
gap> Y2:=FiltrationTerm(F,10);;

gap> for t in Reversed([1..9]) do

> Y2:=ContractedComplex(Y2,FiltrationTerm(F,t));

> od;

gap> Y2:=ContractedComplex(Y2);;

gap> Size(FiltrationTerm(F,10));

918881

gap> Size(Y2);

61618

gap> Y1:=PureComplexDifference(Y2,PureComplexRandomCell(Y2));;

gap> Y1:=ContractedComplex(Y1);;

gap> Size(Y1);

474

gap> Display(Y1);

5.9 Knotted proteins

The Protein Data Bank contains a wealth of data which can be investigated with respect to knottedness.
Information on a particular protein can be downloaded as a .pdb file. Each protein consists of one or
more chains of amino acids and the file gives 3-dimensional Euclidean coordinates of the atoms in
amino acids. Each amino acid has a unique "alpha carbon" atom (labelled as "CA" in the pdb file). A
simple 3-dimensional curve, the protein backbone, can be constructed through the sequence of alpha
carbon atoms. Typically the ends of the protein backbone lie near the "surface" of the protein and can
be joined by a path outside of the protein to obtain a simple closed curve in Euclidean 3-space.

The following command reads in the pdb file for the T.thermophilus 1V2X protein, which consists
of a single chain of amino acids, and uses Asymptote software to produce an interactive visualization
of its backbone. A path joining the end vertices of the backbone is displayed in blue.

Example
gap> file:=HapFile("data1V2X.pdb");;

gap> DisplayPDBfile(file);

The next command reads in the pdb file for the T.thermophilus 1V2X protein and represents it
as a 3-dimensional pure cubical complex K. A resolution of r = 5 is chosen and this results in a
representation as a subcomplex K of an ambient rectangular box of volume equal to 184×186×294
unit cubes. The complex K should have the homotopy type of a circle and the protein backbone is a
1-dimenional curve that should lie in K. The final command displays K.

https://www.rcsb.org/

A HAP tutorial 78

Example
gap> r:=5;;

gap> K:=ReadPDBfileAsPureCubicalComplex(file,r);;

gap> K:=ContractedComplex(K);;

gap> K!.properties;

[["dimension", 3], ["arraySize", [184, 186, 294]]]

gap> Display(K);

Next we create a filtered pure cubical complex by repeatedly thickening K. We perform 15 thick-
enings, each thickening being a term in the filtration. The β1 barcode for the filtration is displayed.
This barcode is a descriptor for the geometry of the protein. For current purposes it suffices to note
that the first few terms of the filtration have first homology equal to that of a circle. This indicates that
the Euclidean coordinates in the pdb file robustly determine some knot.

Example
gap> F:=ThickeningFiltration(K,15);;

gap> F:=FilteredPureCubicalComplexToCubicalComplex(F);;

gap> F:=FilteredCubicalComplexToFilteredRegularCWComplex(F);;

gap> P:=PersistentBettiNumbersAlt(F,1);;

gap> BarCodeCompactDisplay(P);

The next commands compute a presentation for the fundamental group π1(R3\K) and the Alexan-
der polynomial for the knot. This is the same Alexander polynomial as for the trefoil knot. Also, Tietze
transformations can be used to see that the fundamental group is the same as for the trefoil knot.

Example
gap> C:=PureComplexComplement(K);;

gap> C:=ContractedComplex(C);;

gap> G:=FundamentalGroup(C);;

gap> GeneratorsOfGroup(G);

[f1, f2]

gap> RelatorsOfFpGroup(G);

[f2*f1^-1*f2^-1*f1^-1*f2*f1]

gap> AlexanderPolynomial(G);

x_1^2-x_1+1

5.10 Random simplicial complexes

For a positive integer n and probability p we denote by Y (n, p) the Linial-Meshulam random simplicial
2-complex. Its 1-skeleton is the complete graph on n vertices; each possible 2-simplex is included
independently with probability p.

The following commands first compute the number hi of non-trivial cyclic summands in
Hi(Y (100, p),Z) for a range of probabilities p and i = 1,2 and then produce a plot of hi versus p.
The plot for h1 is red and the plot for h2 is blue. A plot for the Euler characteristic 1−h1+h2 is shown
in green.

A HAP tutorial 79

Example
gap> L:=[];;M:=[];;

gap> for p in [1..100] do

> K:=RegularCWComplex(RandomSimplicialTwoComplex(100,p/1000));;

> h1:=Length(Homology(K,1));;

> h2:=Length(Homology(K,2));;

> Add(L, [1.0*(p/1000),h1,"red"]);

> Add(L, [1.0*(p/1000),h2,"blue"]);

> Add(M, [1.0*(p/1000),1-h1+h2,"green"]);

> od;

gap> ScatterPlot(L);

gap> ScatterPlot(M);

From this plot it seems that there is a phase change threshold at around p = 0.025. An inspection
of the first homology groups H1(Y (100, p),Z) shows that in most cases there is no torsion. However,
around the threshold some of the complexes do have torsion in their first homology.

Similar commands for Y (75, p) suggest a phase transition at around p = 0.035 in this case. The
following commands compute H1(Y (75, p),Z) for 900 random 2-complexes with p in a small inter-
val around 0.035 and, in each case where there is torsion, the torsion coefficients are stored in a list.
The final command prints these lists -- all but one of which are of length 1. For example, there is
one 2-dimensional simplicial complex on 75 vertices whose first homology contains the summand
Z107879661870516800665161182578823128. The largest prime factor is 80555235907994145009690263 oc-
curing in the summand Z259837760616287294231081766978855.

Example
gap> torsion:=function(n,p)

> local H, Y;

> Y:=RegularCWComplex(RandomSimplicialTwoComplex(n,p));

> H:=Homology(Y,1);

> H:=Filtered(H,x->not x=0);

> return H;

> end;

function(n, p) ... end

gap> L:=[];;for n in [73000..73900] do

> t:=torsion(75,n/2000000);

> if not t=[] then Add(L,t); fi;

> od;

gap> Display(L);

[[2],

[26],

[259837760616287294231081766978855],

[2],

[3],

[2],

[2761642698060127444812143568],

[2626355281010974663776273381976],

[2],

[3],

A HAP tutorial 80

[33112382751264894819430785350],

[16],

[4],

[3],

[2],

[3],

[2],

[85234949999183888967763100590977],

[2],

[24644196130785821107897718662022],

[2, 2],

[2],

[416641662889025645492982468],

[41582773001875039168786970816],

[2],

[75889883165411088431747730],

[33523474091636554792305315165],

[107879661870516800665161182578823128],

[5588265814409119568341729980],

[2],

[5001457249224115878015053458],

[10],

[12],

[2],

[2],

[3],

[7757870243425246987971789322],

[8164648856993269673396613497412],

[2]]

5.11 Computing homology of a clique complex (Vietoris-Rips complex)

Topological data analysis provides one motivation for wanting to compute the homology of a clique
complex. Consider for instance the cloud of data points shown in Example 5.2.1. This data is a set
S of 400 points in the plane. Let Γ be the graph with vertex set S and with two vertices joined by an
edge if they lie within a Euclidean distance of 40 of each other. The clique complex K = K(Γ) could
be studied to see what it reveals about the data. The following commands construct K and show that
it is a 23-dimensional simplicial complex consisting of a total of 36191976 simplices.

Example
gap> file:=HapFile("data134.txt");;

gap> Read(file);

gap> A:=VectorsToSymmetricMatrix(S,EuclideanApproximatedMetric);;

gap> threshold:=40;;

gap> grph:=SymmetricMatrixToGraph(A,threshold);;

gap> dimension_cap:=100;;

gap> K:=CliqueComplex(grph,dimension_cap);

Simplicial complex of dimension 23.

A HAP tutorial 81

gap> Size(K);

36191976

The computation of the homology of this clique complex K is a challenge because of its size. If
we are only interested in K up to homotopy then we could try to modify the graph Γ in such a way that
the homotopy type of the clique complex is unchanged but the size of the clique complex is reduced.
This is done in the following commands, producing a smaller 19-dimensional simplicial complex K
with 4180652 simplices.

Example
gap> ContractGraph(grph);;

gap> dimension_cap:=100;;

gap> K:=CliqueComplex(grph,dimension_cap);

Simplicial complex of dimension 19.

gap> Size(K);

4180652

To compute the homology of K in degrees 0 to 5 say, we could represent K as a regular
CW-complex Y and then compute the homology of Y as follows. The homology Hn(K) = Z for
n = 0,1 and Hn(K) = 0 for n = 2,3,4,5 is consistent with the data having been sampled from a space
with the homotopy type of a circle.

Example
gap> Y:=RegularCWComplex(K);

Regular CW-complex of dimension 19

gap> Homology(Y,0);

[0]

gap> Homology(Y,1);

[0]

gap> Homology(Y,2);

[]

gap> Homology(Y,3);

[]

gap> Homology(Y,4);

[]

gap> Homology(Y,5)

[]

Chapter 6

Group theoretic computations

6.1 Third homotopy group of a supsension of an Eilenberg-MacLane
space

The following example uses the nonabelian tensor square of groups to compute the third homotopy
group

π3(S(K(G,1))) = Z30

of the suspension of the Eigenberg-MacLane space K(G,1) for G the free nilpotent group of class
2 on four generators.

Example
gap> F:=FreeGroup(4);;G:=NilpotentQuotient(F,2);;

gap> ThirdHomotopyGroupOfSuspensionB(G);

[0,

0, 0, 0, 0, 0, 0, 0, 0]

6.2 Representations of knot quandles

The following example constructs the finitely presented quandles associated to the granny knot and
square knot, and then computes the number of quandle homomorphisms from these two finitely prre-
sented quandles to the 17-th quandle in HAP’s library of connected quandles of order 24. The number
of homomorphisms differs between the two cases. The computation therefore establishes that the com-
plement in R3 of the granny knot is not homeomorphic to the complement of the square knot.

Example
gap> Q:=ConnectedQuandle(24,17,"import");;

gap> K:=PureCubicalKnot(3,1);;

gap> L:=ReflectedCubicalKnot(K);;

gap> square:=KnotSum(K,L);;

gap> granny:=KnotSum(K,K);;

gap> gcsquare:=GaussCodeOfPureCubicalKnot(square);;

gap> gcgranny:=GaussCodeOfPureCubicalKnot(granny);;

gap> Qsquare:=PresentationKnotQuandle(gcsquare);;

gap> Qgranny:=PresentationKnotQuandle(gcgranny);;

gap> NumberOfHomomorphisms(Qsquare,Q);

408

82

A HAP tutorial 83

gap> NumberOfHomomorphisms(Qgranny,Q);

24

The following commands compute a knot quandle directly from a pdf file containing the following
hand-drawn image of the knot.

Example
gap> gc:=ReadLinkImageAsGaussCode("myknot.pdf");

[[[-2, 4, -1, 3, -3, 2, -4, 1]], [-1, -1, 1, -1]]

gap> Q:=PresentationKnotQuandle(gc);

Quandle presentation of 4 generators and 4 relators.

6.3 Identifying knots

Low index subgrops of the knot group can be used to identify knots with few crossings. For instance,
the following commands read in the following image of a knot and identify it as a sum of two trefoils.
The commands determine the prime components only up to reflection, and so they don’t distinguish
between the granny and square knots.

Example
gap> gc:=ReadLinkImageAsGaussCode("myknot2.png");

[[[-4, 7, -5, 4, -7, 5, -3, 6, -2, 3, 8, -8, -6, 2, 1, -1]],

[1, -1, -1, -1, -1, -1, -1, 1]]

gap> IdentifyKnot(gc);;

PrimeKnot(3,1) + PrimeKnot(3,1) modulo reflections of components.

6.4 Aspherical 2-complexes

The following example uses Polymake’s linear programming routines to establish that the 2-complex
associated to the group presentation < x,y,z : xyx = yxy, yzy = zyz, xzx = zxz > is aspherical (that is,
has contractible universal cover). The presentation is Tietze equivalent to the presentation used in the
computer code, and the associated 2-complexes are thus homotopy equivalent.

Example
gap> F:=FreeGroup(6);;

gap> x:=F.1;;y:=F.2;;z:=F.3;;a:=F.4;;b:=F.5;;c:=F.6;;

gap> rels:=[a^-1*x*y, b^-1*y*z, c^-1*z*x, a*x*(y*a)^-1,

> b*y*(z*b)^-1, c*z*(x*c)^-1];;

gap> Print(IsAspherical(F,rels),"\n");

Presentation is aspherical.

true

6.5 Group presentations and homotopical syzygies

Free resolutons for a group G are constructed in HAP as the cellular chain complex R∗ = C∗(X̃) of
the universal cover of some CW-complex X = K(G,1). The 2-skeleton of X gives rise to a free

A HAP tutorial 84

presentation for the group G. This presentation depends on a choice of maximal tree in the 1-skeleton
of X in cases where X has more than one 0-cell. The attaching maps of 3-cells in X can be regarded
as homotopical syzygies or van Kampen diagrams over the group presentation whose boundaries spell
the trivial word.

The following example constructs four terms of a resolution for the free abelian group G on n = 3
generators, and then extracts the group presentation from the resolution as well as the unique homo-
topical syzygy. The syzygy is visualized in terms of its graph of edges, directed edges being coloured
according to the corresponding group generator. (In this example the CW-complex X̃ is regular, but
in cases where it is not the visualization may be a quotient of the 1-skeleton of the syzygy.)

Example
gap> n:=3;;c:=1;;

gap> G:=Image(NqEpimorphismNilpotentQuotient(FreeGroup(n),c));;

gap> R:=ResolutionNilpotentGroup(G,4);;

gap> P:=PresentationOfResolution(R);;

gap> P.freeGroup;

<free group on the generators [x, y, z]>

gap> P.relators;

[y^-1*x^-1*y*x, z^-1*x^-1*z*x, z^-1*y^-1*z*y]

gap> IdentityAmongRelatorsDisplay(R,1);

This homotopical syzygy represents a relationship between the three relators [x,y], [x,z] and [y,z]
where [x,y] = xyx−1y−1. The syzygy can be thought of as a geometric relationship between commu-
tators corresponding to the well-known Hall-Witt identity:

[[x,y], yz] [[y,z], zx] [[z,x], xy] = 1 .
The homotopical syzygy is special since in this example the edge directions and labels can be

understood as specifying three homeomorphisms between pairs of faces. Viewing the syzygy as the
boundary of the 3-ball, by using the homeomorphisms to identify the faces in each face pair we obtain
a quotient CW-complex M involving one vertex, three edges, three 2-cells and one 3-cell. The cell
structure on the quotient exists because, under the restrictions of homomorphisms to the edges, any
cycle of edges retricts to the identity map on any given edge. The following result tells us that M is in
fact a closed oriented compact 3-manifold.

THEOREM. [Seifert u. Threlfall, Topologie, p.208] Let S2 denote the boundary of the 3-ball B3

and suppose that the sphere S2 is given a regular CW-structure in which the faces are partitioned into
a collection of face pairs. Suppose that for each face pair there is an orientation reversing homeomor-
phism between the two faces that sends edges to edges and vertices to vertices. Suppose that by using
these homeomorphisms to identity face pairs we obtain a (not necessarily regular) CW-structure on
the quotient M. Then M is a closed compact orientable manifold if and only if its Euler characteristic
is χ(M) = 0.

The next commands construct a presentation and associated unique homotopical syzygy for the
free nilpotent group of class c = 2 on n = 2 generators.

Example
gap> n:=2;;c:=2;;

gap> G:=Image(NqEpimorphismNilpotentQuotient(FreeGroup(n),c));;

gap> R:=ResolutionNilpotentGroup(G,4);;

gap> P:=PresentationOfResolution(R);;

gap> P.freeGroup;

<free group on the generators [x, y, z]>

gap> P.relators;

A HAP tutorial 85

[z*x*y*x^-1*y^-1, z*x*z^-1*x^-1, z*y*z^-1*y^-1]

gap> IdentityAmongRelatorsDisplay(R,1);

The syzygy represents the following relationship between commutators (in a free group).
[[x−1,y][x,y] , [y,x][y−1,x]y−1] [[y,x][y−1,x] , x−1] = 1
Again, using the theorem of Seifert and Threlfall we see that the free nilpotent group of class two

on two generators arises as the fundamental group of a closed compact orientable 3-manifold M.

6.6 Bogomolov multiplier

The Bogomolov multiplier of a group is an isoclinism invariant. Using this property, the following ex-
ample shows that there are precisely three groups of order 243 with non-trivial Bogomolov multiplier.
The groups in question are numbered 28, 29 and 30 in GAP’s library of small groups of order 243.

Example
gap> L:=AllSmallGroups(3^5);;

gap> C:=IsoclinismClasses(L);;

gap> for c in C do

> if Length(BogomolovMultiplier(c[1]))>0 then

> Print(List(c,g->IdGroup(g)),"\n\n\n"); fi;

> od;

[[243, 28], [243, 29], [243, 30]]

6.7 Second group cohomology and group extensions

Any group extension N � E � G gives rise to:

• an outer action α:G→ Out(N) of G on N.

• an action G→ Aut(Z(N)) of G on the centre of N, uniquely induced by the outer action α and
the canonical action of Out(N) on Z(N).

• a "2-cocycle" f :G×G→ N.

Any outer homomorphism α:G→ Out(N) gives rise to a cohomology class k in H3(G,Z(N)).
It was shown by Eilenberg and MacLane that the class k is trivial if and only if the outer action α

arises from some group extension N � E � G. If k is trivial then there is a (non-canonical) bijection
between the second cohomology group H2(G,Z(N)) and Yoneda equivalence classes of extensions of
G by N that are compatible with α .

FIRST EXAMPLE.
Consider the group H = SmallGroup(64,134). Consider the normal subgroup N =

NormalSubgroups(G)[15] and quotient group G = H/N. We have N =C2×D4, A = Z(N) =C2×C2
and G =C2×C2.

Suppose we wish to classify all extensions C2×D4 � E � C2×C2 that induce the given outer
action of G on N. The following commands show that, up to Yoneda equivalence, there are two such
extensions.

A HAP tutorial 86

Example
gap> H:=SmallGroup(64,134);;

gap> N:=NormalSubgroups(H)[15];;

gap> A:=Centre(GOuterGroup(H,N));;

gap> G:=ActingGroup(A);;

gap> R:=ResolutionFiniteGroup(G,3);;

gap> C:=HomToGModule(R,A);;

gap> Cohomology(C,2);

[2]

The following additional commands return a standard 2-cocycle f : G×G→ A =C2×C2 corre-
sponding to the non-trivial element in H2(G,A). The value f (g,h) of the 2-cocycle is calculated for
all 16 pairs g,h ∈ G.

Example
gap> CH:=CohomologyModule(C,2);;

gap> Elts:=Elements(ActedGroup(CH));

[<identity> of ..., f1]

gap> x:=Elts[2];;

gap> c:=CH!.representativeCocycle(x);

Standard 2-cocycle

gap> f:=Mapping(c);;

gap> for g in G do for h in G do

> Print(f(g,h),"\n");

> od;

> od;

<identity> of ...

<identity> of ...

<identity> of ...

<identity> of ...

<identity> of ...

f6

<identity> of ...

f6

<identity> of ...

<identity> of ...

<identity> of ...

<identity> of ...

<identity> of ...

f6

<identity> of ...

f6

The following commands will then construct and identify all extensions of N by G corresponding
to the given outer action of G on N.

Example
gap> H := SmallGroup(64,134);;

gap> N := NormalSubgroups(H)[15];;

gap> ON := GOuterGroup(H,N);;

A HAP tutorial 87

gap> A := Centre(ON);;

gap> G:=ActingGroup(A);;

gap> R:=ResolutionFiniteGroup(G,3);;

gap> C:=HomToGModule(R,A);;

gap> CH:=CohomologyModule(C,2);;

gap> Elts:=Elements(ActedGroup(CH));;

gap> lst := List(Elts{[1..Length(Elts)]},x->CH!.representativeCocycle(x));;

gap> ccgrps := List(lst, x->CcGroup(ON, x));;

gap> #So ccgrps is a list of groups, each being an extension of G by N, corresponding

gap> #to the two elements in H^2(G,A).

gap> #The following command produces the GAP identification number for each group.

gap> L:=List(ccgrps,IdGroup);

[[64, 134], [64, 135]]

SECOND EXAMPLE

The following example illustrates how to construct a cohomology class k in H2(G,A) from a
cocycle f : G×G→ A, where G = SL2(Z4) and A = Z8 with trivial action.

Example
gap> #We'll construct G=SL(2,Z_4) as a permutation group.

gap> G:=SL(2,ZmodnZ(4));;

gap> G:=Image(IsomorphismPermGroup(G));;

gap> #We'll construct Z_8=Z/8Z as a G-outer group

gap> z_8:=Group((1,2,3,4,5,6,7,8));;

gap> Z_8:=TrivialGModuleAsGOuterGroup(G,z_8);;

gap> #We'll compute the group h=H^2(G,Z_8)

gap> R:=ResolutionFiniteGroup(G,3);; #R is a free resolution

gap> C:=HomToGModule(R,Z_8);; # C is a chain complex

gap> H:=CohomologyModule(C,2);; #H is the second cohomology H^2(G,Z_8)

gap> h:=ActedGroup(H);; #h is the underlying group of H

gap> #We'll compute cocycles c2, c5 for the second and fifth cohomology classs

gap> c2:=H!.representativeCocycle(Elements(h)[2]);

Standard 2-cocycle

gap> c5:=H!.representativeCocycle(Elements(h)[5]);

Standard 2-cocycle

gap> #Now we'll construct the cohomology classes C2, C5 in the group h corresponding to the cocycles c2, c5.

gap> C2:=CohomologyClass(H,c2);;

gap> C5:=CohomologyClass(H,c5);;

gap> #Finally, we'll show that C2, C5 are distinct cohomology classes, both of order 4.

gap> C2=C5;

false

gap> Order(C2);

4

gap> Order(C5);

A HAP tutorial 88

4

6.8 Cocyclic groups: a convenient way of representing certain groups

GAP offers a number of data types for representing groups, including those of fp-groups (finitely
presented groups), pc-groups (power-conjugate presentated groups for finite polycyclic groups),
pcp-groups (polycyclically presented groups for finite and infinite polycyclic groups), permutation
groups (for finite groups), and matrix groups over a field or ring. Each data type has its advantages
and limitations.

Based on the definitions and examples in Section 6.7 the additional data type of a cc-group
(cocyclic group) is provided in HAP. This can be used for a group E arising as a group extension
N � E � G and is a component object involving:

• E!.Base consisting of some representation of a group G.

• E!.Fibre consisting of some representation of a group N.

• E!.OuterGroup consisting of an outer action α:G→ Out(N) of G on N.

• E!.Cocycle consisting of a "2-cocycle" f :G×G→ N.

The first example in Section 6.7 illustrates the construction of cc-groups for which both the base
G and fibre N are finite pc-groups. That example extends to any scenario in which the base G is a
group for which:

1. we can construct the first 3 degrees of a free ZG-resolution C∗X .

2. we can construct the first 2 terms of a contracting homotopy hi:CnX →Cn+1X for i = 0,1.

3. N is a group in which we can multiply elements effectively and for which we can determine the
centre Z(N) and outer automorphism group Out(N).

As an illustration where the base group is a non-solvable finite group and the fibre is the infinite
cyclic group, with base group acting trivially on the fibre, the following commands list up to Yoneda
equivalence all central extensions Z � E � G for G = A5 : C16. The base group is a non-solvable
semi-direct product of order 960 and thus none of the 16 extensions are polycyclic. The commands
classify the extensions according to their integral homology in degrees ≤ 2, showing that there are
precisely 5 such equivalence classes of extensions. Thus, there are at least 5 distinct isomorphism types
among the 16 extensions. A presentation is constructed for the group corresponding to the sixteenth
extension. The final command lists the orders of the 16 cohomology group elements corresponding
to the 16 extensions. The 16th element has order 1, meaning that the sixteenth extension is the direct
product C∞ × A5 : C16.

Example
gap> G:=SmallGroup(960,637);;

gap> StructureDescription(G);

"A5 : C16"

gap> N:=AbelianPcpGroup([0]);;

gap> N:=TrivialGModuleAsGOuterGroup(G,N);;

A HAP tutorial 89

gap> R:=ResolutionFiniteGroup(G,3);;

gap> C:=HomToGModule(R,N);;

gap> CH:=CohomologyModule(C,2);;

gap> Elts:=Elements(ActedGroup(CH));;

gap> lst := List(Elts{[1..Length(Elts)]},x->CH!.representativeCocycle(x));;

gap> ccgrps := List(lst, x->CcGroup(N, x));;

gap> inv:=function(gg)

> local T;

> T:=ResolutionInfiniteCcGroup(gg,3);

> return List([1..2],i->Homology(TensorWithIntegers(T),i));

> end;;

gap> EquivClasses:=Classify(ccgrps,inv);

[<Cc-group of Size infinity>, <Cc-group of Size infinity>,

<Cc-group of Size infinity>, <Cc-group of Size infinity>,

<Cc-group of Size infinity>, <Cc-group of Size infinity>,

<Cc-group of Size infinity>, <Cc-group of Size infinity>],

[<Cc-group of Size infinity>, <Cc-group of Size infinity>,

<Cc-group of Size infinity>, <Cc-group of Size infinity>],

[<Cc-group of Size infinity>, <Cc-group of Size infinity>],

[<Cc-group of Size infinity>], [<Cc-group of Size infinity>]]

gap> List(EquivClasses,Size);

[8, 4, 2, 1, 1]

gap> F16:=Image(IsomorphismFpGroup(ccgrps[16]));

<fp group on the generators [x, y, z, w, v]>

gap> RelatorsOfFpGroup(F16);

[(x^2*y*z*w*z*y)^3*x^2*(y*x*w*y^2*z*x*y*z*y)^3*y*x*w*y^2*z*x*y^2*z*w*y^2*z*y,

x*y^-2*w^-1*z^-1*y^-1*x^-1*y, x*z^-1*y^-1*z^-1*w^-1*z^-1*y^-1*x^-1*z,

x*y^-2*z^-1*w^-1*z^-1*y^-1*x^-1*w, z^-2, w^-2, y^-3, w*y^-1*w^-1*y^-1,

w*z*w^-1*z^-1*w^-1*z, z*y^2*(z^-1*y^-1)^2, v^-1*x^-1*v*x, v*y*v^-1*y^-1,

v*z*v^-1*z^-1, v*w*v^-1*w^-1]

gap> List(Elts,Order);

[16, 16, 16, 16, 16, 16, 16, 16, 8, 8, 8, 8, 4, 4, 2, 1]

6.9 Effective group presentations

For any free ZG-resolution R∗ = C∗X arising as the cellular chain complex of a contractible
CW-complex, the terms in degrees≤ 2 correspond to a free presentation for the group G. The follow-
ing example accesses this presentation for the group PGL3(Z[

√
−1]).

Example
gap> K:=ContractibleGcomplex("PGL(3,Z[i])");;

gap> R:=FreeGResolution(K,2);;

gap> P:=PresentationOfResolution(R);;

gap> G:=P.freeGroup/P.relators;

<fp group on the generators [v, w, x, y, z]>

gap> P.relators;

[v^2, w^-1*v*w*v^-1, w^-1*v^-1*w^-1, (x^-1*w)^3, (y^-1*w)^3, (z^-1*w)^4,

A HAP tutorial 90

y^-1*v^-1*z*y^-1*x, y^-1*v*x*v^-1*x*v, v^-1*z*v^-1*x*y, v^-1*x*v*y*v*x*v*y,

x^3, x*z*y, y^-1*v^-1*y^2*v*y^-1, (v*y)^4, z^-1*y*v*z^-1, (v*y*z)^2,

v^-1*(z*v)^2*z]

The homomorphism h0:R0→ R1 of a contracting homotopy provides a unique expression for each
element of G as a word in the free generators. To illustrate this, we consider the Sylow 2-subgroup
H = Syl2(M24) of the Mathieu group M24. We obtain a resolution R∗ for H by recursively apply-
ing perturbation techniques to a composition series for H. Such a resolution will yield a "kind of"
power-conjugate presentation for H.

Example
gap> H:=SylowSubgroup(MathieuGroup(24),2);

<permutation group of size 1024 with 10 generators>

gap> Order(H);

1024

gap> C:=CompositionSeries(H);;

gap> R:=ResolutionSubnormalSeries(C,2);;

gap> P:=PresentationOfResolution(R);;

gap> P.freeGroup/P.relators;

<fp group on the generators [q, r, s, t, u, v, w, x, y, z]>

gap> P.relators;

[q^-2*z*y*x*w*v, q*r^-1*q^-1*y*u*r, s*q*s^-1*q^-1, t*q*t^-1*q^-1,

q*u^-1*q^-1*y*v*u, y*q*v^-1*q^-1, q*w^-1*q^-1*z*x, w*q*x^-1*q^-1,

q*y^-1*q^-1*z*v, z*q*z^-1*q^-1, r^-2, t*r*s^-1*r^-1, s*r*t^-1*r^-1,

u*r*u^-1*r^-1, v*r*v^-1*r^-1, r*w^-1*r^-1*y*w*u, r*x^-1*r^-1*y*x*u,

y*r*y^-1*r^-1, z*r*z^-1*r^-1, s^-2, t*s*t^-1*s^-1, x*s*u^-1*s^-1,

s*v^-1*s^-1*z*y*w*u, s*w^-1*s^-1*y*v*u, u*s*x^-1*s^-1, s*y^-1*s^-1*y*x*u,

z*s*z^-1*s^-1, t^-2, t*u^-1*t^-1*y*x*u, t*v^-1*t^-1*z*w, t*w^-1*t^-1*z*v,

y*t*x^-1*t^-1, x*t*y^-1*t^-1, z*t*z^-1*t^-1, u^-2, v*u*v^-1*u^-1,

u*w^-1*u^-1*z*w, x*u*x^-1*u^-1, y*u*y^-1*u^-1, z*u*z^-1*u^-1, v^-2,

w*v*w^-1*v^-1, v*x^-1*v^-1*z*x, y*v*y^-1*v^-1, z*v*z^-1*v^-1, w^-2,

x*w*x^-1*w^-1, w*y^-1*w^-1*z*y, z*w*z^-1*w^-1, x^-2, y*x*y^-1*x^-1,

z*x*z^-1*x^-1, y^-2, z*y*z^-1*y^-1, z^-2]

The following additional commands use the contracting homotopy homomorphism h0:R0→ R1 to
express some random elements of H as words in the free generators.

Example
gap> g:=Random(H);

(1,6)(2,3)(4,9)(5,16)(7,10)(8,21)(11,18)(12,17)(13,19)(14,20)(15,22)(23,24)

gap> P.wordInFreeGenerators(g);

q^-1*t^-1*x^-1*y^-1

gap>

gap> g:=Random(H);

(1,6)(2,23,10,18)(3,22,19,24)(4,11,15,9)(7,8,21,13)(12,14)

gap> P.wordInFreeGenerators(g);

q^-1*u^-1*w^-1*x^-1*z^-1

gap>

gap> g:=Random(H);

(1,14,5,17)(2,7,9,19)(3,11,4,22)(6,12,16,20)(8,18,24,15)(10,23,13,21)

gap> P.wordInFreeGenerators(g);

q^-1*r^-1*t^-1*v^-1*x^-1*z^-1

A HAP tutorial 91

gap>

gap> g:=Random(H);

(1,14,5,17)(2,21)(3,9)(4,24)(6,12,16,20)(7,11,15,13)(8,23)(10,18,22,19)

gap> P.wordInFreeGenerators(g);

q^-1*r^-1*t^-1*v^-1*w^-1*z^-1

Because the resolution R∗ was obtained from a composition series, the unique word associated
to an element g ∈ H always has the form qε1rε2sε3tε4uε5vε6wε7xε8yε9zε10 determined by the exponent
vector (ε1, · · · ,ε10) ∈ (Z2)

10.

6.10 Second group cohomology and cocyclic Hadamard matrices

An Hadamard matrix is a square n× n matrix H whose entries are either +1 or −1 and whose rows
are mutually orthogonal, that is HHt = nIn where Ht denotes the transpose and In denotes the n× n
identity matrix.

Given a group G = {g1,g2, . . . ,gn} of order n and the abelian group A = {1,−1} of square roots
of unity, any 2-cocycle f :G×G→ A corresponds to an n× n matrix F = (f (gi,g j))1≤i, j≤n whose
entries are ±1. If F is Hadamard it is called a cocyclic Hadamard matrix corresponding to G.

The following commands compute all 192 of the cocyclic Hadamard matrices for the abelian group
G = Z4⊕Z4 of order n = 16.

Example
gap> G:=AbelianGroup([4,4]);;

gap> F:=CocyclicHadamardMatrices(G);;

gap> Length(F);

192

6.11 Third group cohomology and homotopy 2-types

HOMOTOPY 2-TYPES

The third cohomology H3(G,A) of a group G with coefficients in a G-module A, together with
the corresponding 3-cocycles, can be used to classify homotopy 2-types. A homotopy 2-type is
a CW-complex whose homotopy groups are trivial in dimensions n = 0 and n > 2. There is an
equivalence between the two categories

1. (Homotopy category of connected CW-complexes X with trivial homotopy groups πn(X) for
n > 2)

2. (Localization of the category of simplicial groups with Moore complex of length 1, where lo-
calization is with respect to homomorphisms inducing isomorphisms on homotopy groups)

which reduces the homotopy theory of 2-types to a ’computable’ algebraic theory. Furthermore, a
simplicial group with Moore complex of length 1 can be represented by a group H endowed with two
endomorphisms s:H→ H and t:H→ H satisfying the axioms

• ss = s, ts = s,

• tt = t, st = t,

A HAP tutorial 92

• [kers,ker t] = 1.

Ths triple (H,s, t) was termed a cat1-group by J.-L. Loday since it can be regarded as a group H
endowed with one compatible category structure.

The homotopy groups of a cat1-group H are defined as: π1(H) = image(s)/t(ker(s)); π2(H) =
ker(s)∩ker(t); πn(H) = 0 for n > 2 or n = 0. Note that π2(H) is a π1(H)-module where the action is
induced by conjugation in H.

A homotopy 2-type X can be represented by a cat1-group H or by the homotopy groups π1X =
π1H, π2X = π2H and a cohomology class k ∈ H3(π1X ,π2X). This class k is the Postnikov invariant.

RELATION TO GROUP THEORY

A number of standard group-theoretic constructions can be viewed naturally as a cat1-group.

1. A ZG-module A can be viewed as a cat1-group (H,s, t) where H is the semi-direct product
AoG and s(a,g) = (1,g), t(a,g) = (1,g). Here π1(H) = G and π2(H) = A.

2. A group G with normal subgroup N can be viewed as a cat1-group (H,s, t) where H is the
semi-direct product N o G and s(n,g) = (1,g), t(n,g) = (1,ng). Here π1(H) = G/N and
π2(H) = 0.

3. The homomorphism ι :G→ Aut(G) which sends elements of a group G to the corresponding
inner automorphism can be viewed as a cat1-group (H,s, t) where H is the semi-direct prod-
uct GoAut(G) and s(g,a) = (1,a), t(g,a) = (1, ι(g)a). Here π1(H) = Out(G) is the outer
automorphism group of G and π2(H) = Z(G) is the centre of G.

These three constructions are implemented in HAP.
EXAMPLE

The following commands begin by constructing the cat1-group H of Construction 3 for the group
G= SmallGroup(64,134). They then construct the fundamental group of H and the second homotopy
group of as a π1-module. These homotopy groups have orders 8 and 2 respectively.

Example
gap> G:=SmallGroup(64,134);;

gap> H:=AutomorphismGroupAsCatOneGroup(G);;

gap> pi_1:=HomotopyGroup(H,1);;

gap> pi_2:=HomotopyModule(H,2);;

gap> Order(pi_1);

8

gap> Order(ActedGroup(pi_2));

2

The following additional commands show that there are 1024 Yoneda equivalence classes of
cat1-groups with fundamental group π1 and π1- module equal to π2 in our example.

Example
gap> R:=ResolutionFiniteGroup(pi_1,4);;

gap> C:=HomToGModule(R,pi_2);;

gap> CH:=CohomologyModule(C,3);;

gap> AbelianInvariants(ActedGroup(CH));

[2, 2, 2, 2, 2, 2, 2, 2, 2, 2]

A HAP tutorial 93

A 3-cocycle f :π1×π1×π1 → π2 corresponding to a random cohomology class k ∈ H3(π1,π2) can
be produced using the following command.

Example
gap> x:=Random(Elements(ActedGroup(CH)));;

gap> f:=CH!.representativeCocycle(x);

Standard 3-cocycle

The 3-cocycle corresponding to the Postnikov invariant of H itself can be easily constructed directly
from its definition in terms of a set-theoretic ’section’ of the crossed module corresponding to H.

Chapter 7

Cohomology of groups (and Lie Algebras)

7.1 Finite groups

7.1.1 Naive homology computation for a very small group

It is possible to compute the low degree (co)homology of a finite group or monoid of small order
directly from the bar resolution. The following commands take this approach to computing the fifth
integral homology

H5(Q4,Z) = Z2⊕Z2
of the quaternion group G = Q4 of order 8.

Example
gap> Q:=QuaternionGroup(8);;

gap> B:=BarComplexOfMonoid(Q,6);;

gap> C:=ContractedComplex(B);;

gap> Homology(C,5);

[2, 2]

gap> List([0..6],B!.dimension);

[1, 7, 49, 343, 2401, 16807, 117649]

gap> List([0..6],C!.dimension);

[1, 2, 2, 1, 2, 4, 102945]

However, this approach is of limited applicability since the bar resolution involves |G|k free gener-
ators in degree k. A range of techniques, tailored to specific classes of groups, can be used to compute
the (co)homology of larger finite groups.

This naive approach does have the merit of being applicable to arbitrary small monoids. The
following calculates the homology in degrees ≤ 7 of a monoid of order 8, the monoid being specified
by its multiplication table.

Example
gap> T:=[[1, 1, 1, 4, 4, 4, 4, 1],

> [1, 1, 1, 4, 4, 4, 4, 2],

> [1, 1, 1, 4, 4, 4, 4, 3],

> [4, 4, 4, 1, 1, 1, 1, 4],

> [4, 4, 4, 1, 1, 1, 1, 5],

> [4, 4, 4, 1, 1, 1, 1, 6],

94

A HAP tutorial 95

> [4, 4, 4, 1, 1, 1, 1, 7],

> [1, 2, 3, 4, 5, 6, 7, 8]];;

gap> M:=MonoidByMultiplicationTable(T);

<monoid of size 8, with 8 generators>

gap> B:=BarComplexOfMonoid(M,8);;

gap> C:=ContractedComplex(B);;

gap> List([0..7],i->Homology(C,i));

[[0], [2], [], [2], [], [2], [], [2]]

gap> List([0..8],B!.dimension);

[1, 7, 49, 343, 2401, 16807, 117649, 823543, 5764801]

gap> List([0..8],C!.dimension);

[1, 1, 1, 1, 1, 1, 1, 1, 5044201]

7.1.2 A more efficient homology computation

The following example computes the seventh integral homology
H7(M23,Z) = Z16⊕Z15
and fourth integral cohomomogy
H4(M24,Z) = Z12
and fifth integral homology
H5(M24,Z) = Z14
of the Mathieu groups M23 and M24. (Warning: the computation of H7(M23,Z) takes a couple of

hours to run and the computation for H5(M24,Z) takes an hour to run.)
Example

gap> GroupHomology(MathieuGroup(23),7);

[16, 3, 5]

gap> GroupCohomology(MathieuGroup(24),4);

[4, 3]

gap> GroupHomology(MathieuGroup(24),5);

[2, 7]

7.1.3 Computation of an induced homology homomorphism

The following example computes the cokernel
coker(H3(A7,Z)→ H3(S10,Z))∼= Z2⊕Z2
of the degree-3 integral homomogy homomorphism induced by the canonical inclusion A7→ S10

of the alternating group on 7 letters into the symmetric group on 10 letters. The analogous cokernel
with Z2 homology coefficients is also computed.

Example
gap> G:=SymmetricGroup(10);;

gap> H:=AlternatingGroup(7);;

gap> f:=GroupHomomorphismByFunction(H,G,x->x);;

gap> F:=GroupHomology(f,3);

MappingByFunction(Pcp-group with orders [4, 3], Pcp-group with orders

A HAP tutorial 96

[2, 2, 4, 3], function(x) ... end)

gap> AbelianInvariants(Range(F)/Image(F));

[2, 2]

gap> Fmod2:=GroupHomology(f,3,2);;

gap> AbelianInvariants(Range(Fmod2)/Image(Fmod2));

[2, 2]

7.1.4 Some other finite group homology computations

The following example computes the third integral homology of the Weyl group W = Weyl(E8), a
group of order 696729600.

H3(Weyl(E8),Z) = Z2⊕Z2⊕Z12
Example

gap> L:=SimpleLieAlgebra("E",8,Rationals);;

gap> W:=WeylGroup(RootSystem(L));;

gap> Order(W);

696729600

gap> GroupHomology(W,3);

[2, 2, 4, 3]

The preceding calculation could be achieved more quickly by noting that W =Weyl(E8) is a Cox-
eter group, and by using the associated Coxeter polytope. The following example uses this approach
to compute the fourth integral homology of W . It begins by displaying the Coxeter diagram of W , and
then computes

H4(Weyl(E8),Z) = Z2⊕Z2⊕Z2⊕Z2.
Example

gap> D:=[[1,[2,3]],[2,[3,3]],[3,[4,3],[5,3]],[5,[6,3]],[6,[7,3]],[7,[8,3]]];;

gap> CoxeterDiagramDisplay(D);

Example
gap> polytope:=CoxeterComplex_alt(D,5);;

gap> R:=FreeGResolution(polytope,5);

Resolution of length 5 in characteristic 0 for <matrix group with

8 generators> .

No contracting homotopy available.

gap> C:=TensorWithIntegers(R);

Chain complex of length 5 in characteristic 0 .

gap> Homology(C,4);

[2, 2, 2, 2]

The following example computes the sixth mod-2 homology of the Sylow 2-subgroup Syl2(M24)
of the Mathieu group M24.

H6(Syl2(M24),Z2) = Z143
2

A HAP tutorial 97

Example
gap> GroupHomology(SylowSubgroup(MathieuGroup(24),2),6,2);

[2,

2, 2,

2, 2,

2, 2,

2, 2,

2, 2,

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]

The following example computes the sixth mod-2 homology of the Unitary group U3(4) of order
312000.

H6(U3(4),Z2) = Z4
2

Example
gap> G:=GU(3,4);;

gap> Order(G);

312000

gap> GroupHomology(G,6,2);

[2, 2, 2, 2]

The following example constructs the Poincare series
p(x) = 1

−x3+3∗x2−3∗x+1
for the cohomology H∗(Syl2(M12,F2). The coefficient of xn in the expansion of p(x) is equal to

the dimension of the vector space Hn(Syl2(M12,F2). The computation involves SINGULAR’s Groebner
basis algorithms and the Lyndon-Hochschild-Serre spectral sequence.

Example
gap> G:=SylowSubgroup(MathieuGroup(12),2);;

gap> P:=PoincareSeriesLHS(G);

(1)/(-x_1^3+3*x_1^2-3*x_1+1)

The additional following command uses the Poincare series
Example

gap> RankHomologyPGroup(G,P,1000);

251000

to determine that H1000(Syl2(M12,Z) is a direct sum of 251000 non-trivial cyclic 2-groups.
The following example constructs the series
p(x) = x4−x3+x2−x+1

x6−x5+x4−2∗x3+x2−x+1
whose coefficient of xn is equal to the dimension of the vector space Hn(M11,F2) for all n in the

range 0≤ n≤ 14. The coefficient is not guaranteed correct for n≥ 15.
Example

gap> PoincareSeriesPrimePart(MathieuGroup(11),2,14);

(x_1^4-x_1^3+x_1^2-x_1+1)/(x_1^6-x_1^5+x_1^4-2*x_1^3+x_1^2-x_1+1)

A HAP tutorial 98

7.2 Nilpotent groups

The following example computes
H4(N,Z) = (Z3)

4⊕Z84

for the free nilpotent group N of class 2 on four generators.
Example

gap> F:=FreeGroup(4);; N:=NilpotentQuotient(F,2);;

gap> GroupHomology(N,4);

[3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0,

0, 0,

0, 0]

7.3 Crystallographic and Almost Crystallographic groups

The following example computes
H5(G,Z) = Z2⊕Z2
for the 3-dimensional crystallographic space group G with Hermann-Mauguin symbol "P62"

Example
gap> GroupHomology(SpaceGroupBBNWZ("P62"),5);

[2, 2]

The following example computes
H5(G,Z) = Z
for an almost crystallographic group.

Example
gap> G:=AlmostCrystallographicPcpGroup(4, 50, [1, -4, 1, 2]);;

gap> GroupCohomology(G,4);

[0]

7.4 Arithmetic groups

The following example computes
H6(SL2(O,Z) = Z2⊕Z12
for O the ring of integers of the number field Q(

√
−2).

Example
gap> C:=ContractibleGcomplex("SL(2,O-2)");;

gap> R:=FreeGResolution(C,7);;

gap> Homology(TensorWithIntegers(R),6);

[2, 12]

A HAP tutorial 99

7.5 Artin groups

The following example computes

Hn(G,Z) =


Z n = 0,1,7,8
Z2, n = 2,3
Z2⊕Z6, n = 4,6
Z3⊕Z6, n = 5
0, n > 8

for G the Artin group of type E8. (Similar commands can be used to compute a resolution and
homology of arbitrary Artin monoids and, in thoses cases such as the spherical cases where the
K(π,1)-conjecture is known to hold, the homology is equal to that of the corresponding Artin group.)

Example
gap> D:=[[1,[2,3]],[2,[3,3]],[3,[4,3],[5,3]],[5,[6,3]],[6,[7,3]],[7,[8,3]]];;

gap> CoxeterDiagramDisplay(D);;

Example
gap> R:=ResolutionArtinGroup(D,9);;

gap> C:=TensorWithIntegers(R);;

gap> List([0..8],n->Homology(C,n));

[[0], [0], [2], [2], [2, 6], [3, 6], [2, 6], [0], [0]]

The Artin group G projects onto the Coxeter group W of type E8. The group W has a natural
representation as a group of 8× 8 integer matrices. This projection gives rise to a representation
ρ:G→ GL8(Z). The following command computes the cohomology group H6(G,ρ) = (Z2)

6.
Example

gap> G:=R!.group;;

gap> gensG:=GeneratorsOfGroup(G);;

gap> W:=CoxeterDiagramMatCoxeterGroup(D);;

gap> gensW:=GeneratorsOfGroup(W);;

gap> rho:=GroupHomomorphismByImages(G,W,gensG,gensW);;

gap> C:=HomToIntegralModule(R,rho);;

gap> Cohomology(C,6);

[2, 2, 2, 2, 2, 2]

7.6 Graphs of groups

The following example computes
H5(G,Z) = Z2⊕Z2⊕Z2⊕Z2⊕Z2
for G the graph of groups corresponding to the amalgamated product G = S5 ∗S3 S4 of the symmet-

ric groups S5 and S4 over the canonical subgroup S3.
Example

gap> S5:=SymmetricGroup(5);SetName(S5,"S5");

gap> S4:=SymmetricGroup(4);SetName(S4,"S4");

gap> A:=SymmetricGroup(3);SetName(A,"S3");

gap> AS5:=GroupHomomorphismByFunction(A,S5,x->x);

gap> AS4:=GroupHomomorphismByFunction(A,S4,x->x);

gap> D:=[S5,S4,[AS5,AS4]];

A HAP tutorial 100

gap> GraphOfGroupsDisplay(D);

Example
gap> R:=ResolutionGraphOfGroups(D,6);;

gap> Homology(TensorWithIntegers(R),5);

[2, 2, 2, 2, 2]

The next example computes the integral homology of SL2(Z) in degrees ≤ 5 using the isomorphism
SL2(Z)∼=C4 ∗C2 C6.

Example
gap> x:=(1,2,3,4,5,6,7,8,9,10,11,12);;

gap> C6:=Group(x^2);;SetName(C6,"C6");;

gap> C4:=Group(x^3);;SetName(C4,"C4");;

gap> C2:=Group(x^6);;SetName(C2,"C2");;

gap> C2C6:=GroupHomomorphismByFunction(C2,C6,x->x);;

gap> C2C4:=GroupHomomorphismByFunction(C2,C4,x->x);;

gap> D:=[C6,C4,[C2C6,C2C4]];;

gap> GraphOfGroupsDisplay(D);

Example
gap> R:=ResolutionGraphOfGroups(D,6);;

gap> List([0..5],n->Homology(TensorWithIntegers(R),n));

[[0], [12], [], [12], [], [12]]

The next commands compute the integral homology in degree 7 of a graph of groups corresponding
to the HNN extension G = H∗A where H is the symmetric group H = S5 and A is the subgroup A = S3
and f : A→ H is the homomorphism (1,2)→ (3,4), (1,2,3)→ (3,4,5). The HNN extension G is
obtained from H by adding a generator t subject to the relations t−1at = f (a) for a ∈ A.

Example
gap> S5:=SymmetricGroup(5);SetName(S5,"S5");;

gap> A:=SymmetricGroup(3);SetName(A,"S3");;

gap> f:=GroupHomomorphismByImages(A,S5,[(1,2),(1,2,3)],[(3,4),(3,4,5)]);;

gap> g:=GroupHomomorphismByFunction(A,S5,x->x);;

gap> D:=[S5,[f,g]];;

gap> GraphOfGroupsDisplay(D);;

Example
gap> R:=ResolutionGraphOfGroups(D,8);;

gap> Homology(TensorWithIntegers(R),7);

[2, 2, 60]

7.7 Lie algebra homology and free nilpotent groups

One method of producting a Lie algebra L from a group G is by forming the direct sum L(G) =
G/γ2G⊕ γ2G/γ3G⊕ γ3G/γ4G⊕ ·· · of the quotients of the lower central series γ1G = G, γn+1G =
[γnG,G]. Commutation in G induces a Lie bracket L(G)×L(G)→ L(G).

A HAP tutorial 101

The homology Hn(L) of a Lie algebra (with trivial coefficients) can be calculated as the homology
of the Chevalley-Eilenberg chain complex C∗(L). This chain complex is implemented in HAP in the
cases where the underlying additive group of L is either finitely generated torsion free or finitely gener-
ated of prime exponent p. In these two cases the ground ring for the Lie algebra/ Chevalley-Eilenberg
complex is taken to be Z and Zp respectively.

For example, consider the quotient G = F/γ8F of the free group F = F(x,y) on two generators by
eighth term of its lower central series. So G is the free nilpotent group of class 7 on two generators.
The following commands compute H4(L(G))=Z77

2 ⊕Z8
6⊕Z51

12⊕Z11
132⊕Z2024 and show that the fourth

homology in this case contains 2-, 3- and 11-torsion. (The commands take an hour or so to complete.)
Example

gap> G:=Image(NqEpimorphismNilpotentQuotient(FreeGroup(2),7));;

gap> L:=LowerCentralSeriesLieAlgebra(G);;

gap> h:=LieAlgebraHomology(L,4);;

gap> Collected(h);

[[0, 2024], [2, 77], [6, 8], [12, 51], [132, 11]]

For a free nilpotent group G the additive homology Hn(L(G)) of the Lie algebra can be
computed more quickly in HAP than the integral group homology Hn(G,Z). Clearly there are
isomorphismsH1(G) ∼= H1(L(G)) ∼= Gab of abelian groups in homological degree n = 1. Hopf’s for-
mula can be used to establish an isomorphism H2(G)∼= H2(L(G)) also in degree n = 2. The following
two theorems provide further isomorphisms that allow for the homology of a free nilpotent group to
be calculated more efficiently as the homology of the associated Lie algebra.

THEOREM 1. [KS98] Let G be a finitely generated free nilpotent group of class 2. Then the
integral group homology Hn(G,Z) is isomorphic to the integral Lie algebra homology Hn(L(G),Z) in
each degree n≥ 0.

THEOREM 2. [IO01] Let G be a finitely generated free nilpotent group (of any class). Then the
integral group homology Hn(G,Z) is isomorphic to the integral Lie algebra homology Hn(L(G),Z) in
degrees n = 0,1,2,3.

We should remark that experimentation on free nilpotent groups of class ≥ 4 has not yielded a
group for which the isomorphism Hn(G,Z)∼= Hn(L(G),G) fails. For instance, the isomorphism holds
in degree n = 4 for the free nilpotent group of class 5 on two generators, and for the free nilpotent
group of class 2 on four generators:

Example
gap> G:=Image(NqEpimorphismNilpotentQuotient(FreeGroup(2),5));;

gap> L:=LowerCentralSeriesLieAlgebra(G);;

gap> Collected(LieAlgebraHomology(L,4));

[[0, 85], [7, 1]]

gap> Collected(GroupHomology(G,4));

[[0, 85], [7, 1]]

gap> G:=Image(NqEpimorphismNilpotentQuotient(FreeGroup(4),2));;

gap> L:=LowerCentralSeriesLieAlgebra(G);;

gap> Collected(LieAlgebraHomology(L,4));

[[0, 84], [3, 4]]

gap> Collected(GroupHomology(G,4));

[[0, 84], [3, 4]]

A HAP tutorial 102

7.8 Cohomology with coefficients in a module

There are various ways to represent a ZG-module A with action G×A→ A,(g,a) 7→ α(g,a).
One possibility is to use the data type of a G-Outer Group which involves three components:

an ActedGroup A; an ActingGroup G; a Mapping (g,a) 7→ α(g,a). The following example uses
this data type to compute the cohomology H4(G,A) = Z5⊕Z10 of the symmetric group G = S6 with
coefficients in the integers A = Z where odd permutations act non-trivially on A.

Example
gap> G:=SymmetricGroup(6);;

gap> A:=AbelianPcpGroup([0]);;

gap> alpha:=function(g,a); return a^SignPerm(g); end;;

gap> A:=GModuleAsGOuterGroup(G,A,alpha);

ZG-module with abelian invariants [0] and G= SymmetricGroup([1 .. 6])

gap> R:=ResolutionFiniteGroup(G,5);;

gap> C:=HomToGModule(R,A);

G-cocomplex of length 5 .

gap> Cohomology(C,4);

[2, 2, 5]

If A = Zn and G acts as
G×A→ A,(g,v) 7→ ρ(g)v
where ρ:G→ Gln(Z) is a (not necessarily faithful) matrix representation of degree n then we can

avoid the use of G-outer groups and use just the homomorphism ρ instead. The following example
uses this data type to compute the cohomology

H6(G,A) = Z2
and the homology
H6(G,A) = 0
of the alternating group G = A5 with coefficients in A = Z5 where elements of G act on Z5 via an

irreducible representation.
Example

gap> G:=AlternatingGroup(5);;

gap> rho:=IrreducibleRepresentations(G)[5];

[(1,2,3,4,5), (3,4,5)] ->

[

[[0, 0, 1, 0, 0], [-1, -1, 0, 0, 1], [0, 1, 1, 1, 0],

[1, 0, -1, 0, -1], [-1, -1, 0, -1, 0]],

[[-1, -1, 0, 0, 1], [1, 0, -1, 0, -1], [0, 0, 0, 0, 1],

[0, 0, 1, 0, 0], [0, 0, 0, 1, 0]]]

gap> R:=ResolutionFiniteGroup(G,7);;

gap> C:=HomToIntegralModule(R,rho);;

gap> Cohomology(C,6);

[2]

gap> D:=TensorWithIntegralModule(R,rho);

Chain complex of length 7 in characteristic 0 .

gap> Homology(D,6);

A HAP tutorial 103

[]

If V = Kd is a vetor space of dimension d over the field K = GF(p) with p a prime and G acts on
V via a homomorphism ρ:G→ GLd(K) then the homology Hn(G,V) can again be computed without
the use of G-outer groups. As an example, the following commands compute

H4(GL(3,2),V) = K2

where K = GF(2) and GL(3,2) acts with its natural action on V = K3.
Example

gap> G:=GL(3,2);;

gap> rho:=GroupHomomorphismByFunction(G,G,x->x);;

gap> R:=ResolutionFiniteGroup(G,5);;

gap> C:=HomToModPModule(R,rho);;

gap> Cohomology(C,4);

2

It can be computationally difficult to compute resolutions for large finite groups. But the
p-primary part of the homology can be computed using resolutions of Sylow p-subgroups. This
approach is used in the following example that computes the 2-primary part

H2(G,Z)(2) = Z2⊕Z2⊕Z2
of the degree 2 integral homology of the Rubik’s cube group G. This group has order

43252003274489856000.
Example

gap> gens:= [

> (1, 3, 8, 6)(2, 5, 7, 4)(9,33,25,17)(10,34,26,18)(11,35,27,19),

> (9,11,16,14)(10,13,15,12)(1,17,41,40)(4,20,44,37)(6,22,46,35),

> (17,19,24,22)(18,21,23,20)(6,25,43,16)(7,28,42,13)(8,30,41,11),

> (25,27,32,30)(26,29,31,28)(3,38,43,19)(5,36,45,21)(8,33,48,24),

> (33,35,40,38)(34,37,39,36)(3, 9,46,32)(2,12,47,29)(1,14,48,27),

> (41,43,48,46)(42,45,47,44)(14,22,30,38)(15,23,31,39)(16,24,32,40)

>];; G:=Group(gens);;P:=SylowSubgroup(G,2);;

gap> R:=ResolutionNormalSeries(BigStepUCS(P,6),3);;

gap> PrimePartDerivedFunctorViaSubgroupChain(G,R,TensorWithIntegers,2);

[2, 2, 2]

The same approach is used in the following example that computes the 2-primary part
H11(A7,A)(2) = Z2⊕Z2⊕Z4
of the degree 11 homology of the alternating group A7 of degree 7 with coefficients in the module

A = Z7 on which A7 acts by permuting basis vectors.
Example

gap> G:=AlternatingGroup(7);;

gap> rho:=PermToMatrixGroup(G);;

gap> R:=ResolutionFiniteGroup(SylowSubgroup(G,2),12);;

gap> F:=function(X); return TensorWithIntegralModule(X,rho); end;;

gap> PrimePartDerivedFunctorViaSubgroupChain(G,R,F,11);

[2, 2, 4]

A HAP tutorial 104

Similar commands compute
H3(A10,A)(2) = Z4
with coefficient module A = Z10 on which A10 acts by permuting basis vectors.

Example
gap> G:=AlternatingGroup(10);;

gap> rho:=PermToMatrixGroup(G);;

gap> R:=ResolutionFiniteGroup(SylowSubgroup(G,2),4);;

gap> F:=function(X); return TensorWithIntegralModule(X,rho); end;;

gap> PrimePartDerivedFunctorViaSubgroupChain(G,R,F,3);

[4]

The following commands compute
H100(GL(3,2),V) = K34

where V is the vector space of dimension 3 over K = GF(2) acting via some irreducible represen-
tation ρ:GL(3,2)→ GL(V).

Example
gap> G:=GL(3,2);;

gap> rho:=IrreducibleRepresentations(G,GF(2))[3];

CompositionMapping([(5,7)(6,8), (2,3,5)(4,7,6)] ->

[<an immutable 3x3 matrix over GF2>, <an immutable 3x3 matrix over GF2>],

<action isomorphism>)

gap> F:=function(X); return TensorWithModPModule(X,rho); end;;

gap> S:=ResolutionPrimePowerGroup(SylowSubgroup(G,2),101);;

gap> PrimePartDerivedFunctorViaSubgroupChain(G,S,F,100);

[2,

2, 2, 2, 2, 2, 2, 2, 2, 2]

7.9 Cohomology as a functor of the first variable

Suppose given a group homomorphism f :G1 → G2 and a G2-module A. Then A is nat-
urally a G1-module with action via f , and there is an induced cohomology homomorphism
Hn(f ,A):Hn(G2,A)→ Hn(G1,A).

The following example computes this cohomology homomorphism in degree n = 6 for the in-
clusion f :A5 → S5 and A = Z5 with action that permutes the canonical basis. The final commands
determine that the kernel of the homomorphism H6(f ,A) is the Klein group of order 4 and that the
cokernel is cyclic of order 6.

Example
gap> G1:=AlternatingGroup(5);;

gap> G2:=SymmetricGroup(5);;

gap> f:=GroupHomomorphismByFunction(G1,G2,x->x);;

gap> pi:=PermToMatrixGroup(G2,5);;

gap> R1:=ResolutionFiniteGroup(G1,7);;

gap> R2:=ResolutionFiniteGroup(G2,7);;

gap> F:=EquivariantChainMap(R1,R2,f);;

gap> C:=HomToIntegralModule(F,pi);;

gap> c:=Cohomology(C,6);

[g1, g2, g3] -> [id, id, g3]

A HAP tutorial 105

gap> AbelianInvariants(Kernel(c));

[2, 2]

gap> AbelianInvariants(Range(c)/Image(c));

[2, 3]

7.10 Cohomology as a functor of the second variable and the long exact
coefficient sequence

A short exact sequence of ZG-modules A � B � C induces a long exact sequence of cohomology
groups
→ Hn(G,A)→ Hn(G,B)→ Hn(G,C)→ Hn+1(G,A)→ .
Consider the symmetric group G = S4 and the sequence Z4 � Z8 � Z2 of trivial ZG-modules.

The following commands compute the induced cohomology homomorphism
f :H3(S4,Z4)→ H3(S4,Z8)
and determine that the image of this induced homomorphism has order 8 and that its kernel has

order 2.
Example

gap> G:=SymmetricGroup(4);;

gap> x:=(1,2,3,4,5,6,7,8);;

gap> a:=Group(x^2);;

gap> b:=Group(x);;

gap> ahomb:=GroupHomomorphismByFunction(a,b,y->y);;

gap> A:=TrivialGModuleAsGOuterGroup(G,a);;

gap> B:=TrivialGModuleAsGOuterGroup(G,b);;

gap> phi:=GOuterGroupHomomorphism();;

gap> phi!.Source:=A;;

gap> phi!.Target:=B;;

gap> phi!.Mapping:=ahomb;;

gap> Hphi:=CohomologyHomomorphism(phi,3);;

gap> Size(ImageOfGOuterGroupHomomorphism(Hphi));

8

gap> Size(KernelOfGOuterGroupHomomorphism(Hphi));

2

The following commands then compute the homomorphism
H3(S4,Z8)→ H3(S4,Z2)
induced by Z4 � Z8 � Z2, and determine that the kernel of this homomorphsim has order 8.

Example
gap> bhomc:=NaturalHomomorphismByNormalSubgroup(b,a);

gap> B:=TrivialGModuleAsGOuterGroup(G,b);

gap> C:=TrivialGModuleAsGOuterGroup(G,Image(bhomc));

gap> psi:=GOuterGroupHomomorphism();

gap> psi!.Source:=B;

gap> psi!.Target:=C;

A HAP tutorial 106

gap> psi!.Mapping:=bhomc;

gap> Hpsi:=CohomologyHomomorphism(psi,3);

gap> Size(KernelOfGOuterGroupHomomorphism(Hpsi));

8

The following commands then compute the connecting homomorphism
H2(S4,Z2)→ H3(S4,Z4)
and determine that the image of this homomorphism has order 2.

Example
gap> delta:=ConnectingCohomologyHomomorphism(psi,2);;

gap> Size(ImageOfGOuterGroupHomomorphism(delta));

Note that the various orders are consistent with exactness of the sequence
H2(S4,Z2)→ H3(S4,Z4)→ H3(S4,Z8)→ H3(S4,Z2) .

7.11 Transfer Homomorphism

Consider the action of the symmetric group G = S5 on A = Z5 which permutes the canonical basis.
The action restricts to the sylow 2-subgroup P = Syl2(G). The following commands compute the
cohomology transfer homomorphism t4:H4(P,A)→ H4(S5,A) and determine its kernel and image.
The integral homology transfer t4:H4(S5,Z)→ H5(P,Z) is also computed.

Example
gap> G:=SymmetricGroup(5);;

gap> P:=SylowSubgroup(G,2);;

gap> R:=ResolutionFiniteGroup(G,5);;

gap> A:=PermToMatrixGroup(G);;

gap> tr:=TransferCochainMap(R,P,A);

Cochain Map between complexes of length 5 .

gap> t4:=Cohomology(tr,4);

[g1, g2, g3, g4] -> [id, g1, g2, g4]

gap> StructureDescription(Kernel(t4));

"C2 x C2"

gap> StructureDescription(Image(t4));

"C4 x C2"

gap> tr:=TransferChainMap(R,P);

Chain Map between complexes of length 5 .

gap> Homology(tr,4);

[g1] -> [g1]

A HAP tutorial 107

7.12 Cohomology rings of finite fundamental groups of 3-manifolds

A spherical 3-manifold is a 3-manifold arising as the quotient S3/Γ of the 3-sphere S3 by a finite
subgroup Γ of SO(4) acting freely as rotations. The geometrization conjecture, proved by Grigori
Perelman, implies that every closed connected 3-manifold with a finite fundamental group is homeo-
morphic to a spherical 3-manifold.

A spherical 3-manifold S3/Γ has finite fundamental group isomorphic to Γ. This fundamental
group is one of:

• Γ =Cm = 〈x | xm〉 (CYCLIC FUNDAMENTAL GROUP)

• Γ =Cm×〈x,y | xyx−1 = y−1,x2k
= yn〉 for integers k,m≥ 1,n≥ 2 and m coprime to 2n (PRISM

MANIFOLD CASE)

• Γ = Cm×〈x,y,z | (xy)2 = x2 = y2,zxz−1 = y,zyz−1 = xy,z3k
= 1〉 for integers k,m ≥ 1 and m

coprime to 6 (TETRAHEDRAL CASE)

• Γ =Cm×〈x,y | (xy)2 = x3 = y4〉 for m≥ 1 coprime to 6 (OCTAHEDRAL CASE)

• Γ =Cm×〈x,y | (xy)2 = x3 = y5〉 for m≥ 1 coprime to 30 (ICOSAHEDRAL CASE).

This list of cases is taken from the Wikipedia pages. The group Γ has periodic cohomology since it
acts on a sphere. The cyclic group has period 2 and in the other four cases it has period 4. (Recall that
in general a finite group G has periodic cohomology of period n if there is an element u ∈ Hn(G,Z)
such that the cup product − ∪ u:Hk(G,Z)→ Hk+n(G,Z) is an isomorphism for all k ≥ 1. It can be
shown that G has periodic cohomology of period n if and only if Hn(G,Z) = Z|G|.)

The cohomology of the cyclic group is well-known, and the cohomology of a direct product can
be obtained from that of the factors using the Kunneth formula.

In the icosahedral case with m = 1 the following commands yield $$H^\ast(\Gamma,\mathbb
Z)=Z[t]/(120t=0)$$ with generator t of degree 4. The final command demonstrates that a periodic
resolution is used in the computation.

Example
gap> F:=FreeGroup(2);;x:=F.1;;y:=F.2;;

gap> G:=F/[(x*y)^2*x^-3, x^3*y^-5];;

gap> Order(G);

120

gap> R:=ResolutionSmallGroup(G,5);;

gap> n:=0;;Cohomology(HomToIntegers(R),n);

[0]

gap> n:=1;;Cohomology(HomToIntegers(R),n);

[]

gap> n:=2;;Cohomology(HomToIntegers(R),n);

[]

gap> n:=3;;Cohomology(HomToIntegers(R),n);

[]

gap> n:=4;;Cohomology(HomToIntegers(R),n);

[120]

gap> List([0..5],k->R!.dimension(k));

[1, 2, 2, 1, 1, 2]

https://en.wikipedia.org/wiki/Spherical_3-manifold

A HAP tutorial 108

In the octahedral case with m = 1 we obtain $$H^\ast(\Gamma,\mathbb Z) = \mathbb
Z[s,t]/(s^2=24t, 2s=0, 48t=0)$$ where s has degree 2 and t has degree 4, from the following com-
mands.

Example
gap> F:=FreeGroup(2);;x:=F.1;;y:=F.2;;

gap> G:=F/[(x*y)^2*x^-3, x^3*y^-4];;

gap> Order(G);

48

gap> R:=ResolutionFiniteGroup(G,5);;

gap> n:=0;;Cohomology(HomToIntegers(R),n);

[0]

gap> n:=1;;Cohomology(HomToIntegers(R),n);

[]

gap> n:=2;;Cohomology(HomToIntegers(R),n);

[2]

gap> n:=3;;Cohomology(HomToIntegers(R),n);

[]

gap> n:=4;;Cohomology(HomToIntegers(R),n);

[48]

gap> IntegralCupProduct(R,[1],[1],2,2);

[24]

In the tetrahedral case with m = 1 we obtain $$H^\ast(\Gamma,\mathbb Z) = \mathbb
Z[s,t]/(s^2=16t, 3s=0, 24t=0)$$ where s has degree 2 and t has degree 4, from the following com-
mands.

Example
gap> F:=FreeGroup(3);;x:=F.1;;y:=F.2;;z:=F.3;;

gap> G:=F/[(x*y)^2*x^-2, x^2*y^-2, z*x*z^-1*y^-1, z*y*z^-1*y^-1*x^-1,z^3];;

gap> Order(G);

24

gap> R:=ResolutionFiniteGroup(G,5);;

gap> n:=1;;Cohomology(HomToIntegers(R),n);

[]

gap> n:=2;;Cohomology(HomToIntegers(R),n);

[3]

gap> n:=3;;Cohomology(HomToIntegers(R),n);

[]

gap> n:=4;;Cohomology(HomToIntegers(R),n);

[24]

gap> IntegralCupProduct(R,[1],[1],2,2);

[16]

A theoretical calculation of the integral and mod-p cohomology rings of all of these fundamental
groups of spherical 3-manifolds is given in [TZ08].

7.13 Explicit cocycles

Given a ZG-resolution R∗ and a ZG-module A, one defines an n-cocycle to be a ZG-homomorphism
f :Rn → A for which the composite homomorphism f dn+1:Rn+1 → A is zero. If R∗ happens to be

A HAP tutorial 109

the standard bar resolution (i.e. the cellular chain complex of the nerve of the group G considered as
a one object category) then the free ZG-generators of Rn are indexed by n-tuples (g1|g2| . . . |gn) of
elements gi in G. In this case we say that the n-cocycle is a standard n-cocycle and we think of it as
a set-theoretic function

f :G×G×·· ·×G−→ A
satisfying a certain algebraic cocycle condition. Bearing in mind that a standard n-cocycle really

just assigns an element f (g1, . . . ,gn) ∈ A to an n-simplex in the nerve of G , the cocycle condition is
a very natural one which states that f must vanish on the boundary of a certain (n+1)-simplex. For
n = 2 the condition is that a 2-cocycle f (g1,g2) must satisfy

g. f (h,k)+ f (g,hk) = f (gh,k)+ f (g,h)
for all g,h,k ∈ G. This equation is explained by the following picture.
The definition of a cocycle clearly depends on the choice of ZG-resolution R∗. However, the

cohomology group Hn(G,A), which is a group of equivalence classes of n-cocycles, is independent
of the choice of R∗.

There are some occasions when one needs explicit examples of standard cocycles. For instance:

• Let G be a finite group and k a field of characteristic 0. The group algebra k(G), and the algebra
F(G) of functions dg:G→ k,h→ dg,h, are both Hopf algebras. The tensor product F(G)⊗k(G)
also admits a Hopf algebra structure known as the quantum double D(G). A twisted quan-
tum double D f (G) was introduced by R. Dijkraaf, V. Pasquier & P. Roche [DPR91]. The
twisted double is a quasi-Hopf algebra depending on a 3-cocycle f :G×G×G → k. The
multiplication is given by (dg ⊗ x)(dh ⊗ y) = dgx,xhβg(x,y)(dg ⊗ xy) where βa is defined by
βa(h,g) = f (a,h,g) f (h,h−1ah,g)−1 f (h,g,(hg)−1ahg) . Although the algebraic structure of
D f (G) depends very much on the particular 3-cocycle f , representation-theoretic properties of
D f (G) depend only on the cohomology class of f .

• An explicit 2-cocycle f :G×G→ A is needed to construct the multiplication (a,g)(a′,g′) =
(a + g · a′+ f (g,g′),gg′) in the extension a group G by a ZG-module A determined by the
cohomology class of f in H2(G,A). See 6.7.

• In work on coding theory and Hadamard matrices a number of papers have investigated square
matrices (ai j) whose entries ai j = f (gi,g j) are the values of a 2-cocycle f :G×G→ Z2 where
G is a finite group acting trivially on Z2. See for instance [Hor00] and 6.10.

Given a ZG-resolution R∗ (with contracting homotopy) and a ZG-module A one can use HAP
commands to compute explicit standard n-cocycles f :Gn→ A. With the twisted quantum double in
mind, we illustrate the computation for n = 3, G = S3, and A =U(1) the group of complex numbers
of modulus 1 with trivial G-action.

We first compute a ZG-resolution R∗. The Universal Coefficient Theorem gives an isomorphism
H3(G,U(1)) = HomZ(H3(G,Z),U(1)), The multiplicative group U(1) can thus be viewed as Zm

where m is a multiple of the exponent of H3(G,Z).
Example

gap> G:=SymmetricGroup(3);;

gap> R:=ResolutionFiniteGroup(G,4);;

gap> TR:=TensorWithIntegers(R);;

gap> Homology(TR,3);

[6]

gap> R!.dimension(3);

4

A HAP tutorial 110

gap> R!.dimension(4);

5

We thus replace the very infinite group U(1) by the finite cyclic group Z6. Since the resolution
R∗ has 4 generators in degree 3, a homomorphism f :R3 → U(1) can be represented by a list f =
[f1, f2, f3, f4] with fi the image in Z6 of the ith generator. The cocycle condition on f can be expressed
as a matrix equation

M f t = 0 mod 6.
where the matrix M is obtained from the following command and f t denotes the transpose.

Example
gap> M:=CocycleCondition(R,3);;

A particular cocycle f = [f1, f2, f3, f4] can be obtained by choosing a solution to the equation Mf^t=0.
Example

gap> SolutionsMod2:=NullspaceModQ(TransposedMat(M),2);

[[0, 0, 0, 0], [0, 0, 1, 1], [1, 1, 0, 0], [1, 1, 1, 1]]

gap> SolutionsMod3:=NullspaceModQ(TransposedMat(M),3);

[[0, 0, 0, 0], [0, 0, 0, 1], [0, 0, 0, 2], [0, 0, 1, 0],

[0, 0, 1, 1], [0, 0, 1, 2], [0, 0, 2, 0], [0, 0, 2, 1],

[0, 0, 2, 2]]

A non-standard 3-cocycle f can be converted to a standard one using the command
StandardCocycle(R,f,n,q) . This command inputs R∗, integers n and q, and an n-cocycle f for
the resolution R∗. It returns a standard cocycle Gn→ Zq.

Example
gap> f:=3*SolutionsMod2[3] - SolutionsMod3[5]; #An example solution to Mf=0 mod 6.

[3, 3, -1, -1]

gap> Standard_f:=StandardCocycle(R,f,3,6);;

gap> g:=Random(G); h:=Random(G); k:=Random(G);

(1,2)

(1,3,2)

(1,3)

gap> Standard_f(g,h,k);

3

A function f :G×G×G→ A is a standard 3-cocycle if and only if
g · f (h,k, l)− f (gh,k, l)+ f (g,hk, l)− f (g,h,kl)+ f (g,h,k) = 0
for all g,h,k, l ∈ G. In the above example the group G = S3 acts trivially on A = Z6. The fol-

lowing commands show that the standard 3-cocycle produced in the example really does satisfy this
3-cocycle condition.

A HAP tutorial 111

Example
gap> sf:=Standard_f;;

gap> Test:=function(g,h,k,l);

> return sf(h,k,l) - sf(g*h,k,l) + sf(g,h*k,l) - sf(g,h,k*l) + sf(g,h,k);

> end;

function(g, h, k, l) ... end

gap> for g in G do for h in G do for k in G do for l in G do

> Print(Test(g,h,k,l),",");

> od;od;od;od;

0,

0,

0,

0,

0,

0,

0,6,0,6,6,0,0,6,

0,0,0,0,0,6,6,6,0,6,0,12,12,6,12,6,0,12,6,0,6,6,0,0,0,0,0,0,0,12,12,6,6,6,0,

6,6,0,6,6,0,0,-6,0,0,0,0,0,0,0,0,0,0,6,6,6,6,6,0,0,0,0,0,0,0,6,0,0,6,6,0,6,6,

0,6,0,0,6,6,6,0,0,0,0,0,0,0,-6,0,0,-6,0,-6,0,0,0,0,0,0,0,0,6,6,0,6,0,0,6,0,0,

0,0,0,6,6,6,0,0,0,6,6,6,0,0,0,0,-6,0,6,6,0,0,0,0,0,0,0,12,6,6,0,6,0,0,0,0,12,

6,0,0,0,0,0,0,0,6,6,0,

0,6,0,0,6,0,0,6,0,0,0,0,0,6,6,

6,0,0,0,6,12,6,6,0,0,0,-6,0,0,6,0,0,0,0,0,0,0,12,12,6,6,6,0,0,0,0,6,6,0,0,0,

0,6,0,0,6,0,6,0,0,0,0,0,0,

0,6,6,6,6,6,0,

6,6,0,6,6,0,12,12,6,12,12,0,0,0,0,0,0,0,6,6,0,0,0,0,6,6,6,12,12,0,-6,-6,0,0,

0,0,6,6,0,0,6,0,0,6,0,6,6,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,6,

0,6,0,0,6,0,0,0,0,0,0,0,0,0,0,0,6,6,0,6,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,6,6,0,6,6,0,6,0,0,6,6,6,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,

0,6,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,6,0,0,0,0,0,0,0,6,6,0,0,0,0,0,0,0,0,

0,

0,0,0,0,0,0,0,0,0,0,-6,0,6,0,6,0,6,0,0,0,0,0,0,0,12,12,6,12,12,0,6,6,0,6,6,0,

0,0,0,0,0,0,12,12,6,12,12,0,6,6,0,6,6,0,0,0,0,0,0,0,0,0,0,0,0,0,6,6,6,6,6,0,

0,0,0,0,0,0,6,0,0,6,6,0,6,6,0,6,0,0,6,6,6,0,0,0,-6,0,0,0,-6,0,0,-6,0,-6,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,6,6,6,6,0,6,6,0,0,0,0,0,0,0,6,6,0,0,0,

0,0,0,0,6,6,0,-6,0,0,-6,0,0,12,6,0,-6,-6,0,0,0,0,6,6,0,0,6,0,0,6,0,6,6,0,0,0,

0,

0,0,0,-6,0,0,0,0,0,0,0,0,0,0,6,6,6,6,6,0,6,12,0,6,0,0,6,0,0,0,6,0,0,0,0,0,0,

0,6,12,0,0,0,0,0,0,0,6,6,0,-6,-6,0,0,0,0,0,0,0,0,6,0,0,6,0,6,6,0,0,0,0,0,0,0,

6,0,0,0,6,0,0,6,0,6,0,6,

0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,6,6,0,6,6,0,6,6,6,12,12,0,0,0,0,0,0,0,6,6,0,

6,6,0,6,6,6,12,12,0,0,0,0,0,0,0,6,6,0,0,6,0,0,6,0,6,6,

A HAP tutorial 112

7.14 Quillen’s complex and the p-part of homology

Let G be a finite group with order divisible by prime p. Let A = Ap(G) denote Quillen’s simplicial
complex arising as the order complex of the poset of non-trivial elementary abelian p-subgroups of
G. The group G acts on A . Denote the orbit of a k-simplex ek by [ek], and the stabilizer of ek by
Stab(ek) ≤ G. For a finite abelian group H let Hp denote the Sylow p-subgroup or the "p-part". In
Theorem 3.3 of [Web87] P.J. Webb proved the following.

THEOREM.[Web87] For any G-module M there is a (non natural) isomomorphism
Hn(G,M)p⊕

⊕
[ek] :k odd Hn(Stab(ek),M)p ∼=

⊕
[ek] :k even Hn(Stab(ek),M)p

for n≥ 1. The isomorphism can also be expressed as
Hn(G,M)p ∼=

⊕
[ek] :k even Hn(Stab(ek),M)p −

⊕
[ek] :k odd Hn(Stab(ek),M)p

where terms can often be cancelled.
Thus the additive structure of the p-part of the homology of G is determined by that of the stabi-

lizer groups. The result also holds with homology replaced by cohomology.
ILLUSTRATION 1
As an illustration of the theorem, the following commands calculate
Hn(SL3(Z2),Z)∼= Hn(S4,Z)2⊕Hn(S4,Z)2	Hn(D8,Z)2⊕Hn(S3,Z)3⊕Hn(C7 : C3,Z)7
where n ≥ 1, Sk denotes the symmetric group on n letters, D8 the dihedral group of order 8 and

C7 : C3 a nonabelian semi-direct product of cyclic groups. Furthermore, for n≥ 1

Hn(C7 : C3,Z)7 =

{
Z7, n≡ 5 mod 6
0, otherwise

and

Hn(S3,Z)3 =

{
Z3, n≡ 3 mod 4
0, n otherwise.

Formulas for Hn(S4,Z) and Hn(D8,Z) can be found in the literature. Alternatively, they can be
computed using GAP for a given value of n. For n = 27 we find

H27(S4,Z)2⊕H27(S4,Z)2	H27(D8,Z)2 ∼= Z2⊕Z2⊕Z2⊕Z2⊕Z4
and
H27(SL3(Z2),Z)∼= Z2⊕Z2⊕Z2⊕Z2⊕Z4⊕Z3 .

Example
gap> G:=SL(3,2);;Factors(Order(G));

[2, 2, 2, 3, 7]

gap> D2:=HomologicalGroupDecomposition(G,2);;

gap> D3:=HomologicalGroupDecomposition(G,3);;

gap> D7:=HomologicalGroupDecomposition(G,7);;

gap> List(D2[1],StructureDescription);

["S4", "S4"]

gap> List(D2[2],StructureDescription);

["D8"]

gap> List(D3[1],StructureDescription);

["S3"]

gap> List(D3[2],StructureDescription);

[]

gap> List(D7[1],StructureDescription);

["C7 : C3"]

gap> List(D7[2],StructureDescription);

[]

gap> CohomologicalPeriod(D7[1][1]);

6

A HAP tutorial 113

gap> List([1..6],n->GroupHomology(D7[1][1],n));

[[3], [], [3], [], [3, 7], []]

gap> CohomologicalPeriod(D3[1][1]);

4

gap> List([1..4],n->GroupHomology(D3[1][1],n));

[[2], [], [6], []]

gap> R_S4:=ResolutionFiniteGroup(Group([(1,2),(2,3),(3,4)]),28);;

gap> R_D8:=ResolutionFiniteGroup(Group([(1,2),(1,3)(2,4)]),28);;

gap> Homology(TensorWithIntegers(R_S4),27);

[2, 2, 2, 2, 2, 2, 2, 2, 2, 12]

gap> Homology(TensorWithIntegers(R_D8),27);

[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4]

ILLUSTRATION 2
As a further illustration of the theorem, the following commands calculate
Hn(M12,M)3 ∼=

⊕
1≤i≤3 Hn(Stabi,M)3−

⊕
4≤i≤5 Hn(Stabi,M)3

for the Mathieu simple group M12 of order 95040, where
Stab1 ∼= Stab3 = (((C3×C3) : Q8) : C3) : C2
Stab2 = A4×S3
Stab4 =C3×S3
Stab5 = ((C3×C3) : C3) : (C2×C2) .

Example
gap> G:=MathieuGroup(12);;

gap> D:=HomologicalGroupDecomposition(G,3);;

gap> List(D[1],StructureDescription);

["(((C3 x C3) : Q8) : C3) : C2", "A4 x S3", "(((C3 x C3) : Q8) : C3) : C2"]

gap> List(D[2],StructureDescription);

["C3 x S3", "((C3 x C3) : C3) : (C2 x C2)"]

ILLUSTRATION 3
As a third illustration, the following commands show that Hn(M23,M)p is periodic for primes

p = 5,7,11,23 of periods dividing 8,6,10,22 respectively. They also show that Hn(M23,Z)(3) = 0 for
n = 8,9,12,13 and Hn(M23,Z)(3) = Z3 for n = 10,11.

Example
gap> G:=MathieuGroup(23);;

gap> Factors(Order(G));

[2, 2, 2, 2, 2, 2, 2, 3, 3, 5, 7, 11, 23]

gap> sd:=StructureDescription;;

gap> D:=HomologicalGroupDecomposition(G,5);;

gap> List(D[1],sd);List(D[2],sd);

["C15 : C4"]

[]

gap> IsPeriodic(D[1][1]);

true

A HAP tutorial 114

gap> CohomologicalPeriod(D[1][1]);

8

gap> D:=HomologicalGroupDecomposition(G,7);;

gap> List(D[1],sd);List(D[2],sd);

["C2 x (C7 : C3)"]

[]

gap> IsPeriodic(D[1][1]);

true

gap> CohomologicalPeriod(D[1][1]);

6

gap> D:=HomologicalGroupDecomposition(G,11);;

gap> List(D[1],sd);List(D[2],sd);

["C11 : C5"]

[]

gap> IsPeriodic(D[1][1]);

true

gap> CohomologicalPeriod(D[1][1]);

10

gap> D:=HomologicalGroupDecomposition(G,23);;

gap> List(D[1],sd);List(D[2],sd);

["C23 : C11"]

[]

gap> IsPeriodic(D[1][1]);

true

gap> CohomologicalPeriod(D[1][1]);

22

Example
gap> G:=MathieuGroup(23);;

gap> D:=HomologicalGroupDecomposition(G,3);;

gap> List(D[1],StructureDescription);List(D[2],StructureDescription);

["(C3 x C3) : QD16", "A5 : S3"]

["S3 x S3"]

gap> for n in [8..13] do

> Print(List(D[1],g->GroupHomology(g,n))," , ",List(D[2],g->GroupHomology(g,n)),"\n\n");

> od;

[[2, 2], [2, 2, 2]] , [[2, 2, 2, 2]]

[[2, 2, 2, 2], [2, 2, 2, 2]] , [[2, 2, 2, 2, 2, 2]]

[[2, 2, 3], [2, 2, 2, 3, 3]] , [[2, 2, 2, 2, 2, 3, 3]]

[[2, 2, 2, 8, 3], [2, 2, 2, 2, 4, 3, 3, 3, 3]] ,

[[2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3]]

[[2, 2, 2], [2, 2, 2, 2]] , [[2, 2, 2, 2, 2, 2]]

[[2, 2, 2, 2, 2], [2, 2, 2, 2, 2]] , [[2, 2, 2, 2, 2, 2, 2, 2]]

A HAP tutorial 115

The order |M23| = 10200960 is divisible by primes p = 2,3,5,7,11,23. For p = 3 the following
commands establish that the Poincare series

(x16− 2x15 +3x14− 4x13 +4x12− 4x11 +4x10− 3x9 +3x8− 3x7+ 4x6− 4x5 +4x4− 4x3 +3x2−
2x+1)/ (x18−2x17 +3x16−4x15 +4x14− 4x13+4x12 −4x11+4x10 −4x9+4x8 −4x7+4x6 −4x5+4x4

−4x3+ 3x2−2x+1)
describes the dimension of the vector space Hn(M23,Z3) up to at least degree n = 40. To prove

that it describes the dimension in all degrees one would need to verify "completion criteria".
Example

gap> G:=MathieuGroup(23);;

gap> D:=HomologicalGroupDecomposition(G,3);;

gap> List(D[1],StructureDescription);

["(C3 x C3) : QD16", "A5 : S3"]

gap> List(D[2],StructureDescription);

["S3 x S3"]

gap> P1:=PoincareSeriesPrimePart(D[1][1],3,40);

(x_1^16-2*x_1^15+3*x_1^14-4*x_1^13+4*x_1^12-4*x_1^11+4*x_1^10-3*x_1^9+3*x_1^8-3*x_1^7+4*x_1^6-4*x_1^5+\

4*x_1^4-4*x_1^3+3*x_1^2-2*x_1+1)/(x_1^18-2*x_1^17+3*x_1^16-4*x_1^15+4*x_1^14-4*x_1^13+4*x_1^12-4*x_1^1\

1+4*x_1^10-4*x_1^9+4*x_1^8-4*x_1^7+4*x_1^6-4*x_1^5+4*x_1^4-4*x_1^3+3*x_1^2-2*x_1+1)

gap> P2:=PoincareSeriesPrimePart(D[1][2],3,40);

(x_1^4-2*x_1^3+3*x_1^2-2*x_1+1)/(x_1^6-2*x_1^5+3*x_1^4-4*x_1^3+3*x_1^2-2*x_1+1)

gap> P3:=PoincareSeriesPrimePart(D[2][1],3,40);

(x_1^4-2*x_1^3+3*x_1^2-2*x_1+1)/(x_1^6-2*x_1^5+3*x_1^4-4*x_1^3+3*x_1^2-2*x_1+1)

7.15 Homology of a Lie algebra

Let A be the Lie algebra constructed from the associative algebra M4×4(Q) of all 4×4 rational matri-
ces. Let V be its adjoint module (with underlying vector space of dimension 16 and equal to that of
A). The following commands compute H4(A,V) =Q.

Example
gap> M:=FullMatrixAlgebra(Rationals,4);;

gap> A:=LieAlgebra(M);;

gap> V:=AdjointModule(A);;

gap> C:=ChevalleyEilenbergComplex(V,17);;

gap> List([0..17],C!.dimension);

[16, 256, 1920, 8960, 29120, 69888, 128128, 183040, 205920, 183040, 128128,

69888, 29120, 8960, 1920, 256, 16, 0]

gap> Homology(C,4);

1

Note that the eighth term C8(V) in the Chevalley-Eilenberg complex C∗(V) is a vector space of
dimension 205920 and so it will take longer to compute the homology in degree 8.

As a second example, let B be the classical Lie ring of type B3 over the ring of integers. The
following commands compute H3(B,Z) = Z⊕Z105

2 .

A HAP tutorial 116

Example
gap> A:=SimpleLieAlgebra("B",7,Integers);

<Lie algebra of dimension 105 over Integers>

gap> C:=ChevalleyEilenbergComplex(A,4,"sparse");

Sparse chain complex of length 4 in characteristic 0 .

gap> D:=ContractedComplex(C);

Sparse chain complex of length 4 in characteristic 0 .

gap> Collected(Homology(D,3));

[[0, 1], [2, 105]]

7.16 Covers of Lie algebras

A short exact sequence of Lie algebras
M �C � L
(over a field k) is said to be a stem extension of L if M lies both in the centre Z(C) and in the

derived subalgeba C2. If, in addition, the rank of the vector space M is equal to the rank of the second
Chevalley-Eilenberg homology H2(L,k) then the Lie algebra C is said to be a cover of L.

Each finite dimensional Lie algebra L admits a cover C, and this cover can be shown to be unique
up to Lie isomorphism.

The cover can be used to determine whether there exists a Lie algebra E whose central quotient
E/Z(E) is isomorphic to L. The image in L of the centre of C is called the Lie Epicentre of L, and this
image is trivial if and only if such an E exists.

The cover can also be used to determine the stem extensions of L. It can be shown that each stem
extension is a quotient of the cover by an ideal in the Lie multiplier H2(L,k).

7.16.1 Computing a cover

The following commands compute the cover C of the solvable but non-nilpotent 13-dimensional Lie
algebra L (over k =Q) that was introduced by M. Wuestner [Wue92]. They also show that: the second
homology of C is trivial and compute the ranks of the homology groups in other dimensions; the Lie
algebra L is not isomorphic to any central quotient E/Z(E).

Example
gap> SCTL:=EmptySCTable(13,0,"antisymmetric");;

gap> SetEntrySCTable(SCTL, 1, 6, [1, 7]);;

gap> SetEntrySCTable(SCTL, 1, 8, [1, 9]);;

gap> SetEntrySCTable(SCTL, 1, 10, [1, 11]);;

gap> SetEntrySCTable(SCTL, 1, 12, [1, 13]);;

gap> SetEntrySCTable(SCTL, 1, 7, [-1, 6]);;

gap> SetEntrySCTable(SCTL, 1, 9, [-1, 8]);;

gap> SetEntrySCTable(SCTL, 1, 11, [-1, 10]);;

gap> SetEntrySCTable(SCTL, 1, 13, [-1, 12]);;

gap> SetEntrySCTable(SCTL, 6, 7, [1, 2]);;

gap> SetEntrySCTable(SCTL, 8, 9, [1, 3]);;

gap> SetEntrySCTable(SCTL, 6, 9, [-1, 5]);;

gap> SetEntrySCTable(SCTL, 7, 8, [1, 5]);;

gap> SetEntrySCTable(SCTL, 2, 8, [1, 12]);;

A HAP tutorial 117

gap> SetEntrySCTable(SCTL, 2, 9, [1, 13]);;

gap> SetEntrySCTable(SCTL, 3, 6, [1, 10]);;

gap> SetEntrySCTable(SCTL, 3, 7, [1, 11]);;

gap> SetEntrySCTable(SCTL, 2, 3, [1, 4]);;

gap> SetEntrySCTable(SCTL, 5, 6, [-1, 12]);;

gap> SetEntrySCTable(SCTL, 5, 7, [-1, 13]);;

gap> SetEntrySCTable(SCTL, 5, 8, [-1, 10]);;

gap> SetEntrySCTable(SCTL, 5, 9, [-1, 11]);;

gap> SetEntrySCTable(SCTL, 6, 11, [-1/2, 4]);;

gap> SetEntrySCTable(SCTL, 7, 10, [1/2, 4]);;

gap> SetEntrySCTable(SCTL, 8, 13, [1/2, 4]);;

gap> SetEntrySCTable(SCTL, 9, 12, [-1/2, 4]);;

gap> L:=LieAlgebraByStructureConstants(Rationals,SCTL);;

gap> C:=Source(LieCoveringHomomorphism(L));

<Lie algebra of dimension 15 over Rationals>

gap> Dimension(LieEpiCentre(L));

1

gap> ch:=ChevalleyEilenbergComplex(C,17);;

gap> List([0..16],n->Homology(ch,n));

[1, 1, 0, 9, 23, 27, 47, 88, 88, 47, 27, 23, 9, 0, 1, 1, 0]

Chapter 8

Cohomology rings and Steenrod
operations for groups

8.1 Mod-p cohomology rings of finite groups

For a finite group G, prime p and positive integer deg the function ModPCohomologyRing(G,p,deg)

computes a finite dimensional graded ring equal to the cohomology ring H≤deg(G,Zp) :=
H∗(G,Zp)/{x = 0 : degree(x)> deg} .

The following example computes the first 14 degrees of the cohomology ring H∗(M11,Z2) where
M11 is the Mathieu group of order 7920. The ring is seen to be generated by three elements a3,a4,a6
in degrees 3,4,5.

Example
gap> G:=MathieuGroup(11);;

gap> p:=2;;deg:=14;;

gap> A:=ModPCohomologyRing(G,p,deg);

<algebra over GF(2), with 20 generators>

gap> gns:=ModPRingGenerators(A);

[v.1, v.6, v.8+v.10, v.13]

gap> List(gns,A!.degree);

[0, 3, 4, 5]

The following additional command produces a rational function f (x) whose series expansion
f (x) = ∑

∞
i=0 fixi has coefficients fi which are guaranteed to satisfy fi = dimH i(G,Zp) in the range

0≤ i≤ deg. We refer to f (x) as the Poincare series for the group at the prime p = 2.
Example

gap> f:=PoincareSeries(A);

(x_1^4-x_1^3+x_1^2-x_1+1)/(x_1^6-x_1^5+x_1^4-2*x_1^3+x_1^2-x_1+1)

gap> Let's use f to list the first few cohomology dimensions

gap> ExpansionOfRationalFunction(f,deg);

[1, 0, 0, 1, 1, 1, 1, 1, 2, 2, 1, 2, 3, 2, 2]

118

A HAP tutorial 119

An alternative command for computing the Poincare series is the following. In this alternative we
choose to ensure correctness in degrees ≤ 100.

Example
gap> PoincareSeriesPrimePart(MathieuGroup(11),2,100);

The series is guaranteed correct for group cohomology in degrees < 101

(x_1^4-x_1^3+x_1^2-x_1+1)/(x_1^6-x_1^5+x_1^4-2*x_1^3+x_1^2-x_1+1)

If one needs to verify that the Poincare series is valid in all degrees then more work is required. One
readily implemented (but computationally non-optimal) approach is to use Peter Symmonds result
[Sym10] that: if a non-cyclic finite group G has a faithful complex representation equal to a sum of
irreducibles of dimensions ni then the cohomology ring H∗(G,Zp) is generated by elements of degree
at most ∑n2

i ; a degree bound for the relations is 2∑n2
i . The following commands use this bound,

in conjunction with Webb’s result 7.14 on the Quillen complex, to obtained a Poincare series that is
guaranteed correct in all degree.

Example
gap> G:=MathieuGroup(11);;

gap> h:=HomologicalGroupDecomposition(G,2);;

gap> ModPCohomologyPresentationBounds(h[1][1]);

rec(generators_degree_bound := 4, relators_degree_bound := 8)

gap> A:=ModPCohomologyRing(h[1][1],2,9);;F:=PresentationOfGradedStructureConstantAlgebra(A);;f11:=HilbertPoincareSeries(F);

(x_1^2-x_1+1)/(x_1^4-2*x_1^3+2*x_1^2-2*x_1+1)

gap> ModPCohomologyPresentationBounds(h[1][2]);

rec(generators_degree_bound := 9, relators_degree_bound := 18)

gap> A:=ModPCohomologyRing(h[1][2],2,19);;F:=PresentationOfGradedStructureConstantAlgebra(A);;f12:=HilbertPoincareSeries(F);

(x_1^2+1)/(x_1^4-x_1^3-x_1+1)

gap> ModPCohomologyPresentationBounds(h[2][1]);

rec(generators_degree_bound := 4, relators_degree_bound := 8)

gap> A:=ModPCohomologyRing(h[2][1],2,9);;F:=PresentationOfGradedStructureConstantAlgebra(A);;f21:=HilbertPoincareSeries(F);

(1)/(x_1^2-2*x_1+1)

gap> f11+f12-f21;

(x_1^4-x_1^3+x_1^2-x_1+1)/(x_1^6-x_1^5+x_1^4-2*x_1^3+x_1^2-x_1+1)

8.1.1 Ring presentations (for the commutative p = 2 case)

The cohomology ring H∗(G,Zp) is graded commutative which, in the case p = 2, implies strictly
commutative. The following additional commands can be applied in the p = 2 setting to determine a
presentation for a graded commutative ring F that is guaranteed to be isomorphic to the cohomology
ring H∗(G,Zp) in degrees i ≤ deg. If deg is chosen "sufficiently large" then F will be isomorphic to
the cohomology ring.

Example
gap> F:=PresentationOfGradedStructureConstantAlgebra(A);

Graded algebra GF(2)[x_1, x_2, x_3] / [x_1^2*x_2+x_3^2

] with indeterminate degrees [3, 4, 5]

A HAP tutorial 120

The additional command
Example

gap> p:=HilbertPoincareSeries(F);

(x_1^4-x_1^3+x_1^2-x_1+1)/(x_1^6-x_1^5+x_1^4-2*x_1^3+x_1^2-x_1+1)

invokes a call to SINGULAR in order to calculate the Poincare series of the graded algebra F .

8.2 Poincare Series for Mod-p cohomology

For a finite p-group G the command PoincarePolynomial(G) returns a rational function f (x) =
p(x)/q(x) whose series expansion f (x) = ∑

∞
i=0 fixi has coefficients fi that are guaranteed to satisfy

fi = dimH i(G,Zp) in the range 0 ≤ i < 1+ deg for some displayed value of deg. Furthermore, the
coefficients fi are guaranteed to be integers for all 0 ≤ i ≤ 1000 and the order of the pole of f (x) at
x = 1 is guaranteed to equal the p-rank of G.

Example
gap> G:=SmallGroup(3^4,10);;

gap> StructureDescription(G);

"C3 . ((C3 x C3) : C3) = (C3 x C3) . (C3 x C3)"

gap> f:=PoincareSeries(G);

The series is guaranteed correct for group cohomology in degrees < 14

(-x_1^3+x_1^2+1)/(x_1^6-2*x_1^5+2*x_1^4-2*x_1^3+2*x_1^2-2*x_1+1)

If a higher value of deg is required then this can be entered as an optional second argument. For
instance, the following increases the value to deg = 100.

Example
gap> f:=PoincareSeries(G,100);

The series is guaranteed correct for group cohomology in degrees < 101

(-x_1^3+x_1^2+1)/(x_1^6-2*x_1^5+2*x_1^4-2*x_1^3+2*x_1^2-2*x_1+1)

As mentioned above, one approach to verifying that the Poincare series is valid in all degrees is
to use Peter Symmonds result [Sym10] that: if a non-cyclic finite group G has a faithful complex
representation equal to a sum of irreducibles of dimensions ni then the cohomology ring H∗(G,Zp) is
generated by elements of degree at most ∑n2

i ; a degree bound for the relations is 2∑n2
i . Thus, if we

use at least ∑n2
i degrees of a resolution to construct a presentation for the cohomology ring then the

presented ring maps surjectively onto the actual cohomology ring. Furthermore, if this surjection is a
bijection in the first 2∑n2

i degrees then it is necessarily an isomorphism in all degrees.
The following commands use this approach to obtain a guaranteed presentation and Poincare series

for the Sylow 2-subgroup of the Mathieu group M12.
Example

gap> G:=SylowSubgroup(MathieuGroup(12),2);;

gap> ModPCohomologyPresentationBounds(G);

rec(generators_degree_bound := 16, relators_degree_bound := 32)

gap> A:=ModPCohomologyRing(G,16);;

gap> F:=PresentationOfGradedStructureConstantAlgebra(A);

Graded algebra GF(2)[x_1, x_2, x_3, x_4, x_5, x_6, x_7] /

[x_1*x_3, x_1*x_2, x_1*x_4, x_2*x_3^2+x_3^3+x_3*x_4+x_3*x_5,

A HAP tutorial 121

x_2*x_6+x_3*x_6+x_4*x_5, x_2*x_3*x_4+x_3^2*x_4+x_3*x_6,

x_2^2*x_4+x_3^2*x_4+x_3*x_6+x_4^2, x_3^2*x_6+x_3*x_4^2+x_3*x_4*x_5,

x_2*x_4*x_5+x_4*x_6, x_3^2*x_4*x_5+x_3*x_4*x_6+x_3*x_5*x_6,

x_1^3*x_6+x_1^2*x_7+x_1*x_5*x_6+x_3*x_5*x_6+x_4*x_5^2+x_6^2,

x_3*x_4^2*x_5+x_3*x_6^2] with indeterminate degrees [1, 1, 1, 2, 2, 3, 4]

gap> f:=HilbertPoincareSeries(F);

(1)/(-x_1^3+3*x_1^2-3*x_1+1)

gap> ff:=PoincareSeries(G,32);

The series is guaranteed correct for group cohomology in degrees < 33

(1)/(-x_1^3+3*x_1^2-3*x_1+1)

An alternative approach to obtaining a guaranteed presentation is to implement Len even’s spectral
sequence proof of the finite generation of cohomology rings of finite groups. The following example
determines a guaranteed presentation in this way for the cohomology ring H∗(Syl2(M12),Z2). The
Lyndon-Hochschild-Serre spectral sequence, and Groebner basis routines from SINGULAR (for com-
mutative rings), are used to determine how much of a resolution is needed to compute the guaranteed
correct presentation.

Example
gap> G:=SylowSubgroup(MathieuGroup(12),2);;

gap> F:=Mod2CohomologyRingPresentation(G);

Alpha version of completion test code will be used. This needs further work.

Graded algebra GF(2)[x_1, x_2, x_3, x_4, x_5, x_6, x_7] /

[x_2*x_3, x_1*x_2, x_2*x_4, x_1^3+x_1^2*x_3+x_1*x_5,

x_1*x_3*x_4+x_1*x_3*x_5+x_3^2*x_4+x_1*x_6+x_3*x_6+x_4*x_5,

x_1^2*x_4+x_1^2*x_5+x_1*x_3*x_5+x_3^2*x_4+x_1*x_6+x_4^2,

x_1^2*x_3^2+x_1^2*x_5+x_1*x_3*x_5+x_1*x_6+x_3*x_6+x_4^2+x_4*x_5,

x_1^2*x_6+x_1*x_3*x_6+x_1*x_4*x_5+x_3^2*x_6+x_3*x_4^2+x_3*x_4*x_5,

x_1*x_3^2*x_5+x_3^3*x_4+x_1*x_3*x_6+x_1*x_4^2+x_3^2*x_6+x_3*x_4^2+x_4*x_6,

x_1^2*x_3*x_5+x_1*x_3*x_6+x_1*x_4^2+x_1*x_5^2,

x_3^3*x_6+x_3^2*x_4^2+x_3^2*x_4*x_5+x_3*x_4*x_6+x_3*x_5*x_6+x_4^3+x_4*x_5^2,

x_1*x_3^2*x_6+x_1*x_4*x_6+x_2^2*x_7+x_2*x_5*x_6+x_3*x_4*x_6+x_3*x_5*x_6+x_6^2,

x_1^2*x_5^2+x_1*x_3*x_5^2+x_3^2*x_4^2+x_3^2*x_4*x_5+x_2^2*x_7+x_2*x_5*x_6+x_3*x_5*x_6+x_6^2]

with indeterminate degrees [1, 1, 1, 2, 2, 3, 4]

gap> f:=HilbertPoincareSeries(F);

(1)/(-x_1^3+3*x_1^2-3*x_1+1)

8.3 Functorial ring homomorphisms in Mod-p cohomology

The following example constructs the ring homomorphism
F :H≤deg(G,Zp)→ H≤deg(H,Zp)
induced by the group homomorphism f :H → G with H = A5, G = S5, f the canonical inclusion

of the alternating group into the symmetric group, p = 2 and deg = 7.
Example

gap> G:=SymmetricGroup(5);;H:=AlternatingGroup(5);;

gap> f:=GroupHomomorphismByFunction(H,G,x->x);;

gap> p:=2;; deg:=7;;

A HAP tutorial 122

gap> F:=ModPCohomologyRing(f,p,deg);

[v.1, v.2, v.4+v.6, v.5, v.7, v.8, v.9, v.12+v.15, v.13, v.14, v.16+v.17,

v.18, v.19, v.20, v.22+v.24+v.28, v.23, v.25, v.26, v.27] ->

[v.1, 0*v.1, v.4+v.5+v.6, 0*v.1, v.7+v.8, 0*v.1, 0*v.1, v.14+v.15, 0*v.1,

0*v.1, v.16+v.17+v.19, 0*v.1, 0*v.1, 0*v.1, v.22+v.23+v.26+v.27+v.28,

v.25, 0*v.1, 0*v.1, 0*v.1]

8.3.1 Testing homomorphism properties

The following commands are consistent with F being a ring homomorphism.
Example

gap> x:=Random(Source(F));

v.4+v.6+v.8+v.9+v.12+v.13+v.14+v.15+v.18+v.20+v.22+v.24+v.25+v.28+v.32+v.35

gap> y:=Random(Source(F));

v.1+v.2+v.7+v.9+v.13+v.23+v.26+v.27+v.32+v.33+v.34+v.35

gap> Image(F,x)+Image(F,y)=Image(F,x+y);

true

gap> Image(F,x)*Image(F,y)=Image(F,x*y);

true

8.3.2 Testing functorial properties

The following example takes two "random" automorphisms f ,g:K → K of the group K of or-
der 24 arising as the direct product K = C3 × Q8 and constructs the three ring isomorphisms
F,G,FG:H≤5(K,Z2)→ H≤5(K,Z2) induced by f ,g and the composite f ◦ g. It tests that FG is
indeed the composite G◦F . Note that when we create the ring H≤5(K,Z2) twice in GAP we obtain
two canonically isomorphic but distinct implimentations of the ring. Thus the canocial isomorphism
between these distinct implementations needs to be incorporated into the test. Note also that GAP
defines g∗ f = f ◦g.

Example
gap> K:=SmallGroup(24,11);;

gap> aut:=AutomorphismGroup(K);;

gap> f:=Elements(aut)[5];;

gap> g:=Elements(aut)[8];;

gap> fg:=g*f;;

gap> F:=ModPCohomologyRing(f,2,5);

[v.1, v.2, v.3, v.4, v.5, v.6, v.7] -> [v.1, v.2+v.3, v.3, v.4+v.5, v.5,

v.6, v.7]

gap> G:=ModPCohomologyRing(g,2,5);

[v.1, v.2, v.3, v.4, v.5, v.6, v.7] -> [v.1, v.2+v.3, v.2, v.5, v.4+v.5,

v.6, v.7]

gap> FG:=ModPCohomologyRing(fg,2,5);

[v.1, v.2, v.3, v.4, v.5, v.6, v.7] -> [v.1, v.3, v.2, v.4, v.4+v.5, v.6,

v.7]

gap> sF:=Source(F);;tF:=Target(F);;

gap> sG:=Source(G);;

gap> tGsF:=AlgebraHomomorphismByImages(tF,sG,Basis(tF),Basis(sG));;

A HAP tutorial 123

gap> List(GeneratorsOfAlgebra(sF),x->Image(G,Image(tGsF,Image(F,x))));

[v.1, v.3, v.2, v.4, v.4+v.5, v.6, v.7]

8.3.3 Computing with larger groups

Mod-p cohomology rings of finite groups are constructed as the rings of stable elements in the coho-
mology of a (non-functorially) chosen Sylow p-subgroup and thus require the construction of a free
resolution only for the Sylow subgroup. However, to ensure the functoriality of induced cohomology
homomorphisms the above computations construct free resolutions for the entire groups G,H. This is
a more expensive computation than finding resolutions just for Sylow subgroups.

The default algorithm used by the function ModPCohomologyRing() for constructing resolutions
of a finite group G is ResolutionFiniteGroup() or ResolutionPrimePowerGroup() in the case
when G happens to be a group of prime-power order. If the user is able to construct the first deg terms
of free resolutions RG,RH for the groups G,H then the pair [RG,RH] can be entered as the third input
variable of ModPCohomologyRing().

For instance, the following example constructs the ring homomorphism
F :H≤7(A6,Z2)→ H≤7(S6,Z2)
induced by the the canonical inclusion of the alternating group A6 into the symmetric group S6.

Example
gap> G:=SymmetricGroup(6);;

gap> H:=AlternatingGroup(6);;

gap> f:=GroupHomomorphismByFunction(H,G,x->x);;

gap> RG:=ResolutionFiniteGroup(G,7);;

gap> RH:=ResolutionFiniteSubgroup(RG,H);;

gap> F:=ModPCohomologyRing(f,2,[RG,RH]);

[v.1, v.2+v.3, v.6+v.8+v.10, v.7+v.9, v.11+v.12, v.13+v.15+v.16+v.18+v.19,

v.14+v.16+v.19, v.17, v.22, v.23+v.28+v.32+v.35,

v.24+v.26+v.27+v.29+v.32+v.33+v.35, v.25+v.26+v.27+v.29+v.32+v.33+v.35,

v.30+v.32+v.33+v.34+v.35, v.36+v.39+v.43+v.45+v.47+v.49+v.50+v.55,

v.38+v.45+v.47+v.49+v.50+v.55, v.40,

v.41+v.43+v.45+v.47+v.48+v.49+v.50+v.53+v.55,

v.42+v.43+v.45+v.46+v.47+v.49+v.53+v.54, v.44+v.45+v.46+v.47+v.49+v.53+v.54,

v.51+v.52, v.58+v.60, v.59+v.68+v.73+v.77+v.81+v.83,

v.62+v.68+v.74+v.77+v.78+v.80+v.81+v.83+v.84,

v.63+v.69+v.73+v.74+v.78+v.80+v.84, v.64+v.68+v.73+v.77+v.81+v.83, v.65,

v.66+v.75+v.81, v.67+v.68+v.69+v.70+v.73+v.74+v.78+v.80+v.84,

v.71+v.72+v.73+v.76+v.77+v.78+v.80+v.82+v.83+v.84, v.79] ->

[v.1, 0*v.1, v.4+v.5+v.6, 0*v.1, v.8, v.8, 0*v.1, v.7, 0*v.1,

v.12+v.13+v.14+v.15, v.12+v.13+v.14+v.15, v.12+v.13+v.14+v.15,

v.12+v.13+v.14+v.15, v.18+v.19, 0*v.1, 0*v.1, v.18+v.19, v.18+v.19,

v.18+v.19, v.16+v.17, 0*v.1, v.25, v.22+v.24+v.25+v.26+v.27+v.28,

v.22+v.24+v.25+v.26+v.27+v.28, 0*v.1, 0*v.1, v.25, v.22+v.24+v.26+v.27+v.28,

v.22+v.24+v.26+v.27+v.28, v.23]

A HAP tutorial 124

8.4 Steenrod operations for finite 2-groups

The command CohomologicalData(G,n) prints complete information for the cohomology ring
H∗(G,Z2) and steenrod operations for a 2-group G provided that the integer n is at least the max-
imal degree of a generator or relator in a minimal set of generatoirs and relators for the ring.

The following example produces complete information on the Steenrod algebra of group number
8 in GAP’s library of groups of order 32. Groebner basis routines (for commutative rings) from
SINGULAR are called in the example. (This example take over 2 hours to run. Most other groups of
order 32 run significantly quicker.)

Example
gap> CohomologicalData(SmallGroup(32,8),12);

Integer argument is large enough to ensure completeness of cohomology ring presentation.

Group number: 8

Group description: C2 . ((C4 x C2) : C2) = (C2 x C2) . (C4 x C2)

Cohomology generators

Degree 1: a, b

Degree 2: c, d

Degree 3: e

Degree 5: f, g

Degree 6: h

Degree 8: p

Cohomology relations

1: f^2

2: c*h+e*f

3: c*f

4: b*h+c*g

5: b*e+c*d

6: a*h

7: a*g

8: a*f+b*f

9: a*e+c^2

10: a*c

11: a*b

12: a^2

13: d*e*h+e^2*g+f*h

14: d^2*h+d*e*f+d*e*g+f*g

15: c^2*d+b*f

16: b*c*g+e*f

17: b*c*d+c*e

18: b^2*g+d*f

19: b^2*c+c^2

20: b^3+a*d

21: c*d^2*e+c*d*g+d^2*f+e*h

22: c*d^3+d*e^2+d*h+e*f+e*g

23: b^2*d^2+c*d^2+b*f+e^2

24: b^3*d

25: d^3*e^2+d^2*e*f+c^2*p+h^2

26: d^4*e+b*c*p+e^2*g+g*h

A HAP tutorial 125

27: d^5+b*d^2*g+b^2*p+f*g+g^2

Poincare series

(x^5+x^2+1)/(x^8-2*x^7+2*x^6-2*x^5+2*x^4-2*x^3+2*x^2-2*x+1)

Steenrod squares

Sq^1(c)=0

Sq^1(d)=b*b*b+d*b

Sq^1(e)=c*b*b

Sq^2(e)=e*d+f

Sq^1(f)=c*d*b*b+d*d*b*b

Sq^2(f)=g*b*b

Sq^4(f)=p*a

Sq^1(g)=d*d*d+g*b

Sq^2(g)=0

Sq^4(g)=c*d*d*d*b+g*d*b*b+g*d*d+p*a+p*b

Sq^1(h)=c*d*d*b+e*d*d

Sq^2(h)=d*d*d*b*b+c*d*d*d+g*c*b

Sq^4(h)=d*d*d*d*b*b+g*e*d+p*c

Sq^1(p)=c*d*d*d*b

Sq^2(p)=d*d*d*d*b*b+c*d*d*d*d

Sq^4(p)=d*d*d*d*d*b*b+d*d*d*d*d*d+g*d*d*d*b+g*g*d+p*d*d

8.5 Steenrod operations on the classifying space of a finite p-group

The following example constructs the first eight degrees of the mod-3 cohomology ring H∗(G,Z3)
for the group G number 4 in GAP’s library of groups of order 81. It determines a minimal set of ring
generators lying in degree ≤ 8 and it evaluates the Bockstein operator on these generators. Steenrod
powers for p≥ 3 are not implemented as no efficient method of implementation is known.

Example
gap> G:=SmallGroup(81,4);;

gap> A:=ModPSteenrodAlgebra(G,8);;

gap> List(ModPRingGenerators(A),x->Bockstein(A,x));

[0*v.1, 0*v.1, v.5, 0*v.1, (Z(3))*v.7+v.8+(Z(3))*v.9]

8.6 Mod-p cohomology rings of crystallographic groups

Mod p cohomology ring computations can be attempted for any group G for which we can com-
pute sufficiently many terms of a free ZG-resolution with contracting homotopy. The contracting
homotopy is not needed if only the dimensions of the cohomology in each degree are sought. Crystal-
lographic groups are one class of infinite groups where such computations can be attempted.

8.6.1 Poincare series for crystallographic groups

Consider the space group G = SpaceGroupOnRightIT (3,226,′ 1′). The following computation com-
putes the infinite series

A HAP tutorial 126

(−2x4 +2x2 +1)/(−x5 +2x4− x3 + x2−2x+1)
in which the coefficient of the monomial xn is guaranteed to equal the dimension of the vector

space Hn(G,Z2) in degrees n≤ 14. One would need to involve a theoretical argument to establish that
this equality in fact holds in every degree n≥ 0.

Example
gap> G:=SpaceGroupIT(3,226);

SpaceGroupOnRightIT(3,226,'1')

gap> R:=ResolutionSpaceGroup(G,15);

Resolution of length 15 in characteristic 0 for <matrix group with

8 generators> .

No contracting homotopy available.

gap> D:=List([0..14],n->Cohomology(HomToIntegersModP(R,2),n));

[1, 2, 5, 9, 11, 15, 20, 23, 28, 34, 38, 44, 51, 56, 63]

gap> PoincareSeries(D,14);

(-2*x_1^4+2*x_1^2+1)/(-x_1^5+2*x_1^4-x_1^3+x_1^2-2*x_1+1)

Consider the space group SpaceGroupOnRightIT (3,103,′ 1′). The following computation uses a dif-
ferent construction of a free resolution to compute the infinite series

(x3 +2x2 +2x+1)/(−x+1)
in which the coefficient of the monomial xn is guaranteed to equal the dimension of the vector

space Hn(G,Z2) in degrees n ≤ 99. The final commands show that G acts on a (cubical) cellular
decomposition of R3 with cell ctabilizers being either trivial or cyclic of order 2 or 4. From this extra
calculation it follows that the cohomology is periodic in degrees greater than 3 and that the Poincare
series is correct in every degree n≥ 0.

Example
gap> G:=SpaceGroupIT(3,103);

SpaceGroupOnRightIT(3,103,'1')

gap> R:=ResolutionCubicalCrystGroup(G,100);

Resolution of length 100 in characteristic 0 for <matrix group with 6 generators> .

gap> D:=List([0..99],n->Cohomology(HomToIntegersModP(R,2),n));;

gap> PoincareSeries(D,99);

(x_1^3+2*x_1^2+2*x_1+1)/(-x_1+1)

#Torsion subgroups are cyclic

gap> B:=CrystGFullBasis(G);;

gap> C:=CrystGcomplex(GeneratorsOfGroup(G),B,1);;

gap> for n in [0..3] do

> for k in [1..C!.dimension(n)] do

> Print(StructureDescription(C!.stabilizer(n,k))," ");

> od;od;

C4 C2 C4 1 1 C4 C2 C4 1 1 1 1

A HAP tutorial 127

8.6.2 Mod 2 cohomology rings of 3-dimensional crystallographic groups

Computations in the integral cohomology of a crystallographic group are illustrated in Section 1.19.
The commands underlying that illustration could be further developed and adapted to mod p coho-
mology. Indeed, the authors of the paper [LY24a] have developed commands for accessing the mod
2 cohomology of 3-dimensional crystallographic groups with the aim of establishing a connection
between these rings and the lattice structure of crystals with space group symmetry. Their code is
available at the github repository [LY24b]. In particular, their code contains the command

• SpaceGroupCohomologyRingGapInterface(ITC)

that inputs an integer in the range 1≤ ITC≤ 230 corresponding to the numbering of a 3-dimensional
space group G in the International Table for Crystallography. This command returns

• a presentation for the mod 2 cohomology ring H∗(G,Z2). The presentation is guaranteed to
be correct for low degree cohomology. In cases where the cohomology is periodic in degrees
≥ 5 (which can be tested using IsPeriodicSpaceGroup(G)) the presentation is guaranteed
correct in all degrees. In non-periodic cases some additional mathematical argument needs to
be provided to be mathematically sure that the presentation is correct in all degrees.

• the Lieb-Schultz-Mattis anomaly (degree-3 cocycles) associated with the Irreducible Wyckoff
Position (see the paper [LY24a] for a definition).

The command SpaceGroupCohomologyRingGapInterface(ITC) is fast for most groups (a few sec-
onds to a few minutes) but can be very slow for certain space groups (e.g. ITC = 228 and ITC = 142).
The following illustration assumes that two relevant files have been downloaded from [LY24b] and
illustrates the command for ITC = 30 and ITC = 216.

Example
gap> Read("SpaceGroupCohomologyData.gi"); #These two files must be

gap> Read("SpaceGroupCohomologyFunctions.gi"); #downloaded from

gap> #https://github.com/liuchx1993/Space-Group-Cohomology-and-LSM/

gap> IsPeriodicSpaceGroup(SpaceGroupIT(3,30));

true

gap> SpaceGroupCohomologyRingGapInterface(30);

===

Mod-2 Cohomology Ring of Group No. 30:

Z2[Ac,Am,Ax,Bb]/<R2,R3,R4>

R2: Ac.Am Am^2 Ax^2+Ac.Ax

R3: Am.Bb

R4: Bb^2

===

LSM:

2a Ac.Bb+Ax.Bb

2b Ax.Bb

true

gap> IsPeriodicSpaceGroup(SpaceGroupIT(3,216));

false

A HAP tutorial 128

gap> SpaceGroupCohomologyRingGapInterface(216);

===

Mod-2 Cohomology Ring of Group No. 216:

Z2[Am,Ba,Bb,Bxyxzyz,Ca,Cb,Cc,Cxyz]/<R4,R5,R6>

R4: Am.Ca Am.Cb Ba.Bxyxzyz+Am.Cc Bb^2+Am.Cc+Ba.Bb Bb.Bxyxzyz+Am^2.Bb+Am.Cxyz Bxyxzyz^2

R5: Bxyxzyz.Ca Ba.Cb+Bb.Ca Bb.Cb+Bb.Ca Bxyxzyz.Cb Bxyxzyz.Cc Ba.Cxyz+Am.Ba.Bb+Bb.Cc Bb.Cxyz+Am^2.Cc+Am.Ba.Bb+Bb.Cc Bxyxzyz.Cxyz+Am^3.Bb+Am^2.Cxyz

===

LSM:

4a Ca+Cc+Cxyz

4b Cb+Cc+Cxyz

4c Cb+Cxyz

4d Cxyz

true

In the example the naming convention for ring generators follows the paper [LY24a].

Chapter 9

Bredon homology

9.1 Davis complex

The following example computes the Bredon homology
H0(W,R) = Z21

for the infinite Coxeter group W associated to the Dynkin diagram shown in the computation, with
coefficients in the complex representation ring.

Example
gap> D:=[[1,[2,3]],[2,[3,3]],[3,[4,3]],[4,[5,6]]];;

gap> CoxeterDiagramDisplay(D);

Example
gap> C:=DavisComplex(D);;

gap> D:=TensorWithComplexRepresentationRing(C);;

gap> Homology(D,0);

[0, 0]

9.2 Arithmetic groups

The following example computes the Bredon homology
H0(SL2(O−3),R) = Z2⊕Z9

H1(SL2(O−3),R) = Z
for O−3 the ring of integers of the number field Q(

√
−3), and R the complex reflection ring.

Example
gap> R:=ContractibleGcomplex("SL(2,O-3)");;

gap> IsRigid(R);

false

gap> S:=BaryCentricSubdivision(R);;

gap> IsRigid(S);

true

gap> C:=TensorWithComplexRepresentationRing(S);;

gap> Homology(C,0);

[2, 0, 0, 0, 0, 0, 0, 0, 0, 0]

gap> Homology(C,1);

129

A HAP tutorial 130

[0]

9.3 Crystallographic groups

The following example computes the Bredon homology
H0(G,R) = Z17

for G the second crystallographic group of dimension 4 in GAP’s library of crystallographic
groups, and for R the Burnside ring.

Example
gap> G:=SpaceGroup(4,2);;

gap> gens:=GeneratorsOfGroup(G);;

gap> B:=CrystGFullBasis(G);;

gap> R:=CrystGcomplex(gens,B,1);;

gap> IsRigid(R);

false

gap> S:=CrystGcomplex(gens,B,0);;

gap> IsRigid(S);

true

gap> D:=TensorWithBurnsideRing(S);;

gap> Homology(D,0);

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Chapter 10

Chain Complexes

HAP uses implementations of chain complexes of free K-modules for each of the rings K=Z, K=Q,
K=Fp with p a prime number, K=ZG, K=FpG with G a group. The implemented chain complexes
have the form

Cn
dn−→Cn−1

dn−1−→ ·· · d2−→C1
d1−→C0

d0−→ 0 .
Such a complex is said to have length n and the rank of the free K-module Ck is referred to as the

dimenion of the complex in degree k.
For the case K= ZG (resp. K= FpG) the main focus is on free chain complexes that are exact at

each degree k, i.e. im(dk+1) = ker(dk), for 0 < k < n and with C0/im(d1)∼=Z (resp. C0/im(d1)∼= Fp).
We refer to such a chain complex as a resolution of length n even though dn will typically not be
injective. More correct terminology would refer to such a chain complex as the first n degrees of a
free resolution.

The following sections illustrate some constructions of chain complexes. Constructions for reso-
lutions are described in the next chapter 11.

10.1 Chain complex of a simplicial complex and simplicial pair

The following example constructs the Quillen simplicial complex Q = Ap(G) for p = 2 and G = A8;
this is the order complex of the poset of non-trivial elementary 2-subgroups of G. The chain complex
C∗ =C∗(Q) is then computed and seen to have the same number of free generators as Q has simplices.
(To ensure indexing of subcomplexes is consistent with that of the large complex it is best to work
with vertices represented as integers.)

Example
gap> Q:=QuillenComplex(AlternatingGroup(8),2);

Simplicial complex of dimension 3.

gap> C:=ChainComplex(Q);

Chain complex of length 3 in characteristic 0 .

gap> Size(Q);

55015

gap> Size(C);

55015

131

A HAP tutorial 132

Next the simplicial complex Q is converted to one whose vertices are represented by integers and a
contactible subcomplex L < Q is computed. The chain complex D∗ =C∗(Q,L) of the simplicial pair
(Q,L) is constructed and seen to have the correct size.

Example
gap> Q:=IntegerSimplicialComplex(Q);

Simplicial complex of dimension 3.

gap> L:=ContractibleSubcomplex(Q);

Simplicial complex of dimension 3.

gap> D:=ChainComplexOfPair(Q,L);

Chain complex of length 3 in characteristic 0 .

gap> Size(D)=Size(Q)-Size(L);

true

gap> Size(D);

670

gap>

The next commands produce a smalled chain complex B∗ chain homotopy equivalent to D∗ and com-
pute the homology Hk(Q,Z)∼= Hk(B∗) for k = 1,2,3.

Example
gap> B:=ContractedComplex(D);

Chain complex of length 3 in characteristic 0 .

gap> Size(B);

64

gap> Homology(B,1);

[]

gap> Homology(B,2);

[0,

0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

gap> Homology(B,3);

[]

10.2 Chain complex of a cubical complex and cubical pair

The following example reads in the digital image
as a 2-dimensional pure cubical complex M and constructs the chain complex C∗ =C∗(M).

Example
gap> K:=ReadImageAsPureCubicalComplex(file,400);

Pure cubical complex of dimension 2.

gap> C:=ChainComplex(K);

Chain complex of length 2 in characteristic 0 .

gap> Size(C);

A HAP tutorial 133

173243

Next an acyclic pure cubical subcomplex L < M is computed and the chain complex D∗ = C∗(M,L)
of the pair is constructed.

Example
gap> L:=AcyclicSubcomplexOfPureCubicalComplex(K);

Pure cubical complex of dimension 2.

gap> D:=ChainComplexOfPair(K,L);

Chain complex of length 2 in characteristic 0 .

gap> Size(D);

618

Finally the chain complex D∗ is simplified to a homotopy equivalent chain complex B∗ and the ho-
mology H1(M,Z)∼= H1(B∗) is computed.

Example
gap> B:=ContractedComplex(D);

Chain complex of length 2 in characteristic 0 .

gap> Size(B);

20

gap> Homology(B,1);

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

10.3 Chain complex of a regular CW-complex

The next example constructs a 15-dimensional regular CW-complex Y that is homotopy equivalent
to the 2-dimensional torus.

Example
gap> Circle:=PureCubicalComplex([[1,1,1,1,1],[1,1,0,1,1],[1,1,1,1,1]]);

Pure cubical complex of dimension 2.

gap> Torus:=DirectProductOfPureCubicalComplexes(Circle,Circle);

Pure cubical complex of dimension 4.

gap> CTorus:=CechComplexOfPureCubicalComplex(Torus);

Simplicial complex of dimension 15.

gap> Y:=RegularCWComplex(CTorus);

Regular CW-complex of dimension 15

Next the cellular chain complex C∗ = C∗(Y) is constructed. Also, a minimally generated chain com-
plex D∗ =C∗(Y ′) of a non-regular CW-complex Y ′ ' Y is constructed.

A HAP tutorial 134

Example
gap> C:=ChainComplexOfRegularCWComplex(Y);

Chain complex of length 15 in characteristic 0 .

gap> Size(C);

1172776

gap> D:=ChainComplex(Y);

Chain complex of length 15 in characteristic 0 .

gap> Size(D);

4

10.4 Chain Maps of simplicial and regular CW maps

The next example realizes the complement of the first prime knot on 11 crossings as a pure per-
mutahedral complex. The complement is converted to a regular CW-complex Y and the boundary
inclusion f :∂Y ↪→ Y is constructed as a map of regular CW-complexes. Then the induced chain map
F :C∗(∂Y) ↪→ C∗(Y) is constructed. Finally the homology homomorphism H1(F):H1(C∗(∂Y)) →
H1(C∗(Y)) is computed.

Example
gap> K:=PurePermutahedralKnot(11,1);;

gap> M:=PureComplexComplement(K);

Pure permutahedral complex of dimension 3.

gap> Y:=RegularCWComplex(M);

Regular CW-complex of dimension 3

gap> f:=BoundaryMap(Y);

Map of regular CW-complexes

gap> F:=ChainMap(f);

Chain Map between complexes of length 2 .

gap> H:=Homology(F,1);

[g1, g2] -> [g1^-1, g1^-1]

gap> Kernel(H);

Pcp-group with orders [0]

The command ChainMap(f) can be used to construct the chain map C∗(K)→ C∗(K′) induced by a
map f :K→ K′ of simplicial complexes.

10.5 Constructions for chain complexes

It is straightforward to implement basic constructions on chain complexes. A few constructions are
illustrated in the following example.

A HAP tutorial 135

Example
gap> res:=ResolutionFiniteGroup(SymmetricGroup(5),5);;

gap> C:=TensorWithIntegers(res);

Chain complex of length 5 in characteristic 0 .

gap> D:=ContractedComplex(C);#A chain homotopic complex

Chain complex of length 5 in characteristic 0 .

gap> List([0..5],C!.dimension);

[1, 4, 10, 20, 35, 56]

gap> List([0..5],D!.dimension);

[1, 1, 2, 4, 6, 38]

gap> CxC:=TensorProduct(C,C);

Chain complex of length 10 in characteristic 0 .

gap> SC:=SuspendedChainComplex(C);

Chain complex of length 6 in characteristic 0 .

gap> RC:=ReducedSuspendedChainComplex(C);

Chain complex of length 6 in characteristic 0 .

gap> PC:=PathObjectForChainComplex(C);

Chain complex of length 5 in characteristic 0 .

gap> dualC:=HomToIntegers(C);

Cochain complex of length 5 in characteristic 0 .

gap> Cxp:=TensorWithIntegersModP(C,5);

Chain complex of length 5 in characteristic 5 .

gap> CxQ:=TensorWithRationals(C); #The quirky -1/2 denotes rationals

Chain complex of length 5 in characteristic -1/2 .

10.6 Filtered chain complexes

A sequence of inclusions of chain complexes C0,∗ ≤C1,∗ ≤ ·· · ≤CT−1,∗ ≤CT,∗ in which the preferred
basis of Ck−1,` is the beginning of the preferred basis of Ck,` is referred to as a filtered chain complex.
Filtered chain complexes give rise to spectral sequences such as the equivariant spectral sequence of a
G−CW-complex with subgroup H < G. A particular case is the Lyndon-Hochschild-Serre spectral
sequence for the homology of a group extension N � G � Q with E2

p,q = Hp(Q,Hq(N,Z)).
The following commands construct the filtered chain complex underlying the Lyn-

don-Hochschild-Serre spectral sequence for the dihedral group G = D32 of order 64 and its centre
N = Z(G).

Example
gap> G:=DihedralGroup(64);;

gap> N:=Center(G);;

gap> R:=ResolutionNormalSeries([G,N],3);;

gap> C:=FilteredTensorWithIntegersModP(R,2);

Chain complex of length 3 in characteristic 2 .

A HAP tutorial 136

The differentials dr
p,q in a given page Er of the spectral sequence arise from the induced homology

homomorphisms ι
s,t
` :H`(Cs,∗)→ H`(Ct,∗) for s ≤ t. Textbooks traditionally picture the differential in

Er as an array of sloping arrows with non-zero groups Er
p,q 6= 0 represented by dots. An alternative

representation of this information is as a barcode (of the sort used in Topological Data Analysis). The
homomorphisms ι

∗,∗
2 in the example, with coefficients converted to mod 2, are pictured by the bar

code
which was produced by the following commands.

Example
gap> p:=2;;k:=2;;

gap> P:=PersistentHomologyOfFilteredChainComplex(C,k,p);;

gap> BarCodeDisplay(P);

Let us view a barcode as a graph with vertices arranged in columns. We then refer to a connected
component of this graph as a bar. Let us say that any bar with a vertex in the final (right-hand)
column is of length ∞. Let us define the length of any other bar to be r−1 where r is the number of
vertices in the bar. Theorem 3.1 in [RHM+13] implies that the differential dr

p,q = 0 for p+ q = k if
and only if there is no bar of length r in the barcode arising in this way for any degree k homology
barcode. So the following commands demonstrate that dr = 0 for r ≥ 2 at least for k ≤ 7.

Example
gap> for k in [1..7] do

> R:=ResolutionNormalSeries([G,N],k+1);;

> C:=FilteredTensorWithIntegersModP(R,2);

> P:=PersistentHomologyOfFilteredChainComplex(C,k,2);;

> BarCodeDisplay(P);

> od;

10.7 Sparse chain complexes

Boundary homomorphisms in all of the above examples of chain complexes are represented by ma-
trices. In cases where the matrices are large and have many zero entries it is better to use sparse
matrices.

The following commands demonstrate the conversion of the matrix

A =

 0 2 0
−3 0 0
0 0 4


to sparse form, and vice-versa.

Example
gap> A:=[[0,2,0],[-3,0,0],[0,0,4]];;

gap> S:=SparseMat(A);

Sparse matrix with 3 rows and 3 columns in characteristic 0

gap> NamesOfComponents(S);

["mat", "characteristic", "rows", "cols"]

gap> S!.mat;

A HAP tutorial 137

[[[2, 2]], [[1, -3]], [[3, 4]]]

gap> B:=SparseMattoMat(S);

[[0, 2, 0], [-3, 0, 0], [0, 0, 4]]

To illustrate the use of sparse chain complexes we consider the data points represented in the
following digital image.

The following commands read in this image as a 2-dimensional pure cubical complex and store
the Euclidean coordinates of the black pixels in a list. Then 200 points are selected at random from
this list and used to construct a 200×200 symmetric matrix S whose entries are the Euclidean distance
between the sample data points.

Example
gap> file:=HapFile("data500.png");;

gap> M:=ReadImageAsPureCubicalComplex(file,400);;

gap> A:=M!.binaryArray;;

gap> data:=[];;

gap> for i in [1..Length(A)] do

> for j in [1..Length(A[1])] do

> if A[i][j]=1 then Add(data,[i,j]); fi;

> od;

> od;

gap> sample:=List([1..200],i->Random(data));;

gap> S:=VectorsToSymmetricMatrix(sample,EuclideanApproximatedMetric);;

The symmetric distance matrix S is next converted to a filtered chain complex arising from a filtered
simplicial complex (using the standard persistent homology pipeline).

Example
gap> G:=SymmetricMatrixToFilteredGraph(S,10,100);;

#Filtration length T=10, distances greater than 100 discarded.

gap> N:=SimplicialNerveOfFilteredGraph(G,2);;

gap> C:=SparseFilteredChainComplexOfFilteredSimplicialComplex(N);;

Filtered sparse chain complex of length 2 in characteristic 0 .

Next, the induced homology homomorphisms in degrees 1 and 2, with rational coefficients, are com-
puted and displayed a barcodes.

Example
gap> P0:=PersistentHomologyOfFilteredSparseChainComplex(C,0);;

gap> P1:=PersistentHomologyOfFilteredSparseChainComplex(C,1);;

gap> BarCodeCompactDisplay(P0);

Example
gap> BarCodeCompactDisplay(P1);

The barcodes are consistent with the data points having been sampled from a space with the ho-
motopy type of an annulus.

Chapter 11

Resolutions

There is a range of functions in HAP that input a group G, integer n, and attempt to return the first
n terms of a free ZG-resolution R∗ of the trivial module Z. In some cases an explicit contracting
homotopy is provided on the resolution. The function Size(R) returns a list whose kth term is the
sum of the lengths of the boundaries of the generators in degree k.

11.1 Resolutions for small finite groups

The following uses discrete Morse theory to construct a resolution.
Example

gap> G:=SymmetricGroup(6);; n:=6;;

gap> R:=ResolutionFiniteGroup(G,n);

Resolution of length 6 in characteristic 0 for Group([(1,2), (1,2,3,4,5,6)

]) .

gap> Size(R);

[10, 58, 186, 452, 906, 1436]

11.2 Resolutions for very small finite groups

The following uses linear algebra over Z to construct a resolution.
Example

gap> Q:=QuaternionGroup(128);;

gap> R:=ResolutionSmallGroup(Q,20);

Resolution of length 20 in characteristic 0 for <pc group of size 128 with

2 generators> .

No contracting homotopy available.

gap> Size(R);

[4, 42, 8, 128, 4, 42, 8, 128, 4, 42, 8, 128, 4, 42, 8, 128, 4, 42, 8, 128]

The suspicion that this resolution R∗ is periodic of period 4 can be confirmed by constructing the chain
complex C∗ = R∗⊗ZZG and verifying that boundary matrices repeat with period 4.

138

A HAP tutorial 139

A second example of a periodic resolution, for the Dihedral group D2k+1 = 〈x,y | x2 =
xykx−1y−k−1 = 1〉 of order 2k + 2 in the case k = 1, is constructed and verified for periodicity in
the next example.

Example
gap> F:=FreeGroup(2);;D:=F/[F.1^2,F.1*F.2*F.1^-1*F.2^-2];;

gap> R:=ResolutionSmallGroup(D,15);;

gap> Size(R);

[4, 7, 8, 6, 4, 8, 8, 6, 4, 8, 8, 6, 4, 8, 8]

gap> C:=TensorWithIntegersOverSubgroup(R,Group(One(D)));;

gap> n:=4;;BoundaryMatrix(C,n)=BoundaryMatrix(C,n+4);

true

gap> n:=5;;BoundaryMatrix(C,n)=BoundaryMatrix(C,n+4);

true

gap> n:=6;;BoundaryMatrix(C,n)=BoundaryMatrix(C,n+4);

true

gap> n:=7;;BoundaryMatrix(C,n)=BoundaryMatrix(C,n+4);

true

gap> n:=8;;BoundaryMatrix(C,n)=BoundaryMatrix(C,n+4);

true

This periodic resolution for D3 can be found in a paper by R. Swan [Swa60]. The resolution was
proved for arbitrary D2k+1 by Irina Kholodna [Kho01] (Corollary 5.5) and is the cellular chain complex
of the universal cover of a CW-complex X with two cells in dimensions 1,2 mod 4 and one cell in
dimensions 0,3 mod 4. The 2-skelecton is the 2-complex for the given presentation of D2k+1 and an
attaching map for the 3-cell is represented as follows.

A slightly different periodic resolution for D2k+1 has been obtain more recently by FEA Johnson
[Joh16]. Johnson’s resolution has two free generators in each degree. Interestingly, running the fol-
lowing code for many values of k > 1 seems to produce a periodic resolution with two free generators
in each degree for most values of k.

Example
gap> k:=20;;rels:=[x^2,x*y^k*x^-1*y^(-1-k)];;D:=F/rels;;

gap> R:=ResolutionSmallGroup(D,7);;

gap> List([0..7],R!.dimension);

[1, 2, 2, 2, 2, 2, 2, 2]

The performance of the function ResolutionSmallGroup(G,n) is very sensistive to the choice
of presentation for the input group G. If G is an fp-group then the defining presentation for G is used.
If G is a permutaion group or finite matrix group then GAP functions are invoked to find a presentation
for G. The following commands use a geometrically derived presentation for SL(2,5) as input in order
to obtain the first few terms of a periodic resolution for this group of period 4.

Example
gap> Y:=PoincareDodecahedronCWComplex(

> [[1,2,3,4,5],[6,7,8,9,10]],

> [[1,11,16,12,2],[19,9,8,18,14]],

> [[2,12,17,13,3],[20,10,9,19,15]],

> [[3,13,18,14,4],[16,6,10,20,11]],

> [[4,14,19,15,5],[17,7,6,16,12]],

> [[5,15,20,11,1],[18,8,7,17,13]]);;

A HAP tutorial 140

gap> G:=FundamentalGroup(Y);

<fp group on the generators [f1, f2]>

gap> RelatorsOfFpGroup(G);

[f2^-1*f1^-1*f2*f1^-1*f2^-1*f1, f2^-1*f1*f2^2*f1*f2^-1*f1^-1]

gap> StructureDescription(G);

"SL(2,5)"

gap> R:=ResolutionSmallGroup(G,3);;

gap> List([0..3],R!.dimension);

[1, 2, 2, 1]

11.3 Resolutions for finite groups acting on orbit polytopes

The following uses Polymake convex hull computations and homological perturbation theory to con-
struct a resolution.

Example
gap> G:=SignedPermutationGroup(5);;

gap> StructureDescription(G);

"C2 x ((C2 x C2 x C2 x C2) : S5)"

gap> v:=[1,2,3,4,5];; #The resolution depends on the choice of vector.

gap> P:=PolytopalComplex(G,[1,2,3,4,5]);

Non-free resolution in characteristic 0 for <matrix group of size 3840 with

9 generators> .

No contracting homotopy available.

gap> R:=FreeGResolution(P,6);

Resolution of length 5 in characteristic 0 for <matrix group of size

3840 with 9 generators> .

No contracting homotopy available.

gap> Size(R);

[10, 60, 214, 694, 6247, 273600]

The convex polytope PG(v) = Convex Hull{g ·v | g ∈G} used in the resolution depends on the choice
of vector v ∈Rn. Two such polytopes for the alternating group G = A4 acting on R4 can be visualized
as follows.

Example
gap> G:=AlternatingGroup(4);;

gap> OrbitPolytope(G,[1,2,3,4],["VISUAL"]);

gap> OrbitPolytope(G,[1,1,3,4],["VISUAL"]);

gap> P1:=PolytopalComplex(G,[1,2,3,4]);;

gap> P2:=PolytopalComplex(G,[1,1,3,4]);;

gap> R1:=FreeGResolution(P1,20);;

gap> R2:=FreeGResolution(P2,20);;

gap> Size(R1);

[6, 11, 32, 24, 36, 60, 65, 102, 116, 168, 172, 248, 323, 628, 650, 1093,

1107, 2456, 2344, 6115]

gap> Size(R2);

[4, 11, 20, 24, 36, 60, 65, 102, 116, 168, 172, 248, 323, 628, 650, 1093,

A HAP tutorial 141

1107, 2456, 2344, 6115]

11.4 Minimal resolutions for finite p-groups over Fp

The following uses linear algebra to construct a minimal free FpG-resolution of the trivial module F.
Example

gap> P:=SylowSubgroup(MathieuGroup(12),2);;

gap> R:=ResolutionPrimePowerGroup(P,20);

Resolution of length 20 in characteristic 2 for Group(

[(2,8,4,12)(3,11,7,9), (2,3)(4,7)(6,10)(9,11), (3,7)(6,10)(8,11)(9,12),

(1,10)(3,7)(5,6)(8,12), (2,4)(3,7)(8,12)(9,11), (1,5)(6,10)(8,12)(9,11)

]) .

gap> Size(R);

[6, 62, 282, 740, 1810, 3518, 6440, 10600, 17040, 24162, 34774, 49874,

62416, 81780, 106406, 145368, 172282, 208926, 262938, 320558]

The resolution has the minimum number of generators possible in each degree and can be used to
guess a formula for the Poincare series

P(x) = Σk≥0 dimFp Hk(G,Fp)xk.
The guess is certainly correct for the coefficients of xk for k ≤ 20 and can be used to guess the

dimension of say H2000(G,Fp).
Most likely dimF2 H2000(G,F2) = 2001000.

Example
gap> P:=PoincareSeries(R,20);

(1)/(-x_1^3+3*x_1^2-3*x_1+1)

gap> ExpansionOfRationalFunction(P,2000)[2000];

2001000

11.5 Resolutions for abelian groups

The following uses the formula for the tensor product of chain complexes to construct a resolution.
Example

gap> A:=AbelianPcpGroup([2,4,8,0,0]);;

gap> StructureDescription(A);

"Z x Z x C8 x C4 x C2"

gap> R:=ResolutionAbelianGroup(A,10);

Resolution of length 10 in characteristic 0 for Pcp-group with orders

[2, 4, 8, 0, 0] .

gap> Size(R);

[14, 90, 296, 680, 1256, 2024, 2984, 4136, 5480, 7016]

A HAP tutorial 142

11.6 Resolutions for nilpotent groups

The following uses the NQ package to express the free nilpotent group of class 3 on three generators
as a Pcp group G, and then uses homological perturbation on the lower central series to construct a
resolution. The resolution is used to exhibit 2-torsion in H4(G,Z).

Example
gap> F:=FreeGroup(3);;

gap> G:=Image(NqEpimorphismNilpotentQuotient(F,3));;

gap> R:=ResolutionNilpotentGroup(G,5);

Resolution of length 5 in characteristic 0 for Pcp-group with orders

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] .

gap> Size(R);

[28, 377, 2377, 9369, 25850]

gap> Homology(TensorWithIntegers(R),4);

[2, 2, 2, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0]

The following example uses a simplification procedure for resolutions to construct a resolution S∗ for
the free nilpotent group G of class 2 on 3 generators that has the minimal possible number of free
generators in each degree.

Example
gap> G:=Image(NqEpimorphismNilpotentQuotient(FreeGroup(3),2));;

gap> R:=ResolutionNilpotentGroup(G,10);;

gap> S:=ContractedComplex(R);;

gap> C:=TensorWithIntegers(S);;

gap> List([1..10],i->IsZero(BoundaryMatrix(C,i)));

[true, true, true, true, true, true, true, true, true, true]

The following example uses homological perturbation on the lower central series to construct a reso-
lution for the Sylow 2-subgroup P = Syl2(M12) of the Mathieu simple group M12.

Example
gap> G:=MathieuGroup(12);;

gap> P:=SylowSubgroup(G,2);;

gap> StructureDescription(P);

"((C4 x C4) : C2) : C2"

gap> R:=ResolutionNilpotentGroup(P,9);

Resolution of length 9 in characteristic

0 for <permutation group with 279 generators> .

gap> Size(R);

[12, 80, 310, 939, 2556, 6768, 19302, 61786, 237068]

A HAP tutorial 143

11.7 Resolutions for groups with subnormal series

The following uses homological perturbation on a subnormal series to construct a resolution for the
Sylow 2-subgroup P = Syl2(M12) of the Mathieu simple group M12.

Example
gap> P:=SylowSubgroup(MathieuGroup(12),2);;

gap> sn:=ElementaryAbelianSeries(P);;

gap> R:=ResolutionSubnormalSeries(sn,9);

Resolution of length 9 in characteristic

0 for <permutation group with 64 generators> .

gap> Size(R);

[12, 78, 288, 812, 1950, 4256, 8837, 18230, 39120]

11.8 Resolutions for groups with normal series

The following uses homological perturbation on a normal series to construct a resolution for the Sylow
2-subgroup P = Syl2(M12) of the Mathieu simple group M12.

Example
gap> P:=SylowSubgroup(MathieuGroup(12),2);;

gap> P1:=EfficientNormalSubgroups(P)[1];;

gap> P2:=Intersection(DerivedSubgroup(P),P1);;

gap> P3:=Group(One(P));;

gap> R:=ResolutionNormalSeries([P,P1,P2,P3],9);

Resolution of length 9 in characteristic

0 for <permutation group with 64 generators> .

gap> Size(R);

[10, 60, 200, 532, 1238, 2804, 6338, 15528, 40649]

11.9 Resolutions for polycyclic (almost) crystallographic groups

The following uses the Polycyclic package and homological perturbation to construct a resolution for
the crystallographic group G:=SpaceGroup(3,165).

Example
gap> G:=SpaceGroup(3,165);;

gap> G:=Image(IsomorphismPcpGroup(G));;

gap> R:=ResolutionAlmostCrystalGroup(G,20);

Resolution of length 20 in characteristic 0 for Pcp-group with orders

[3, 2, 0, 0, 0] .

gap> Size(R);

[10, 49, 117, 195, 273, 351, 429, 507, 585, 663, 741, 819, 897, 975, 1053,

1131, 1209, 1287, 1365, 1443]

The following constructs a resolution for an almost crystallographic Pcp group G. The final commands
establish that G is not isomorphic to a crystallographic group.

A HAP tutorial 144

Example
gap> G:=AlmostCrystallographicPcpGroup(4, 50, [1, -4, 1, 2]);;

gap> R:=ResolutionAlmostCrystalGroup(G,20);

Resolution of length 20 in characteristic 0 for Pcp-group with orders

[4, 0, 0, 0, 0] .

gap> Size(R);

[10, 53, 137, 207, 223, 223, 223, 223, 223, 223, 223, 223, 223, 223, 223,

223, 223, 223, 223, 223]

gap> T:=Kernel(NaturalHomomorphismOnHolonomyGroup(G));;

gap> IsAbelian(T);

false

11.10 Resolutions for Bieberbach groups

The following constructs a resolution for the Bieberbach group G=SpaceGroup(3,165) by using
convex hull algorithms to construct a Dirichlet domain for its free action on Euclidean space R3. By
construction the resolution is trivial in degrees ≥ 3.

Example
gap> G:=SpaceGroup(3,165);;

gap> R:=ResolutionBieberbachGroup(G);

Resolution of length 4 in characteristic

0 for SpaceGroupOnRightBBNWZ(3, 6, 1, 1, 4) .

No contracting homotopy available.

gap> Size(R);

[10, 18, 8, 0]

The fundamental domain constructed for the above resolution can be visualized using the following
commands.

Example
gap> F:=FundamentalDomainBieberbachGroup(G);

<polymake object>

gap> Display(F);

A different fundamental domain and resolution for G can be obtained by changing the choice of
vector v ∈ R3 in the definition of the Dirichlet domain

D(v) = {x ∈ R3 | ||x− v|| ≤ ||x−g.v|| for all g ∈ G}.
Example

gap> R:=ResolutionBieberbachGroup(G,[1/2,1/2,1/2]);

Resolution of length 4 in characteristic

0 for SpaceGroupOnRightBBNWZ(3, 6, 1, 1, 4) .

No contracting homotopy available.

gap> Size(R);

A HAP tutorial 145

[28, 42, 16, 0]

gap> F:=FundamentalDomainBieberbachGroup(G);

<polymake object>

gap> Display(F);

A higher dimensional example is handled in the next session. A list of the 62 7-dimensional
Hantze-Wendt Bieberbach groups is loaded and a resolution is computed for the first group in the list.

Example
gap> file:=HapFile("HW-7dim.txt");;

gap> Read(file);

gap> G:=HWO7Gr[1];

<matrix group with 7 generators>

gap> R:=ResolutionBieberbachGroup(G);

Resolution of length 8 in characteristic 0 for <matrix group with

7 generators> .

No contracting homotopy available.

gap> Size(R);

[284, 1512, 3780, 4480, 2520, 840, 84, 0]

The homological perturbation techniques needed to extend this method to crystallographic groups
acting non-freely on Rn has not yet been implemenyed. This is on the TO-DO list.

11.11 Resolutions for arbitrary crystallographic groups

An implementation of the above method for Bieberbach groups is also available for arbi-
trary crystallographic groups. The following example constructs a resolution for the group
G:=SpaceGroupIT(3,227).

Example
gap> G:=SpaceGroupIT(3,227);;

gap> R:=ResolutionSpaceGroup(G,11);

Resolution of length 11 in characteristic 0 for <matrix group with

8 generators> .

No contracting homotopy available.

gap> Size(R);

[38, 246, 456, 644, 980, 1427, 2141, 2957, 3993, 4911, 6179]

11.12 Resolutions for crystallographic groups admitting cubical funda-
mental domain

The following uses subdivision techniques to construct a resolution for the Bieberbach group
G:=SpaceGroup(4,122). The resolution is endowed with a contracting homotopy.

A HAP tutorial 146

Example
gap> G:=SpaceGroup(4,122);;

gap> R:=ResolutionCubicalCrystGroup(G,20);

Resolution of length 20 in characteristic 0 for <matrix group with

6 generators> .

gap> Size(R);

[8, 24, 24, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Subdivision and homological perturbation are used to construct the following resolution (with con-
tracting homotopy) for a crystallographic group with non-free action.

Example
gap> G:=SpaceGroup(4,1100);;

gap> R:=ResolutionCubicalCrystGroup(G,20);

Resolution of length 20 in characteristic 0 for <matrix group with

8 generators> .

gap> Size(R);

[40, 215, 522, 738, 962, 1198, 1466, 1734, 2034, 2334, 2666, 2998, 3362,

3726, 4122, 4518, 4946, 5374, 5834, 6294]

11.13 Resolutions for Coxeter groups

The following session constructs the Coxeter diagram for the Coxeter group B = B7 of order 645120.
A resolution for G is then computed.

Example
gap> D:=[[1,[2,3]],[2,[3,3]],[3,[4,3]],[4,[5,3]],[5,[6,3]],[6,[7,4]]];;

gap> CoxeterDiagramDisplay(D);;

Example
gap> R:=ResolutionCoxeterGroup(D,5);

Resolution of length 5 in characteristic

0 for <permutation group of size 645120 with 7 generators> .

No contracting homotopy available.

gap> Size(R);

[14, 112, 492, 1604, 5048]

The routine extension of this method to infinite Coxeter groups is on the TO-DO list.

11.14 Resolutions for Artin groups

The following session constructs a resolution for the infinite Artin group G associated to the Coxeter
group B7. Exactness of the resolution depends on the solution to the K(π,1) Conjecture for Artin
groups of spherical type.

A HAP tutorial 147

Example
gap> R:=ResolutionArtinGroup(D,8);

Resolution of length 8 in characteristic 0 for <fp group on the generators

[f1, f2, f3, f4, f5, f6, f7]> .

No contracting homotopy available.

gap> Size(R);

[14, 98, 310, 610, 918, 1326, 2186, 0]

11.15 Resolutions for G = SL2(Z[1/m])

The following uses homological perturbation to construct a resolution for G = SL2(Z[1/6]).
Example

gap> R:=ResolutionSL2Z(6,10);

Resolution of length 10 in characteristic 0 for SL(2,Z[1/6]) .

gap> Size(R);

[44, 679, 6910, 21304, 24362, 48506, 43846, 90928, 86039, 196210]

11.16 Resolutions for selected groups G = SL2(O(Q(
√

d))

The following uses finite "Voronoi complexes" and homological perturbation to construct
a resolution for G = SL2(O(Q(

√
−5)). The finite complexes were contributed indepen-

dently by A. Rahm, M. Dutour-Scikiric and S. Schoenenbeck and are stored in the folder
~pkg/Hap1.v/lib/Perturbations/Gcomplexes.

Example
gap> R:=ResolutionSL2QuadraticIntegers(-5,10);

Resolution of length 10 in characteristic 0 for matrix group .

No contracting homotopy available.

gap> Size(R);

[22, 114, 120, 200, 146, 156, 136, 254, 168, 170]

11.17 Resolutions for selected groups G = PSL2(O(Q(
√

d))

The following uses finite "Voronoi complexes" and homological perturbation to construct a
resolution for G = PSL2(O(Q(

√
−11)). The finite complexes were contributed indepen-

dently by A. Rahm, M. Dutour-Scikiric and S. Schoenenbeck and are stored in the folder
~pkg/Hap1.v/lib/Perturbations/Gcomplexes.

Example
gap> R:=ResolutionPSL2QuadraticIntegers(-11,10);

Resolution of length 10 in characteristic 0 for PSL(2,O-11) .

No contracting homotopy available.

A HAP tutorial 148

gap> Size(R);

[12, 59, 89, 107, 125, 230, 208, 270, 326, 515]

11.18 Resolutions for a few higher-dimensional arithmetic groups

The following uses finite "Voronoi complexes" and homological perturbation to construct a resolution
for G = PSL4(Z). The finite complexes were contributed by M. Dutour-Scikiric and are stored in the
folder ~pkg/Hap1.v/lib/Perturbations/Gcomplexes.

Example
gap> V:=ContractibleGcomplex("PSL(4,Z)_d");

Non-free resolution in characteristic 0 for matrix group .

No contracting homotopy available.

gap> R:=FreeGResolution(V,5);

Resolution of length 5 in characteristic 0 for matrix group .

No contracting homotopy available.

gap> Size(R);

[18, 210, 1444, 26813]

11.19 Resolutions for finite-index subgroups

The next commands first construct the congruence subgroup Γ0(I) of index 144 in SL2(OQ(
√
−2))

for the ideal I in OQ(
√
−2) generated by 4+ 5

√
−2. The commands then compute a resolution for

the congruence subgroup G = Γ0(I)≤ SL2(OQ(
√
−2))

Example
gap> Q:=QuadraticNumberField(-2);;

gap> OQ:=RingOfIntegers(Q);;

gap> I:=QuadraticIdeal(OQ,4+5*Sqrt(-2));;

gap> G:=HAP_CongruenceSubgroupGamma0(I);

<[group of 2x2 matrices in characteristic 0>

gap>

gap> IndexInSL2O(G);

144

gap> R:=ResolutionSL2QuadraticIntegers(-2,4,true);;

gap> S:=ResolutionFiniteSubgroup(R,G);

Resolution of length 4 in characteristic 0 for <matrix group with

290 generators> .

gap> Size(S);

[1152, 8496, 30960, 59616]

A HAP tutorial 149

11.20 Simplifying resolutions

The next commands construct a resolution R∗ for the symmetric group S5 and convert it to a resolution
S∗ for the finite index subgroup A4 < S5. An heuristic algorithm is applied to S∗ in the hope of
obtaining a smaller resolution T∗ for the alternating group A4.

Example
gap> R:=ResolutionFiniteGroup(SymmetricGroup(5),5);;

gap> S:=ResolutionFiniteSubgroup(R,AlternatingGroup(4));

Resolution of length 5 in characteristic 0 for Alt([1 .. 4]) .

gap> Size(S);

[80, 380, 1000, 2040, 3400]

gap> T:=SimplifiedComplex(S);

Resolution of length 5 in characteristic 0 for Alt([1 .. 4]) .

gap> Size(T);

[4, 34, 22, 19, 196]

11.21 Resolutions for graphs of groups and for groups with aspherical
presentations

The following example constructs a resolution for a finitely presented group whose presentation is
known to have the property that its associated 2-complex is aspherical.

Example
gap> F:=FreeGroup(3);;x:=F.1;;y:=F.2;;z:=F.3;;

gap> rels:=[x*y*x*(y*x*y)^-1, y*z*y*(z*y*z)^-1, z*x*z*(x*z*x)^-1];;

gap> G:=F/rels;;

gap> R:=ResolutionAsphericalPresentation(G,10);

Resolution of length 10 in characteristic 0 for <fp group on the generators

[f1, f2, f3]> .

No contracting homotopy available.

gap> Size(R);

[6, 18, 0, 0, 0, 0, 0, 0, 0, 0]

The following commands create a resolution for a graph of groups corresponding to the amalgamated
product G = H ∗A K where H = S5 is the symmetric group of degree 5, K = S4 is the symmetric group
of degree 4 and the common subgroup is A = S3.

Example
gap> S5:=SymmetricGroup(5);SetName(S5,"S5");;

Sym([1 .. 5])

gap> S4:=SymmetricGroup(4);SetName(S4,"S4");;

Sym([1 .. 4])

gap> A:=SymmetricGroup(3);SetName(A,"S3");;

Sym([1 .. 3])

gap> AS5:=GroupHomomorphismByFunction(A,S5,x->x);;

gap> AS4:=GroupHomomorphismByFunction(A,S4,x->x);;

gap> D:=[S5,S4,[AS5,AS4]];;

A HAP tutorial 150

gap> GraphOfGroupsDisplay(D);;

Example
gap> R:=ResolutionGraphOfGroups(D,8);;

gap> Size(R);

[16, 68, 162, 302, 480, 627, 869, 1290]

11.22 Resolutions for FG-modules

Let F = Fp be the field of p elements and let M be some FG-module for G a finite p-group. We
might wish to construct a free FG-resolution for M. We can handle this by constructing a short exact
sequence

DM � P � M
in which P is free (or projective). Then any resolution of DM yields a resolution of M and we can

represent DM as a submodule of P. We refer to DM as the desuspension of M. Consider for instance
G = Syl2(GL(4,2)) and F = F2. The matrix group G acts via matrix multiplication on M = F4. The
following example constructs a free FG-resolution for M.

Example
gap> G:=GL(4,2);;

gap> S:=SylowSubgroup(G,2);;

gap> M:=GModuleByMats(GeneratorsOfGroup(S),GF(2));;

gap> DM:=DesuspensionMtxModule(M);;

gap> R:=ResolutionFpGModule(DM,20);

Resolution of length 20 in characteristic 2 for <matrix group of

size 64 with 3 generators> .

gap> List([0..20],R!.dimension);

[3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136,

153, 171, 190, 210, 231, 253]

Chapter 12

Simplicial groups

12.1 Crossed modules

A crossed module consists of a homomorphism of groups ∂ :M→ G together with an action (g,m) 7→
gm of G on M satisfying

1. ∂ (gm) = gmg−1

2. ∂mm′ = mm′m−1

for g ∈ G, m,m′ ∈M.
A crossed module ∂ :M→ G is equivalent to a cat1-group (H,s, t) (see 6.11) where H = M oG,

s(m,g) = (1,g), t(m,g) = (1,(∂m)g). A cat1-group is, in turn, equivalent to a simplicial group with
Moore complex has length 1. The simplicial group is constructed by considering the cat1-group as a
category and taking its nerve. Alternatively, the simplicial group can be constructed by viewing the
crossed module as a crossed complex and using a nonabelian version of the Dold-Kan theorem.

The following example concerns the crossed module
∂ :G→ Aut(G),g 7→ (x 7→ gxg−1)
associated to the dihedral group G of order 16. This crossed module represents, up to homotopy

type, a connected space X with πiX = 0 for i ≥ 3, π2X = Z(G), π1X = Aut(G)/Inn(G). The space
X can be represented, up to homotopy, by a simplicial group. That simplicial group is used in the
example to compute

H1(X ,Z) = Z2⊕Z2,
H2(X ,Z) = Z2,
H3(X ,Z) = Z2⊕Z2⊕Z2,
H4(X ,Z) = Z2⊕Z2⊕Z2,
H5(X ,Z) = Z2⊕Z2⊕Z2⊕Z2⊕Z2⊕Z2.

Example
gap> C:=AutomorphismGroupAsCatOneGroup(DihedralGroup(16));

Cat-1-group with underlying group Group(

[f1, f2, f3, f4, f5, f6, f7, f8, f9]) .

gap> Size(C);

512

gap> Q:=QuasiIsomorph(C);

Cat-1-group with underlying group Group([f9, f8, f1, f2*f3, f5]) .

151

A HAP tutorial 152

gap> Size(Q);

32

gap> N:=NerveOfCatOneGroup(Q,6);

Simplicial group of length 6

gap> K:=ChainComplexOfSimplicialGroup(N);

Chain complex of length 6 in characteristic 0 .

gap> Homology(K,1);

[2, 2]

gap> Homology(K,2);

[2]

gap> Homology(K,3);

[2, 2, 2]

gap> Homology(K,4);

[2, 2, 2]

gap> Homology(K,5);

[2, 2, 2, 2, 2, 2]

12.2 Eilenberg-MacLane spaces as simplicial groups (not recom-
mended)

The following example concerns the Eilenberg-MacLane space X = K(Z3,3) which is a
path-connected space with π3X = Z3, πiX = 0 for 3 6= i ≥ 1. This space is represented by a sim-
plicial group, and perturbation techniques are used to compute

H7(X ,Z) = Z3⊕Z3.
Example

gap> A:=AbelianGroup([3]);;AbelianInvariants(A);

[3]

gap> K:=EilenbergMacLaneSimplicialGroup(A,3,8);

Simplicial group of length 8

gap> C:=ChainComplex(K);

Chain complex of length 8 in characteristic 0 .

gap> Homology(C,7);

[3, 3]

12.3 Eilenberg-MacLane spaces as simplicial free abelian groups (rec-
ommended)

For integer n > 1 and abelian group A the Eilenberg-MacLane space K(A,n) is better represented as
a simplicial free abelian group. (The reason is that the functorial bar resolution of a group can be
replaced in computations by the smaller functorial Chevalley-Eilenberg complex of the group when
the group is free abelian, obviating the need for perturbation techniques. When A has torision we can

A HAP tutorial 153

replace it with an inclusion of free abelian groups A1 ↪→ A0 with A ∼= A0/A1 and again invoke the
Chevalley-Eilenberg complex. The current implementation unfortunately handles only free abelian A
but the easy extension to non-free A is planned for a future release.)

The following commands compute the integral homology Hn(K(Z,3),Z) for 0 ≤ n ≤ 16. (Note
that one typically needs fewer than n terms of the Eilenberg-MacLance space to compute its n-th
homology -- an error is printed if too few terms of the space are available for a given computation.)

Example
gap> A:=AbelianPcpGroup([0]);; #infinite cyclic group

gap> K:=EilenbergMacLaneSimplicialFreeAbelianGroup(A,3,14);

Simplicial free abelian group of length 14

gap> for n in [0..16] do

> Print("Degree ",n," integral homology of K is ",Homology(K,n),"\n");

> od;

Degree 0 integral homology of K is [0]

Degree 1 integral homology of K is []

Degree 2 integral homology of K is []

Degree 3 integral homology of K is [0]

Degree 4 integral homology of K is []

Degree 5 integral homology of K is [2]

Degree 6 integral homology of K is []

Degree 7 integral homology of K is [3]

Degree 8 integral homology of K is [2]

Degree 9 integral homology of K is [2]

Degree 10 integral homology of K is [3]

Degree 11 integral homology of K is [5, 2]

Degree 12 integral homology of K is [2]

Degree 13 integral homology of K is []

Degree 14 integral homology of K is [10, 2]

Degree 15 integral homology of K is [7, 6]

Degree 16 integral homology of K is []

For an n-connected pointed space X the Freudenthal Suspension Theorem states that the map
X → Ω(ΣX) induces a map πk(X)→ πk(Ω(ΣX)) which is an isomorphism for k ≤ 2n and epimor-
phism for k = 2n+ 1. Thus the Eilenberg-MacLane space K(A,n+ 1) can be constructed from the
suspension ΣK(A,n) by attaching cells in dimensions ≥ 2n+1. In particular, there is an isomorphism
Hk−1(K(A,n),Z)→ Hk(K(A,n+1),Z) for k ≤ 2n and epimorphism for k = 2n+1.

For instance, Hk−1(K(Z,3),Z)∼= Hk(K(Z,4),Z) for k ≤ 6 and H6(K(Z,3),Z)� H7(K(Z,4),Z).
This assertion is seen in the following session.

Example
gap> A:=AbelianPcpGroup([0]);; #infinite cyclic group

gap> K:=EilenbergMacLaneSimplicialFreeAbelianGroup(A,4,11);

Simplicial free abelian group of length 11

gap> for n in [0..13] do

> Print("Degree ",n," integral homology of K is ",Homology(K,n),"\n");

> od;

Degree 0 integral homology of K is [0]

Degree 1 integral homology of K is []

Degree 2 integral homology of K is []

A HAP tutorial 154

Degree 3 integral homology of K is []

Degree 4 integral homology of K is [0]

Degree 5 integral homology of K is []

Degree 6 integral homology of K is [2]

Degree 7 integral homology of K is []

Degree 8 integral homology of K is [3, 0]

Degree 9 integral homology of K is []

Degree 10 integral homology of K is [2, 2]

Degree 11 integral homology of K is []

Degree 12 integral homology of K is [5, 12, 0]

Degree 13 integral homology of K is [2]

12.4 Elementary theoretical information on H∗(K(π,n),Z)

The cup product is not implemented for the cohomology ring H∗(K(π,n),Z). Standard theoretical
spectral sequence arguments have to be applied to obtain basic information relating to the ring struc-
ture. To illustrate this the following commands compute Hn(K(Z,2),Z) for the first few values of
n.

Example
gap> K:=EilenbergMacLaneSimplicialFreeAbelianGroup(A,2,10);;

gap> List([0..10],k->Cohomology(K,k));

[[0], [], [0], [], [0], [], [0], [], [0], [], [0]]

There is a fibration sequence K(π,n) ↪→∗� K(π,n+1) in which ∗ denotes a contractible space. For
n = 1,π = Z the terms of the E2 page of the Serre integral cohomology spectral sequence for this
fibration are

• E pq
2 = H p(K(Z,2),Hq(K(Z,1),Z)) .

Since K(Z,1) can be taken to be the circle S1 we know that it has non-trivial cohomology in degrees
0 and 1 only. The first few terms of the E2 page are given in the following table.

1 Z 0 Z 0 Z 0 Z 0 Z 0 Z
0 Z 0 Z 0 Z 0 Z 0 Z 0 Z
q/p 0 1 2 3 4 5 6 7 8 9 10

Table: E2 cohomology page for K(Z,1) ↪→∗� K(Z,2)

Let x denote the generator of H1(K(Z,1),Z) and y denote the generator of H2(K(Z,2),Z). Since
∗ has zero cohomology in degrees ≥ 1 we see that the differential must restrict to an isomorphism
d2:E0,1

2 → E2,0
2 with d2(x) = y. Then we see that the differential must restrict to an isomorphism

d2:E2,1
2 → E4,0

2 defined on the generator xy of E2,1
2 by

d2(xy) = d2(x)y+(−1)deg(x)xd2(y) = y2 .

Hence E4,0
2
∼= H4(K(Z,2),Z) is generated by y2. The argument extends to show that H6(K(Z,2),Z)

is generated by y3, H8(K(Z,2),Z) is generated by y4, and so on.

A HAP tutorial 155

In fact, to obtain a complete description of the ring H∗(K(Z,2),Z) in this fashion there is no benefit
to using computer methods at all. We only need to know the cohomology ring H∗(K(Z,1),Z) =
H∗(S1,Z) and the single cohomology group H2(K(Z,2),Z).

A similar approach can be attempted for H∗(K(Z,3),Z) using the fibration sequence K(Z,2) ↪→
∗ � K(Z,3) and, as explained in Chapter 5 of [Hat01], yields the computation of the group
H i(K(Z,3),Z) for 4 ≤ i ≤ 13. The method does not directly yield H3(K(Z,3),Z) and breaks
down in degree 14 yielding only that H14(K(Z,3),Z) = 0 or Z3. The following commands provide
H3(K(Z,3),Z) = Z and H14(K(Z,3),Z) = 0.

Example
gap> A:=AbelianPcpGroup([0]);;

gap> K:=EilenbergMacLaneSimplicialFreeAbelianGroup(A,3,15);;

gap> Cohomology(K,3);

[0]

gap> Cohomology(K,14);

[]

However, the implementation of these commands is currently a bit naive, and computationally ineffi-
cient, since they do not currently employ any homological perturbation techniques.

12.5 The first three non-trivial homotopy groups of spheres

The Hurewicz Theorem immediately gives

πn(Sn)∼= Z (n≥ 1)

and
πk(Sn) = 0 (k ≤ n−1).

As a CW-complex the Eilenberg-MacLane space K = K(Z,n) can be obtained from an n-sphere
Sn = e0 ∪ en by attaching cells in dimensions ≥ n+ 2 so as to kill the higher homotopy groups of
Sn. From the inclusion ι :Sn ↪→ K(Z,n) we can form the mapping cone X = C(ι). The long exact
homotopy sequence
· · · → πk+1K→ πk+1(K,Sn)→ πkSn→ πkK→ πk(K,Sn)→ ···
implies that πk(K,Sn) = 0 for 0 ≤ k ≤ n+ 1 and πn+2(K,Sn) ∼= πn+1(Sn). The relative Hurewicz

Theorem gives an isomorphism πn+2(K,Sn)∼= Hn+2(K,Sn,Z). The long exact homology sequence
· · ·Hn+2(Sn,Z)→ Hn+2(K,Z)→ Hn+2(K,Sn,Z)→ Hn+1(Sn,Z)→ ···
arising from the cofibration Sn ↪→K � X implies that πn+1(Sn)∼= πn+2(K,Sn)∼= Hn+2(K,Sn,Z)∼=

Hn+2(K,Z). From the GAP computations in 12.3 and the Freudenthal Suspension Theorem we find:

π3S2 ∼= Z, πn+1(Sn)∼= Z2 (n≥ 3).

The Hopf fibration S3 → S2 has fibre S1 = K(Z,1). It can be constructed by viewing S3 as all
pairs (z1,z2) ∈C2 with |z1|2 + |z2|2 = 1 and viewing S2 as C∪∞; the map sends (z1,z2) 7→ z1/z2. The
homotopy exact sequence of the Hopf fibration yields πk(S3)∼= πk(S2) for k ≥ 3, and in particular

π4(S2)∼= π4(S3)∼= Z2 .

It will require further techniques (such as the Postnikov tower argument in Section 12.7 below) to
establish that π5(S3)∼= Z2. Once we have this isomorphism for π5(S3), the generalized Hopf fibration

A HAP tutorial 156

S3 ↪→ S7 � S4 comes into play. This fibration is contructed as for the classical fibration, but using
pairs (z1,z2) of quaternions rather than pairs of complex numbers. The Hurewicz Theorem gives
π3(S7) = 0; the fibre S3 is thus homotopic to a point in S7 and the inclusion of the fibre induces the zero
homomorphism πk(S3)

0−→ πk(S7) (k ≥ 1). The exact homotopy sequence of the generalized Hopf
fibration then gives πk(S4) ∼= πk(S7)⊕πk−1(S3). On taking k = 6 we obtain π6(S4) ∼= π5(S3) ∼= Z2.
Freudenthal suspension then gives

πn+2(Sn)∼= Z2, (n≥ 2).

12.6 The first two non-trivial homotopy groups of the suspension and
double suspension of a K(G,1)

For any group G we consider the homotopy groups πn(ΣK(G,1)) of the suspension ΣK(G,1) of the
Eilenberg-MacLance space K(G,1). On taking G = Z, and observing that S2 = ΣK(Z,1), we special-
ize to the homotopy groups of the 2-sphere S2.

By construction,
π1(ΣK(G,1)) = 0 .

The Hurewicz Theorem gives
π2(ΣK(G,1))∼= Gab

via the isomorphisms π2(ΣK(G,1))∼= H2(ΣK(G,1),Z)∼= H1(K(G,1),Z)∼= Gab. R. Brown and J.-L.
Loday [BL87] obtained the formulae

π3(ΣK(G,1))∼= ker(G⊗G→ G,x⊗ y 7→ [x,y]) ,

π4(Σ
2K(G,1))∼= ker(G⊗̃G→ G,x⊗̃y 7→ [x,y])

involving the nonabelian tensor square and nonabelian symmetric square of the group G. The fol-
lowing commands use the nonabelian tensor and symmetric product to compute the third and fourth
homotopy groups for G = Syl2(M12) the Sylow 2-subgroup of the Mathieu group M12.

Example
gap> G:=SylowSubgroup(MathieuGroup(12),2);;

gap> ThirdHomotopyGroupOfSuspensionB(G);

[2, 2, 2, 2, 2, 2, 2, 2, 2]

gap>

gap> FourthHomotopyGroupOfDoubleSuspensionB(G);

[2, 2, 2, 2, 2, 2]

12.7 Postnikov towers and π5(S3)

A Postnikov system for the sphere S3 consists of a sequence of fibrations · · ·X3
p3→ X2

p2→ X1
p1→∗ and a

sequence of maps φn:S3→ Xn such that

• pn ◦φn = φn−1

A HAP tutorial 157

• The map φn:S3→ Xn induces an isomorphism πk(S3)→ πk(Xn) for all k ≤ n

• πk(Xn) = 0 for k > n

• and consequently each fibration pn has fibre an Eilenberg-MacLane space K(πn(S3),n).

The space Xn is obtained from S3 by adding cells in dimensions ≥ n+2 and thus

• Hk(Xn,Z) = Hk(S3,Z) for k ≤ n+1.

So in particular X1 = X2 = ∗,X3 = K(Z,3) and we have a fibration sequence K(π4(S3),4) ↪→ X4 �
K(Z,3). The terms in the E2 page of the Serre integral cohomology spectral sequence of this fibration
are

• E p,q
2 = H p(K(Z,3), Hq(K(Z2,4),Z)).

The first few terms in the E2 page can be computed using the commands of Sections 12.2 and 12.3
and recorded as follows.

8 Z2 0 0
7 Z2 0 0
6 0 0 0
5 π4(S3) 0 0 π4(S3) 0 0 0
4 0 0 0 0 0 0
3 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 Z 0 0 Z 0 0 Z2 0 Z3 Z2
q/p 0 1 2 3 4 5 6 7 8 9

Table: E2 cohomology page for K(π4(S3),4) ↪→ X4 � X3

Since we know that H5(X4,Z) = 0, the differentials in the spectral sequence must restrict to an
isomorphism E0,5

2 = π4(S3)
∼=−→ E6,0

2 = Z2. This provides an alternative derivation of π4(S3) ∼= Z2.
We can also immediately deduce that H6(X4,Z) = 0. Let x be the generator of E0,5

2 and y the generator
of E3,0

2 . Then the generator xy of E3,5
2 gets mapped to a non-zero element d7(xy) = d7(x)y− xd7(y).

Hence the term E0,7
2 = Z2 must get mapped to zero in E3,5

2 . It follows that H7(X4,Z) = Z2.
The integral cohomology of Eilenberg-MacLane spaces yields the following information on the

E2 page E p,q
2 = Hp(X4, Hq(K(π5S3,5),Z)) for the fibration K(π5(S3),5) ↪→ X5 � X4.

6 π5(S3) 0 0 π5(S3) 0 0
5 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 Z 0 0 Z 0 0 0 H7(X4,Z)
q/p 0 1 2 3 4 5 6 7

Table: E2 cohomology page for K(π5(S3),5) ↪→ X5 � X4

A HAP tutorial 158

Since we know that H6(X5,Z) = 0, the differentials in the spectral sequence must restrict to an
isomorphism E0,6

2 = π5(S3)
∼=−→ E7,0

2 = H7(X4,Z). We can conclude the desired result:

π5(S3) = Z2 .

Note that the fibration X4 � K(Z,3) is determined by a cohomology class κ ∈H5(K(Z,3),Z2) =
Z2. If κ = 0 then we’d have X4 = K(Z2,4)×K(Z,3) and, as the following commands show, we’d
then have H4(X4,Z) = Z2.

Example
gap> K:=EilenbergMacLaneSimplicialGroup(AbelianPcpGroup([0]),3,7);;

gap> L:=EilenbergMacLaneSimplicialGroup(CyclicGroup(2),4,7);;

gap> CK:=ChainComplex(K);;

gap> CL:=ChainComplex(L);;

gap> T:=TensorProduct(CK,CL);;

gap> Homology(T,4);

[2]

Since we know that H4(X4,Z) = 0 we can conclude that the Postnikov invariant κ is the non-zero
class in H5(K(Z,3),Z2) = Z2.

12.8 Towards π4(ΣK(G,1))

Consider the suspension X = ΣK(G,1) of a classifying space of a group G once again. This space
has a Postnikov system in which X1 = ∗, X2 = K(Gab,2). We have a fibration sequence K(π3X ,3) ↪→
X3 � K(Gab,2). The corresponding integral cohomology Serre spectral sequence has E2 page with
terms

• E p,q
2 = H p(K(Gab,2),Hq(K(π3X ,3)),Z)).

As an example, for the Alternating group G = A4 of order 12 the following commands of Section
12.6 compute Gab = Z3 and π3X = Z6.

Example
gap> AbelianInvariants(G);

[3]

gap> ThirdHomotopyGroupOfSuspensionB(G);

[2, 3]

The first terms of the E2 page can be calculated using the commands of Sections 12.2 and 12.3.

7 Z2 0
6 Z2 0 0 0
5 0 0 0 0
4 Z6 0 0 Z3
3 0 0 0 0 0 0
2 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 Z 0 0 Z3 0 Z3 0 Z9
q/p 0 1 2 3 4 5 6 7

A HAP tutorial 159

Table: E2 cohomology page for K(π3X ,3) ↪→ X3 � X2

We know that H1(X3,Z) = 0, H2(X3,Z) = H1(G,Z) = 0, H3(X3,Z) = H2(G,Z) = Z3, and that
H4(X3,Z) is a subgroup of H3(G,Z) = Z2. It follows that the differential induces a surjection E0,4

2 =

Z6 � E5,0
2 = Z3. Consequently H4(X3,Z) = Z2 and H5(X3,Z) = 0 and H6(X3,Z) = Z2.

The E2 page for the fibration K(π4X ,4) ↪→ X4 � X3 contains the following terms.

5 π4X 0 0
4 0 0 0 0
3 0 0 0 0 0 0
2 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 Z 0 0 Z3 Z2 0 Z2
q/p 0 1 2 3 4 5 6

Table: E2 cohomology page for K(π4X ,4) ↪→ X4 � X3

We know that H5(X4,Z) is a subgroup of H4(G,Z)=Z6, and hence that there is a homomorphisms
π4X → Z2 whose kernel is a subgroup of Z6. If follows that |π4X | ≤ 12.

12.9 Enumerating homotopy 2-types

A 2-type is a CW-complex X whose homotopy groups are trivial in dimensions n = 0 and n > 2. As
explained in 6.11 the homotopy type of such a space can be captured algebraically by a cat1-group G.
Let X , Y be 2-tytpes represented by cat1-groups G, H. If X and Y are homotopy equivalent then there
exists a sequence of morphisms of cat1-groups

G→ K1→ K2← K3→ ··· → Kn← H

in which each morphism induces isomorphisms of homotopy groups. When such a sequence exists
we say that G is quasi-isomorphic to H. We have the following result.

THEOREM. The 2-types X and Y are homotopy equivalent if and only if the associated
cat1-groups G and H are quasi-isomorphic.

The following commands produce a list L of all of the 62 non-isomorphic cat1-groups whose
underlying group has order 16.

Example
gap> L:=[];;

gap> for G in AllSmallGroups(16) do

> Append(L,CatOneGroupsByGroup(G));

> od;

gap> Length(L);

62

The next commands use the first and second homotopy groups to prove that the list L contains at least
37 distinct quasi-isomorphism types.

Example
gap> Invariants:=function(G)

> local inv;

> inv:=[];

A HAP tutorial 160

> inv[1]:=IdGroup(HomotopyGroup(G,1));

> inv[2]:=IdGroup(HomotopyGroup(G,2));

> return inv;

> end;;

gap> C:=Classify(L,Invariants);;

gap> Length(C);

The following additional commands use second and third integral homology in conjunction with the
first two homotopy groups to prove that the list L contains AT LEAST 49 distinct quasi-isomorphism
types.

Example
gap> Invariants2:=function(G)

> local inv;

> inv:=[];

> inv[1]:=Homology(G,2);

> inv[2]:=Homology(G,3);

> return inv;

> end;;

gap> C:=RefineClassification(C,Invariants2);;

gap> Length(C);

49

The following commands show that the above list L contains AT MOST 51 distinct quasi-isomorphism
types.

Example
gap> Q:=List(L,QuasiIsomorph);;

gap> M:=[];;

gap> for q in Q do

> bool:=true;;

> for m in M do

> if not IsomorphismCatOneGroups(m,q)=fail then bool:=false; break; fi;

> od;

> if bool then Add(M,q); fi;

> od;

gap> Length(M);

51

12.10 Identifying cat1
-groups of low order

Let us define the order of a cat1-group to be the order of its underlying group. The function
IdQuasiCatOneGroup(C) inputs a cat1-group C of "low order" and returns an integer pair [n,k]
that uniquely idenifies the quasi-isomorphism type of C. The integer n is the order of a smallest
cat1-group quasi-isomorphic to C. The integer k identifies a particular cat1-group of order n.

A HAP tutorial 161

The following commands use this function to show that there are precisely 49 distinct
quasi-isomorphism types of cat1-groups of order 16.

Example
gap> L:=[];;

gap> for G in AllSmallGroups(16) do

> Append(L,CatOneGroupsByGroup(G));

> od;

gap> M:=List(L,IdQuasiCatOneGroup);

[[16, 1], [16, 2], [16, 3], [16, 4], [16, 5], [4, 4], [1, 1],

[16, 6], [16, 7], [16, 8], [16, 9], [16, 10], [16, 11],

[16, 9], [16, 12], [16, 13], [16, 14], [16, 15], [4, 1],

[4, 2], [16, 16], [16, 17], [16, 18], [16, 19], [16, 20],

[16, 21], [16, 22], [16, 23], [16, 24], [16, 25], [16, 26],

[16, 27], [16, 28], [4, 3], [4, 1], [4, 4], [4, 4], [4, 2],

[4, 5], [16, 29], [16, 30], [16, 31], [16, 32], [16, 33],

[16, 34], [4, 3], [4, 4], [4, 4], [16, 35], [16, 36], [4, 3],

[16, 37], [16, 38], [16, 39], [16, 40], [16, 41], [16, 42],

[16, 43], [4, 3], [4, 4], [1, 1], [4, 5]]

gap> Length(SSortedList(M));

49

The next example first identifies the order and the identity number of the cat1-group C corresponding
to the crossed module (see 12.1)

ι :G−→ Aut(G),g 7→ (x 7→ gxg−1)

for the dihedral group G of order 10. It then realizes a smallest possible cat1-group D of this
quasi-isomorphism type.

Example
gap> C:=AutomorphismGroupAsCatOneGroup(DihedralGroup(10));

Cat-1-group with underlying group Group([f1, f2, f3, f4, f5]) .

gap> Order(C);

200

gap> IdCatOneGroup(C);

[200, 42, 4]

gap>

gap> IdQuasiCatOneGroup(C);

[2, 1]

gap> D:=SmallCatOneGroup(2,1);

Cat-1-group with underlying group Group([f1]) .

12.11 Identifying crossed modules of low order

The following commands construct the crossed module ∂ :G⊗G→G involving the nonabelian tensor
square of the dihedral group G of order 10, identify it as being number 71 in the list of crossed
modules of order 100, create a quasi-isomorphic crossed module of order 4, and finally construct the
corresponding cat1-group of order 100.

A HAP tutorial 162

Example
gap> G:=DihedralGroup(10);;

gap> T:=NonabelianTensorSquareAsCrossedModule(G);

Crossed module with group homomorphism GroupHomomorphismByImages(Group(

[f3*f1*f3^-1*f1^-1, f3*f2*f3^-1*f2^-1]), Group([f1, f2]),

[f3*f1*f3^-1*f1^-1, f3*f2*f3^-1*f2^-1], [<identity> of ..., f2^3])

gap> IdCrossedModule(T);

[100, 71]

gap> Q:=QuasiIsomorph(T);

Crossed module with group homomorphism Pcgs([f2]) -> [<identity> of ...]

gap> Order(Q);

4

gap> C:=CatOneGroupByCrossedModule(T);

Cat-1-group with underlying group Group([F1, F2, F1]) .

Chapter 13

Congruence Subgroups, Cuspidal
Cohomology and Hecke Operators

In this chapter we explain how HAP can be used to make computions about modular forms associated
to congruence subgroups Γ of SL2(Z). Also, in Subsection 10.8 onwards, we demonstrate cohomology
computations for the Picard group SL2(Z[i]), some Bianchi groups PSL2(O−d) where Od is the ring
of integers of Q(

√
−d) for square free positive integer d, and some other groups of the form SLm(O),

GLm(O), PSLm(O), PGLm(O), for m = 2,3,4 and certain O = Z,O−d .

13.1 Eichler-Shimura isomorphism

We begin by recalling the Eichler-Shimura isomorphism [Eic57][Shi59]

Sk(Γ)⊕Sk(Γ)⊕Ek(Γ)∼=Hecke H1(Γ,PC(k−2))

which relates the cohomology of groups to the theory of modular forms associated to a finite index
subgroup Γ of SL2(Z). In subsequent sections we explain how to compute with the right-hand side of
the isomorphism. But first, for completeness, let us define the terms on the left-hand side.

Let N be a positive integer. A subgroup Γ of SL2(Z) is said to be a congruence subgroup of
level N if it contains the kernel of the canonical homomorphism πN :SL2(Z)→ SL2(Z/NZ). So any
congruence subgroup is of finite index in SL2(Z), but the converse is not true.

One congruence subgroup of particular interest is the group Γ(N) = ker(πN), known as the princi-
pal congruence subgroup of level N. Another congruence subgroup of particular interest is the group
Γ0(N) of those matrices that project to upper triangular matrices in SL2(Z/NZ).

A modular form of weight k for a congruence subgroup Γ is a complex valued function on the
upper-half plane, f :h= {z ∈ C : Im(z)> 0}→ C, satisfying:

• f (
az+b
cz+d

) = (cz+d)k f (z) for
(

a b
c d

)
∈ Γ,

• f is ‘holomorphic’ on the extended upper-half plane h∗ = h∪Q∪{∞} obtained from the up-
per-half plane by ‘adjoining a point at each cusp’.

The collection of all weight k modular forms for Γ form a vector space Mk(Γ) over C.

163

A HAP tutorial 164

A modular form f is said to be a cusp form if f (∞) = 0. The collection of all weight k cusp forms
for Γ form a vector subspace Sk(Γ). There is a decomposition

Mk(Γ)∼= Sk(Γ)⊕Ek(Γ)

involving a summand Ek(Γ) known as the Eisenstein space. See [Ste07] for further introductory
details on modular forms.

The Eichler-Shimura isomorphism is more than an isomorphism of vector spaces. It is an isomor-
phism of Hecke modules: both sides admit notions of Hecke operators, and the isomorphism preserves
these operators. The bar on the left-hand side of the isomorphism denotes complex conjugation, or
anti-holomorphic forms. See [Wie78] for a full account of the isomorphism.

On the right-hand side of the isomorphism, the ZΓ-module PC(k−2)⊂C[x,y] denotes the space
of homogeneous degree k−2 polynomials with action of Γ given by(

a b
c d

)
· p(x,y) = p(dx−by,−cx+ay) .

In particular PC(0) = C is the trivial module. Below we shall compute with the integral analogue
PZ(k−2)⊂ Z[x,y].

In the following sections we explain how to use the right-hand side of the Eichler-Shimura iso-
morphism to compute eigenvalues of the Hecke operators restricted to the subspace Sk(Γ) of cusp
forms.

13.2 Generators for SL2(Z) and the cubic tree

The matrices S =

(
0 −1
1 0

)
and T =

(
1 1
0 1

)
generate SL2(Z) and it is not difficult to devise

an algorithm for expressing an arbitrary integer matrix A of determinant 1 as a word in S, T and their
inverses. The following illustrates such an algorithm.

Example
gap> A:=[[4,9],[7,16]];;

gap> word:=AsWordInSL2Z(A);

[[[1, 0], [0, 1]], [[0, 1], [-1, 0]], [[1, -1], [0, 1]],

[[0, 1], [-1, 0]], [[1, 1], [0, 1]], [[0, 1], [-1, 0]],

[[1, -1], [0, 1]], [[1, -1], [0, 1]], [[1, -1], [0, 1]],

[[0, 1], [-1, 0]], [[1, 1], [0, 1]], [[1, 1], [0, 1]]]

gap> Product(word);

[[4, 9], [7, 16]]

It is convenient to introduce the matrix U = ST =

(
0 −1
1 1

)
. The matrices S and U also generate

SL2(Z). In fact we have a free presentation SL2(Z) = 〈S,U |S4 =U6 = 1,S2 =U3〉.
The cubic tree T is a tree (i.e. a 1-dimensional contractible regular CW-complex) with countably

infinitely many edges in which each vertex has degree 3. We can realize the cubic tree T by taking the
left cosets of U = 〈U〉 in SL2(Z) as vertices, and joining cosets xU and yU by an edge if, and only
if, x−1y ∈ U SU . Thus the vertex U is joined to SU , USU and U2SU . The vertices of this tree
are in one-to-one correspondence with all reduced words in S, U and U2 that, apart from the identity,
end in S.

A HAP tutorial 165

From our realization of the cubic tree T we see that SL2(Z) acts on T in such a way that each
vertex is stabilized by a cyclic subgroup conjugate to U = 〈U〉 and each edge is stabilized by a cyclic
subgroup conjugate to S = 〈S〉.

In order to store this action of SL2(Z) on the cubic tree T we just need to record the following
finite amount of information.

13.3 One-dimensional fundamental domains and generators for con-
gruence subgroups

The modular group M = PSL2(Z) is isomorphic, as an abstract group, to the free product Z2 ∗Z3. By
the Kurosh subgroup theorem, any finite index subgroup M ⊂M is isomorphic to the free product of
finitely many copies of Z2s, Z3s and Zs. A subset x⊂M is an independent set of subgroup generators
if M is the free product of the cyclic subgroups < x > as x runs over x. Let us say that a set of ele-
ments in SL2(Z) is projectively independent if it maps injectively onto an independent set of subgroup
generators x⊂M . The generating set {S,U} for SL2(Z) given in the preceding section is projectively
independent.

We are interested in constructing a set of generators for a given congruence subgroup Γ. If a
small generating set for Γ is required then we should aim to construct one which is close to being
projectively independent.

It is useful to invoke the following general result which follows from a perturbation result about
free ZG-resolutons in [EHS06, Theorem 2] and an old observation of John Milnor that a free
ZG-resolution can be realized as the cellular chain complex of a CW-complex if it can be so realized
in low dimensions.

THEOREM. Let X be a contractible CW-complex on which a group G acts by permuting cells.
The cellular chain complex C∗X is a ZG-resolution of Z which typically is not free. Let [en] denote
the orbit of the n-cell en under the action. Let Gen ≤ G denote the stabilizer subgroup of en, in which
group elements are not required to stabilize en point-wise. Let Yen denote a contractible CW-complex
on which Gen

acts cellularly and freely. Then there exists a contractible CW-complex W on which G
acts cellularly and freely, and in which the orbits of n-cells are labelled by [ep]⊗ [f q] where p+q = n
and [ep] ranges over the G-orbits of p-cells in X , [f q] ranges over the Gep

-orbits of q-cells in Yep .
Let W be as in the theorem. Then the quotient CW-complex BG =W/G is a classifying space for

G. Let T denote a maximal tree in the 1-skeleton B1
G. Basic geometric group theory tells us that the

1-cells in B1
G \T correspond to a generating set for G.

Suppose we wish to compute a set of generators for a principal congruence subgroup Γ =
Γ(N),N > 2. In the above theorem take X = T to be the cubic tree, and note that Γ acts freely
on T and thus that W = T . To determine the 1-cells of BΓ \ T we need to determine a cellular
subspace DΓ ⊂ T whose images under the action of Γ cover T and are pairwise either disjoint or
identical. The subspace DΓ will not be a CW-complex as it won’t be closed, but it can be chosen
to be connected, and hence contractible. We call DΓ a fundamental region for Γ. We denote by D̊Γ

the largest CW-subcomplex of DΓ. The vertices of D̊Γ are the same as the vertices of DΓ. Thus D̊Γ

is a subtree of the cubic tree with |SL2(Z) : Γ|/6 vertices. For each vertex v in the tree D̊Γ define
η(v) = 3−degree(v). Then the number of generators for Γ will be (1/2)∑v∈D̊Γ

η(v).
The following commands determine projectively independent generators for Γ(6) and display

D̊Γ(6). The subgroup Γ(6) is free on 13 generators.
Example

gap> G:=HAP_PrincipalCongruenceSubgroup(6);;

A HAP tutorial 166

gap> HAP_SL2TreeDisplay(G);

gap> gens:=GeneratorsOfGroup(G);

[[[-83, -18], [60, 13]], [[-77, -18], [30, 7]],

[[-65, -12], [168, 31]], [[-53, -12], [84, 19]],

[[-47, -18], [222, 85]], [[-41, -12], [24, 7]],

[[-35, -6], [6, 1]], [[-11, -18], [30, 49]],

[[-11, -6], [24, 13]], [[-5, -18], [12, 43]],

[[-5, -12], [18, 43]], [[-5, -6], [6, 7]],

[[1, 0], [-6, 1]]]

An alternative but very related approach to computing generators of congruence subgroups of
SL2(Z) is described in [Kul91].

The congruence subgroup Γ0(N) does not act freely on the vertices of T , and so one needs to
incorporate a generator for the cyclic stabilizer group according to the above theorem. Alternatively,
we can replace the cubic tree by a six-fold cover T ′ on whose vertex set Γ0(N) acts freely. This
alternative approach will produce a redundant set of generators. The following commands display
D̊Γ0(39) for a fundamental region in T ′. They also use the corresponding generating set for Γ0(39),
involving 18 generators, to compute the abelianization Γ0(39)ab = Z2⊕Z2

3⊕Z9. The abelianization
shows that any generating set has at least 11 generators.

Example
gap> G:=HAP_CongruenceSubgroupGamma0(39);;

gap> HAP_SL2TreeDisplay(G);

gap> Length(GeneratorsOfGroup(G));

18

gap> AbelianInvariants(G);

[0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 3]

Note that to compute DΓ one only needs to be able to test whether a given matrix lies in Γ or not.
Given an inclusion Γ′ ⊂ Γ of congruence subgroups, it is straightforward to use the trees D̊Γ′ and D̊Γ

to compute a system of coset representative for Γ′ \Γ.

13.4 Cohomology of congruence subgroups

To compute the cohomology Hn(Γ,A) of a congruence subgroup Γ with coefficients in a ZΓ-module
A we need to construct n + 1 terms of a free ZΓ-resolution of Z. We can do this by first using
perturbation techniques (as described in [BE14]) to combine the cubic tree with resolutions for the
cyclic groups of order 4 and 6 in order to produce a free ZG-resolution R∗ for G = SL2(Z). This
resolution is also a free ZΓ-resolution with each term of rank

rankZΓRk = |G : Γ|× rankZGRk .

For congruence subgroups of lowish index in G this resolution suffices to make computations.
The following commands compute

H1(Γ0(39),Z) = Z9 .

A HAP tutorial 167

Example
gap> R:=ResolutionSL2Z_alt(2);

Resolution of length 2 in characteristic 0 for SL(2,Integers) .

gap> gamma:=HAP_CongruenceSubgroupGamma0(39);;

gap> S:=ResolutionFiniteSubgroup(R,gamma);

Resolution of length 2 in characteristic 0 for

CongruenceSubgroupGamma0(39) .

gap> Cohomology(HomToIntegers(S),1);

[0, 0, 0, 0, 0, 0, 0, 0, 0]

This computation establishes that the space M2(Γ0(39)) of weight 2 modular forms is of dimension
9.

The following commands show that rankZΓ0(39)R1 = 112 but that it is possible to apply ‘Tietze
like’ simplifications to R∗ to obtain a free ZΓ0(39)-resolution T∗ with rankZΓ0(39)T1 = 11. It is more
efficient to work with T∗ when making cohomology computations with coefficients in a module A of
large rank.

Example
gap> S!.dimension(1);

112

gap> T:=TietzeReducedResolution(S);

Resolution of length 2 in characteristic 0 for CongruenceSubgroupGamma0(

39) .

gap> T!.dimension(1);

11

The following commands compute

H1(Γ0(39),PZ(8)) = Z3⊕Z6⊕Z168⊕Z84 ,

H1(Γ0(39),PZ(9)) = Z2⊕Z2.

Example
gap> P:=HomogeneousPolynomials(gamma,8);;

gap> c:=Cohomology(HomToIntegralModule(T,P),1);

[3, 6, 168, 0,

0, 0,

0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

gap> Length(c);

87

gap> P:=HomogeneousPolynomials(gamma,9);;

gap> c:=Cohomology(HomToIntegralModule(T,P),1);

[2, 2]

A HAP tutorial 168

This computation establishes that the space M10(Γ0(39)) of weight 10 modular forms is of dimen-
sion 84, and M11(Γ0(39)) is of dimension 0. (There are never any modular forms of odd weight, and
so Mk(Γ) = 0 for all odd k and any congruence subgroup Γ.)

13.4.1 Cohomology with rational coefficients

To calculate cohomology Hn(Γ,A) with coefficients in a QΓ-module A it suffices to construct a res-
olution of Z by non-free ZΓ-modules where Γ acts with finite stabilizer groups on each module in
the resolution. Computing over Q is computationally less expensive than computing over Z. The
following commands first compute H1(Γ0(39),Q) = H1(Γ0(39),Q) =Q9. As a larger example, they
then compute H1(Γ0(213−1),Q) =Q1365 where Γ0(213−1) has index 8192 in SL2(Z).

Example
gap> K:=ContractibleGcomplex("SL(2,Z)");

Non-free resolution in characteristic 0 for SL(2,Integers) .

gap> gamma:=HAP_CongruenceSubgroupGamma0(39);;

gap> KK:=NonFreeResolutionFiniteSubgroup(K,gamma);

Non-free resolution in characteristic 0 for <matrix group with

18 generators> .

gap> C:=TensorWithRationals(KK);

gap> Homology(C,1);

9

gap> G:=HAP_CongruenceSubgroupGamma0(2^13-1);;

gap> IndexInSL2Z(G);

8192

gap> KK:=NonFreeResolutionFiniteSubgroup(K,G);;

gap> C:=TensorWithRationals(KK);;

gap> Homology(C,1);

1365

13.5 Cuspidal cohomology

To define and compute cuspidal cohomology we consider the action of SL2(Z) on the upper-half plane
h given by (

a b
c d

)
z =

az+b
cz+d

.

A standard ’fundamental domain’ for this action is the region

D = {z ∈ h : |z|> 1, |Re(z)|< 1
2}

∪ {z ∈ h : |z| ≥ 1,Re(z) =−1
2}

∪ {z ∈ h : |z|= 1,−1
2 ≤ Re(z)≤ 0}

illustrated below.

The action factors through an action of PSL2(Z) = SL2(Z)/〈
(
−1 0

0 −1

)
〉. The images of D

under the action of PSL2(Z) cover the upper-half plane, and any two images have at most a single point

A HAP tutorial 169

in common. The possible common points are the bottom left-hand corner point which is stabilized by
〈U〉, and the bottom middle point which is stabilized by 〈S〉.

A congruence subgroup Γ has a ‘fundamental domain’ DΓ equal to a union of finitely many copies
of D, one copy for each coset in Γ \ SL2(Z). The quotient space X = Γ \ h is not compact, and can
be compactified in several ways. We are interested in the Borel-Serre compactification. This is a
space XBS for which there is an inclusion X ↪→ XBS and this inclusion is a homotopy equivalence. One
defines the boundary ∂XBS = XBS−X and uses the inclusion ∂XBS ↪→ XBS ' X to define the cuspidal
cohomology group, over the ground ring C, as

Hn
cusp(Γ,PC(k−2)) = ker(Hn(X ,PC(k−2))→ Hn(∂XBS,PC(k−2))).

Strictly speaking, this is the definition of interior cohomology Hn
! (Γ,PC(k− 2)) which in general

contains the cuspidal cohomology as a subgroup. However, for congruence subgroups of SL2(Z) there
is equality Hn

! (Γ,PC(k−2)) = Hn
cusp(Γ,PC(k−2)).

Working over C has the advantage of avoiding the technical issue that Γ does not necessarily
act freely on h since there are points with finite cyclic stabilizer groups in SL2(Z). But it has the
disadvantage of losing information about torsion in cohomology. So HAP confronts the issue by
working with a contractible CW-complex X̃BS on which Γ acts freely, and Γ-equivariant inclusion
∂ X̃BS ↪→ X̃BS. The definition of cuspidal cohomology that we use, which coincides with the above
definition when working over C, is

Hn
cusp(Γ,A) = ker(Hn(HomZΓ(C∗(X̃BS),A))→ Hn(HomZΓ(C∗(∂̃XBS),A)).

The following data is recorded and, using perturbation theory, is combined with free resolutions
for C4 and C6 to constuct X̃BS.

The following commands calculate

H1
cusp(Γ0(39),Z) = Z6 .

Example
gap> gamma:=HAP_CongruenceSubgroupGamma0(39);;

gap> k:=2;; deg:=1;; c:=CuspidalCohomologyHomomorphism(gamma,deg,k);

[g1, g2, g3, g4, g5, g6, g7, g8, g9] -> [g1^-1*g3, g1^-1*g3, g1^-1*g3,

g1^-1*g3, g1^-1*g2, g1^-1*g3, g1^-1*g4, g1^-1*g4, g1^-1*g4]

gap> AbelianInvariants(Kernel(c));

[0, 0, 0, 0, 0, 0]

From the Eichler-Shimura isomorphism and the already calculated dimension of M2(Γ0(39)) ∼= C9,
we deduce from this cuspidal cohomology that the space S2(Γ0(39)) of cuspidal weight 2 forms is of
dimension 3, and the Eisenstein space E2(Γ0(39))∼= C3 is of dimension 3.

The following commands show that the space S4(Γ0(39)) of cuspidal weight 4 forms is of dimen-
sion 12.

Example
gap> gamma:=HAP_CongruenceSubgroupGamma0(39);;

gap> k:=4;; deg:=1;; c:=CuspidalCohomologyHomomorphism(gamma,deg,k);;

gap> AbelianInvariants(Kernel(c));

[0, 0]

A HAP tutorial 170

13.6 Hecke operators on forms of weight 2

A congruence subgroup Γ≤ SL2(Z) and element g ∈GL2(Q) determine the subgroup Γ′ = Γ∩gΓg−1

and homomorphisms

Γ ←↩ Γ
′ γ 7→g−1γg−→ g−1

Γ
′g ↪→ Γ .

These homomorphisms give rise to homomorphisms of cohomology groups

Hn(Γ,Z) tr← Hn(Γ′,Z) α← Hn(g−1
Γ
′g,Z) β← Hn(Γ,Z)

with α , β functorial maps, and tr the transfer map. We define the composite Tg = tr ◦ α ◦
β :Hn(Γ,Z)→ Hn(Γ,Z) to be the Hecke component determined by g.

For Γ = Γ0(N), prime integer p coprime to N, and cohomology degree n = 1 we define the Hecke

operator Tp = Tg where g =

(
1 0
0 p

)
. Further details on this description of Hecke operators can be

found in [Ste07, Appendix by P. Gunnells].
The following commands compute T2 and T5 and Γ = Γ0(39). The commands also compute the

eigenvalues of these two Hecke operators. The final command confirms that T2 and T5 commute. (It
is a fact that TpTq = TqTp for all p,q.)

Example
gap> gamma:=HAP_CongruenceSubgroupGamma0(39);;

gap> p:=2;;k:=2;;T2:=HeckeOperator(gamma,p,k);;

gap> Display(T2);

[[-2, -2, 2, 2, 1, 2, 0, 0, 0],

[-2, 0, 1, 2, -2, 2, 2, 2, -2],

[-2, -1, 2, 2, -1, 2, 1, 1, -1],

[-2, -1, 2, 2, 1, 1, 0, 0, 0],

[-1, 0, 0, 2, -3, 2, 3, 3, -3],

[0, 1, 1, 1, -1, 0, 1, 1, -1],

[-1, 1, 1, -1, 0, 1, 2, -1, 1],

[-1, -1, 0, 2, -3, 2, 1, 4, -1],

[0, 1, 0, -1, -2, 1, 1, 1, 2]]

gap> Eigenvalues(Rationals,T2);

[3, 1]

gap> p:=5;;k:=2;;h:=HeckeOperator(gamma,p,k);;

gap> Display(T5);

[[-1, -1, 3, 4, 0, 0, 1, 1, -1],

[-5, -1, 5, 4, 0, 0, 3, 3, -3],

[-2, 0, 4, 4, 1, 0, -1, -1, 1],

[-2, 0, 3, 2, -3, 2, 4, 4, -4],

[-4, -2, 4, 4, 3, 0, 1, 1, -1],

[-6, -4, 5, 6, 1, 2, 2, 2, -2],

[1, 5, 0, -4, -3, 2, 5, -1, 1],

[-2, -2, 2, 4, 0, 0, -2, 4, 2],

[1, 3, 0, -4, -4, 2, 2, 2, 4]]

gap> Eigenvalues(Rationals,T5);

[6, 2]

gap>T2*T5=T5*T2;

true

A HAP tutorial 171

13.7 Hecke operators on forms of weight ≥ 2

The above definition of Hecke operator Tp for Γ=Γ0(N) extends to a Hecke operator Tp:H1(Γ,PQ(k−
2))→ H1(Γ,PQ(k−2)) for k ≥ 2. We work over the rationals since that is a setting of much interest.
The following commands compute the matrix of T2:H1(Γ,PQ(k− 2))→ H1(Γ,PQ(k− 2)) for Γ =
SL2(Z) and k = 4;

Example
gap> H:=HAP_CongruenceSubgroupGamma0(1);;

gap> h:=HeckeOperator(H,2,12);;Display(h);

[[2049, -7560, 0],

[0, -24, 0],

[0, 0, -24]]

13.8 Reconstructing modular forms from cohomology computations

Given a modular form f :h→ C associated to a congruence subgroup Γ, and given a compact edge e
in the tessellation of h (i.e. an edge in the cubic tree T) arising from the above fundamental domain
for SL2(Z), we can evaluate ∫

e
f (z)dz .

In this way we obtain a cochain f1:C1(T)→ C in HomZΓ(C1(T),C) representing a cohomology
class c(f) ∈ H1(HomZΓ(C∗(T),C)) = H1(Γ,C). The correspondence f 7→ c(f) underlies the Eich-
ler-Shimura isomorphism. Hecke operators can be used to recover modular forms from cohomology
classes.

Let Γ = Γ0(N). The above defined Hecke operators restrict to operators on cuspidal cohomol-
ogy. On the left-hand side of the Eichler-Shimura isomorphism Hecke operators restrict to operators
Ts:S2(Γ)→ S2(Γ) for s≥ 1.

Consider the function q = q(z) = e2πiz which is holomorphic on C. For any modular form f (z) ∈
Mk(Γ) there are numbers as such that

f (z) =
∞

∑
s=0

asqs

for all z ∈ h. The form f is a cusp form if a0 = 0.
A non-zero cusp form f ∈ S2(Γ) is a cusp eigenform if it is simultaneously an eigenvector for

the Hecke operators Ts for all s = 1,2,3, · · · coprime to the level N. A cusp eigenform is said to be
normalized if its coefficient a1 = 1. It turns out that if f is normalized then the coefficient as is an
eigenvalue for Ts (see for instance [Ste07] for details). It can be shown [AL70] that S2(Γ0(N)) admits
a "basis constructed from eigenforms".

This all implies that, in principle, we can construct an approximation to an explicit basis for the
space S2(Γ0(N)) of cusp forms by computing eigenvalues for Hecke operators.

Suppose that we would like a basis for S2(Γ0(11)). The following commands first show that
H1

cusp(Γ0(11),Z) = Z⊕Z from which we deduce that S2(Γ0(11)) = C is 1-dimensional and thus
admits a basis of eigenforms. Then eigenvalues of Hecke operators are calculated to establish that the
modular form

f = q−2q2−q3 +2q4 +q5 +2q6−2q7 +−2q9−2q10 + · · ·

constitutes a basis for S2(Γ0(11)).

A HAP tutorial 172

Example
gap> gamma:=HAP_CongruenceSubgroupGamma0(11);;

gap> AbelianInvariants(Kernel(CuspidalCohomologyHomomorphism(gamma,1,2)));

[0, 0]

gap> T1:=HeckeOperator(gamma,1,2);; Display(T1);

[[1, 0, 0],

[0, 1, 0],

[0, 0, 1]]

gap> T2:=HeckeOperator(gamma,2,2);; Display(T2);

[[3, -4, 4],

[0, -2, 0],

[0, 0, -2]]

gap> T3:=HeckeOperator(gamma,3,2);; Display(T3);

[[4, -4, 4],

[0, -1, 0],

[0, 0, -1]]

gap> T5:=HeckeOperator(gamma,5,2);; Display(T5);

[[6, -4, 4],

[0, 1, 0],

[0, 0, 1]]

gap> T7:=HeckeOperator(gamma,7,2);; Display(T7);

[[8, -8, 8],

[0, -2, 0],

[0, 0, -2]]

For a normalized eigenform f = 1+∑
∞
s=2 asqs the coefficients as with s a composite integer can

be expressed in terms of the coefficients ap for prime p. If r,s are coprime then Trs = TrTs. If p is a
prime that is not a divisor of the level N of Γ then apm = apm−1ap− pk−1apm−2 where k is the weight.
If the prime p divides N then apm = (ap)

m. It thus suffices to compute the coefficients ap for prime
integers p only.

The following commands establish that S12(SL2(Z)) has a basis consisting of one cusp eigenform
q−24q2 +252q3−1472q4 +4830q5−6048q6−16744q7 +84480q8−113643q9

−115920q10 +534612q11−370944q12−577738q13 +401856q14 +1217160q15 +987136q16

−6905934q17 +2727432q18 +10661420q19 + ...
Example

gap> R:=ResolutionSL2Z_alt(2);;

gap> G:=R!.group;;

gap> P:=HomogeneousPolynomials(G,14);

MappingByFunction(SL(2,Integers), <matrix group with

2 generators>, function(x) ... end)

gap> Cohomology(HomToIntegralModule(R,P),1);

[2, 2, 156, 0, 0, 0]

gap> #Thus the space S_12 of cusp forms is of dimension 1

gap> G:=HAP_CongruenceSubgroupGamma0(1);;

gap> for p in [2,3,5,7,11,13,17,19] do

> T:=HeckeOperator(G,p,12);;

> Print("eigenvalues= ",Eigenvalues(Rationals,T), " and eigenvectors = ", Eigenvectors(Rationals,T)," for p= ",p,"\n");

> od;

A HAP tutorial 173

eigenvalues= [2049, -24] and eigenvectors = [[1, -2520/691, 0], [0, 1, 0], [0, 0, 1]] for p= 2

eigenvalues= [177148, 252] and eigenvectors = [[1, -2520/691, 0], [0, 1, 0], [0, 0, 1]] for p= 3

eigenvalues= [48828126, 4830] and eigenvectors = [[1, -2520/691, 0], [0, 1, 0], [0, 0, 1]] for p= 5

eigenvalues= [1977326744, -16744] and eigenvectors = [[1, -2520/691, 0], [0, 1, 0], [0, 0, 1]] for p= 7

eigenvalues= [285311670612, 534612] and eigenvectors = [[1, -2520/691, 0], [0, 1, 0], [0, 0, 1]] for p= 11

eigenvalues= [1792160394038, -577738] and eigenvectors = [[1, -2520/691, 0], [0, 1, 0], [0, 0, 1]] for p= 13

eigenvalues= [34271896307634, -6905934] and eigenvectors = [[1, -2520/691, 0], [0, 1, 0], [0, 0, 1]] for p= 17

eigenvalues= [116490258898220, 10661420] and eigenvectors = [[1, -2520/691, 0], [0, 1, 0], [0, 0, 1]] for p= 19

13.9 The Picard group

Let us now consider the Picard group G = SL2(Z[i]) and its action on upper-half space

h3 = {(z, t) ∈ C×R | t > 0} .

To describe the action we introduce the symbol j satisfying j2 =−1, i j =− ji and write z+ t j instead
of (z, t). The action is given by(

a b
c d

)
· (z+ t j) = (a(z+ t j)+b)(c(z+ t j)+d)−1 .

Alternatively, and more explicitly, the action is given by(
a b
c d

)
· (z+ t j) =

(az+b)(cz+d)+act2

|cz+d|2 + |c|2t2 +
t

|cz+d|2 + |c|2t2 j .

A standard ’fundamental domain’ D for this action is the following region (with some of the
boundary points removed).

{z+ t j ∈ h3 | 0≤ |Re(z)| ≤ 1
2
,0≤ Im(z)≤ 1

2
,zz+ t2 ≥ 1}

The four bottom vertices of D are a =−1
2 +

1
2 i+

√
2

2 j, b =−1
2 +

√
3

2 j, c = 1
2 +

√
3

2 j, d = 1
2 +

1
2 i+√

2
2 j.

The upper-half space h3 can be retracted onto a 2-dimensional subspace T ⊂ h3. The space T
is a contractible 2-dimensional regular CW-complex, and the action of the Picard group G restricts to
a cellular action of G on T .

Using perturbation techniques, the 2-complex T can be combined with free resolutions for the
cell stabilizer groups to contruct a regular CW-complex X on which the Picard group G acts freely.
The following commands compute the first few terms of the free ZG-resolution R∗ = C∗X . Then R∗
is used to compute

H1(G,Z) = 0 ,

H2(G,Z) = Z2⊕Z2 ,

H3(G,Z) = Z6 ,

H4(G,Z) = Z4⊕Z24 ,

and compute a free presentation for G involving four generators and seven relators.

A HAP tutorial 174

Example
gap> K:=ContractibleGcomplex("SL(2,O-1)");;

gap> R:=FreeGResolution(K,5);;

gap> Cohomology(HomToIntegers(R),1);

[]

gap> Cohomology(HomToIntegers(R),2);

[2, 2]

gap> Cohomology(HomToIntegers(R),3);

[6]

gap> Cohomology(HomToIntegers(R),4);

[4, 24]

gap> P:=PresentationOfResolution(R);

rec(freeGroup := <free group on the generators [f1, f2, f3, f4]>,

gens := [184, 185, 186, 187],

relators := [f1^2*f2^-1*f1^-1*f2^-1, f1*f2*f1*f2^-2,

f3*f2^2*f1*(f2*f1^-1)^2*f3^-1*f1^2*f2^-2,

f1*(f2*f1^-1)^2*f3^-1*f1^2*f2^-1*f3^-1,

f4*f2*f1*(f2*f1^-1)^2*f4^-1*f1*f2^-1, f1*f4^-1*f1^-2*f4^-1,

f3*f2*f1*(f2*f1^-1)^2*f4^-1*f1*f2^-1*f3^-1*f4*f2])

We can also compute the cohomology of G = SL2(Z[i]) with coefficients in a module such as the
module PZ[i](k) of degree k homogeneous polynomials with coefficients in Z[i] and with the action
described above. For instance, the following commands compute

H1(G,PZ[i](24)) = (Z2)
4⊕Z4⊕Z8⊕Z40⊕Z80 ,

H2(G,PZ[i](24)) = (Z2)
24⊕Z520030⊕Z1040060⊕Z2 ,

H3(G,PZ[i](24)) = (Z2)
22⊕Z4⊕ (Z12)

2 .
Example

gap> G:=R!.group;;

gap> M:=HomogeneousPolynomials(G,24);;

gap> C:=HomToIntegralModule(R,M);;

gap> Cohomology(C,1);

[2, 2, 2, 2, 4, 8, 40, 80]

gap> Cohomology(C,2);

[2,

520030, 1040060, 0, 0]

gap> Cohomology(C,3);

[2, 4, 12, 12

]

13.10 Bianchi groups

The Bianchi groups are the groups G = PSL2(O−d) where d is a square free positive integer and O−d
is the ring of integers of the imaginary quadratic field Q(

√
−d). More explicitly,

O−d = Z
[√
−d
]

if d ≡ 1,2 mod 4 ,

A HAP tutorial 175

O−d = Z
[

1+
√
−d

2

]
if d ≡ 3 mod 4 .

These groups act on upper-half space h3 in the same way as the Picard group. Upper-half space can
be tessellated by a ’fundamental domain’ for this action. Moreover, as with the Picard group, this tes-
sellation contains a 2-dimensional cellular subspace T ⊂ h3 where T is a contractible CW-complex
on which G acts cellularly. It should be mentioned that the fundamental domain and the contractible
2-complex T are not uniquely determined by G. Various algorithms exist for computing T and
its cell stabilizers. One algorithm due to Swan [Swa71a] has been implemented by Alexander Rahm
[Rah10] and the output for various values of d are stored in HAP. Another approach is to use Voronoi’s
theory of perfect forms. This approach has been implemented by Sebastian Schoennenbeck [BCNS15]
and, again, its output for various values of d are stored in HAP. The following commands combine
data from Schoennenbeck’s algorithm with free resolutions for cell stabiliers to compute

H1(PSL2(O−6),PO−6(24)) = (Z2)
4⊕Z12⊕Z24⊕Z9240⊕Z55440⊕Z4 ,

H2(PSL2(O−6),PO−6(24)) =

(Z2)
26⊕ (Z6)

8⊕ (Z12)
9⊕Z24⊕ (Z120)

2⊕ (Z840)
3

⊕Z2520⊕ (Z27720)
2⊕ (Z24227280)

2⊕ (Z411863760)
2

⊕Z2454438243748928651877425142836664498129840
⊕Z14726629462493571911264550857019986988779040
⊕Z4

,

H3(PSL2(O−6),PO−6(24)) = (Z2)
23⊕Z4⊕ (Z12)

2 .

Note that the action of SL2(O−d) on PO−d (k) induces an action of PSL2(O−d) provided k is even.
Example

gap> R:=ResolutionPSL2QuadraticIntegers(-6,4);

Resolution of length 4 in characteristic 0 for PSL(2,O-6) .

No contracting homotopy available.

gap> G:=R!.group;;

gap> M:=HomogeneousPolynomials(G,24);;

gap> C:=HomToIntegralModule(R,M);;

gap> Cohomology(C,1);

[2, 2, 2, 2, 12, 24, 9240, 55440, 0, 0, 0, 0]

gap> Cohomology(C,2);

[2,

2, 6, 6, 6, 6, 6, 6, 6, 6, 12, 12, 12, 12, 12, 12, 12, 12, 12, 24, 120, 120,

840, 840, 840, 2520, 27720, 27720, 24227280, 24227280, 411863760, 411863760,

2454438243748928651877425142836664498129840,

14726629462493571911264550857019986988779040, 0, 0, 0, 0]

gap> Cohomology(C,3);

[2, 4, 12,

12]

A HAP tutorial 176

We can also consider the coefficient module

PO−d (k, `) = PO−d (k)⊗O−d PO−d (`)

where the bar denotes a twist in the action obtained from complex conjugation. For an action of the
projective linear group we must insist that k+ ` is even. The following commands compute

H2(PSL2(O−11),PO−11(5,5)) = (Z2)
8⊕Z60⊕ (Z660)

3⊕Z6 ,

a computation which was first made, along with many other cohomology computationsfor Bianchi
groups, by Mehmet Haluk Sengun [Sen11].

Example
gap> R:=ResolutionPSL2QuadraticIntegers(-11,3);;

gap> M:=HomogeneousPolynomials(R!.group,5,5);;

gap> C:=HomToIntegralModule(R,M);;

gap> Cohomology(C,2);

[2, 2, 2, 2, 2, 2, 2, 2, 60, 660, 660, 660, 0, 0, 0, 0, 0, 0]

The function ResolutionPSL2QuadraticIntegers(-d,n) relies on a limited data base pro-
duced by the algorithms implemented by Schoennenbeck and Rahm. The function also covers some
cases covered by entering a sring "-d+I" as first variable. These cases correspond to projective special
groups of module automorphisms of lattices of rank 2 over the integers of the imaginary quadratic
number field Q(

√
−d) with non-trivial Steinitz-class. In the case of a larger class group there are

cases labelled "-d+I2",...,"-d+Ik" and the Ij together with O-d form a system of representatives of
elements of the class group modulo squares and Galois action. For instance, the following commands
compute

H2(PSL(O−21+I2),Z) = Z2⊕Z6 .
Example

gap> R:=ResolutionPSL2QuadraticIntegers("-21+I2",3);

Resolution of length 3 in characteristic 0 for PSL(2,O-21+I2)) .

No contracting homotopy available.

gap> Homology(TensorWithIntegers(R),2);

[2, 0, 0, 0, 0, 0, 0]

13.11 (Co)homology of Bianchi groups and SL2(O−d)

The (co)homology of Bianchi groups has been studied in papers such as [SV83] [Vog85] [Ber00]
[Ber06] [RF13] [Rah13b] [Rah13a] [BLR20]. Calculations in these papers can often be verified by
computer. For instance, the calculation

Hq(PSL2(O−15),Z) =


Z2⊕Z6 q = 1,
Z⊕Z6 q = 2,
Z6 q≥ 3

obtained in [RF13] can be verified as follows, once we note that Bianchi groups have virtual cohomo-
logical dimension 2 and, if all stabilizer groups are periodic with period dividing m, then the homology
has period dividing m in degree ≥ 3.

A HAP tutorial 177

Example
gap> K:=ContractibleGcomplex("SL(2,O-15)");;

gap> PK:=QuotientOfContractibleGcomplex(K,Group(-One(K!.group)));;

gap> for n in [0..2] do

> for k in [1..K!.dimension(n)] do

> Print(CohomologicalPeriod(K!.stabilizer(n,k))," ");

> od;od;

2 2 2 2 2 2 2 2 2 2 2 2 2 2

gap> R:=FreeGResolution(PK,5);;

gap> for n in [0..4] do

> Print("H_",n," = ", Homology(TensorWithIntegers(R),n),"\n");

> od;

H_0 = [0]

H_1 = [6, 0, 0]

H_2 = [6, 0]

H_3 = [6]

H_4 = [6]

All finite subgroups of SL2(O−d) are periodic. Thus the above example can be adapted from PSL to
SL for any square=free d ≥ 1. For example, the calculation

Hq(SL2(O−2),Z) =


Z q = 1,
Z6 q = 2 mod 4,
Z2⊕Z12 q = 3 mod 4
Z2⊕Z24 q = 0 mod 4(q > 0)
Z12 q = 1 mod 4(q > 1)

obtained in [SV83] can be verified as follows.
Example

gap> K:=ContractibleGcomplex("SL(2,O-2)");;

gap> for n in [0..2] do

> for k in [1..K!.dimension(n)] do

> Print(CohomologicalPeriod(K!.stabilizer(n,k))," ");

> od;od;

2 4 2 4 2 2 2 2 2 2 2 2

gap> R:=FreeGResolution(K,11);;

gap> for n in [0..10] do

> Print("H^",n," = ", Cohomology(HomToIntegers(R),n),"\n");

> od;

H^0 = [0]

H^1 = [0]

H^2 = [6]

H^3 = [2, 12]

H^4 = [2, 24]

H^5 = [12]

H^6 = [6]

H^7 = [2, 12]

H^8 = [2, 24]

H^9 = [12]

H^10 = [6]

A HAP tutorial 178

A quotient of a periodic group by a central subgroup of order 2 need not be periodic. For this reason
the (co)homology of PSL can be a bit more tricky than SL. For example, the calculation

Hq(PSL2(O−13),Z) =



Z3⊕ (Z2)
2 q = 1,

Z2⊕Z4⊕ (Z3)
2⊕Z2 q = 2,

(Z2)
q⊕ (Z3)

2 q = 3 mod 4
(Z2)

q q = 0 mod 4(q > 0)
(Z2)

q q = 1 mod 4(q > 1)
(Z2)

q⊕ (Z3)
2 q = 2 mod 4(q > 2)

was obtained in [RF13]. The following commands verify the calculation in the first 34 degrees, but
for a proof valid for all degrees one needs to analyse the computation to spot that there is a certain
"periodicity of period 2" in the computations for q≥ 3. This analysis is done in [RF13].

Example
gap> K:=ContractibleGcomplex("SL(2,O-13)");;

gap> PK:=QuotientOfContractibleGcomplex(K,Group(-One(K!.group)));;

gap> for n in [0..2] do

> for k in [1..PK!.dimension(n)] do

> S:=SmallGroup(IdGroup(PK!.stabilizer(n, k)));

> Print([n,k]," is periodic ",IsPeriodic(S),"\n ");

> od;od;

[0, 1] is periodic true

[0, 2] is periodic true

[0, 3] is periodic true

[0, 4] is periodic true

[0, 5] is periodic true

[0, 6] is periodic true

[0, 7] is periodic false

[0, 8] is periodic false

[1, 1] is periodic true

[1, 2] is periodic true

[1, 3] is periodic true

[1, 4] is periodic true

[1, 5] is periodic true

[1, 6] is periodic true

[1, 7] is periodic true

[1, 8] is periodic true

[1, 9] is periodic true

[1, 10] is periodic true

[1, 11] is periodic true

[1, 12] is periodic true

[1, 13] is periodic true

[2, 1] is periodic true

[2, 2] is periodic true

[2, 3] is periodic true

[2, 4] is periodic true

[2, 5] is periodic true

[2, 6] is periodic true

[2, 7] is periodic true

[2, 8] is periodic true

[2, 9] is periodic true

[2, 10] is periodic true

A HAP tutorial 179

[2, 11] is periodic true

gap> R:=ResolutionPSL2QuadraticIntegers(-13,35);;

gap> for n in [0..34] do

> Print("H_",n," = ", Homology(TensorWithIntegers(R),n),"\n");

> od;

H_0 = [0]

H_1 = [2, 2, 0, 0, 0]

H_2 = [6, 12, 0, 0]

H_3 = [2, 6, 6]

H_4 = [2, 2, 2, 2]

H_5 = [2, 2, 2, 2, 2]

H_6 = [2, 2, 2, 2, 6, 6]

H_7 = [2, 2, 2, 2, 2, 6, 6]

H_8 = [2, 2, 2, 2, 2, 2, 2, 2]

H_9 = [2, 2, 2, 2, 2, 2, 2, 2, 2]

H_10 = [2, 2, 2, 2, 2, 2, 2, 2, 6, 6]

H_11 = [2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6]

H_12 = [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]

H_13 = [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]

H_14 = [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6]

H_15 = [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6]

H_16 = [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]

H_17 = [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]

H_18 = [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6]

H_19 = [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6]

H_20 = [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]

H_21 = [2, 2]

H_22 = [2, 6, 6]

H_23 = [2, 6, 6]

H_24 = [2, 2]

H_25 = [2, 2]

H_26 = [2, 6, 6]

H_27 = [2, 6, 6]

H_28 = [2, 2]

H_29 = [2, 2]

H_30 = [2, 6, 6]

H_31 = [2, 6, 6]

H_32 = [2, 2]

H_33 = [2, 2]

H_34 = [2, 6, 6]

The Lyndon-Hochschild-Serre spectral sequence Hp(G/N,Hq(N,A))⇒ Hp+q(G,A) for the groups
G = SL2(O−d) and N ∼= C2 the central subgroup with G/N ∼= PSL2(O−d), and the trivial mod-
ule A = Z`, implies that for primes ` > 2 we have a natural isomorphism Hn(PSL2(O−d),Z`) ∼=
Hn(SL2(O−d),Z`). It follows that we have an isomorphism of `-primary parts Hn(PSL2(O−d),Z)(`)∼=
Hn(SL2(O−d),Z)(`). Since Hn(SL2(O−d),Z)(`) is periodic in degrees ≥ 3 we can recover the
3-primary part of Hn(PSL2(O−13),Z) in all degrees q ≥ 1 from the following computation by ig-
noring all 2-power factors in the output.

Example
gap> R:=ResolutionSL2QuadraticIntegers(-13,13);;

A HAP tutorial 180

gap> for n in [3..12] do

> Print("H_",n," at prime p=3 is: ", Filtered(Homology(TensorWithIntegers(R),n), m->IsInt(m/3)),"\n");

> od;

H_3 at prime p=3 is: [6, 24]

H_4 at prime p=3 is: []

H_5 at prime p=3 is: []

H_6 at prime p=3 is: [6, 12]

H_7 at prime p=3 is: [6, 24]

H_8 at prime p=3 is: []

H_9 at prime p=3 is: []

H_10 at prime p=3 is: [6, 12]

H_11 at prime p=3 is: [6, 24]

H_12 at prime p=3 is: []

gap> #Ignore the 2-power factors in the output

The ring O−163 is an example of a principal ideal domain that is not a Euclidean domain. It seems
that no complete calculation of Hn(PSL2(O−163),Z) is yet available in the literature. The following
comands compute this homology in the first 31 degrees. The computation suggests a general formula
in higher degrees. All but two of the stabilizer groups for the action of PSL2(O−163) are periodic. The
non-periodic group A4 occurs twice in degree 0.

Example
gap> R:=ResolutionPSL2QuadraticIntegers(-163,32);;

gap> for n in [1..31] do

> Print("H_",n,"= ",Homology(TensorWithIntegers(R),n),"\n");

> od;

H_1= [0, 0, 0, 0, 0, 0, 0]

H_2= [2, 12, 0, 0, 0, 0, 0, 0]

H_3= [6]

H_4= []

H_5= [2, 2, 2]

H_6= [2, 6]

H_7= [6]

H_8= [2, 2, 2, 2]

H_9= [2, 2, 2]

H_10= [2, 6]

H_11= [2, 2, 2, 2, 6]

H_12= [2, 2, 2, 2]

H_13= [2, 2, 2]

H_14= [2, 2, 2, 2, 2, 6]

H_15= [2, 2, 2, 2, 6]

H_16= [2, 2, 2, 2]

H_17= [2, 2, 2, 2, 2, 2, 2]

H_18= [2, 2, 2, 2, 2, 6]

H_19= [2, 2, 2, 2, 6]

H_20= [2, 2, 2, 2, 2, 2, 2, 2]

H_21= [2, 2, 2, 2, 2, 2, 2]

H_22= [2, 2, 2, 2, 2, 6]

H_23= [2, 2, 2, 2, 2, 2, 2, 2, 6]

H_24= [2, 2, 2, 2, 2, 2, 2, 2]

H_25= [2, 2, 2, 2, 2, 2, 2]

H_26= [2, 2, 2, 2, 2, 2, 2, 2, 2, 6]

A HAP tutorial 181

H_27= [2, 2, 2, 2, 2, 2, 2, 2, 6]

H_28= [2, 2, 2, 2, 2, 2, 2, 2]

H_29= [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]

H_30= [2, 2, 2, 2, 2, 2, 2, 2, 2, 6]

H_31= [2, 2, 2, 2, 2, 2, 2, 2, 6]

13.12 Some other infinite matrix groups

Analogous to the functions for Bianchi groups, HAP has functions

• ResolutionSL2QuadraticIntegers(d,n)

• ResolutionSL2ZInvertedInteger(m,n)

• ResolutionGL2QuadraticIntegers(d,n)

• ResolutionPGL2QuadraticIntegers(d,n)

• ResolutionGL3QuadraticIntegers(d,n)

• ResolutionPGL3QuadraticIntegers(d,n)

for computing free resolutions for certain values of SL2(Od), SL2(Z[1
m]), GL2(Od), PGL2(Od),

GL3(Od) and PGL3(Od). Additionally, the function

• ResolutionArithmeticGroup("string",n)

can be used to compute resolutions for groups whose data (provided by Sebas-
tian Schoennenbeck, Alexander Rahm and Mathieu Dutour) is stored in the directory
gap/pkg/Hap/lib/Perturbations/Gcomplexes .

For instance, the following commands compute

H1(SL2(O−6),PO−6(24)) = (Z2)
4⊕Z12⊕Z24⊕Z9240⊕Z55440⊕Z4 ,

H2(SL2(O−6),PO−6(24)) =

(Z2)
26⊕ (Z6)

7⊕ (Z12)
10⊕Z24⊕ (Z120)

2⊕ (Z840)
3

⊕Z2520⊕ (Z27720)
2⊕ (Z24227280)

2⊕ (Z411863760)
2

⊕Z2454438243748928651877425142836664498129840
⊕Z14726629462493571911264550857019986988779040
⊕Z4

,

H3(SL2(O−6),PO−6(24)) = (Z2)
58⊕ (Z4)

4⊕ (Z12) .

Example
gap> R:=ResolutionSL2QuadraticIntegers(-6,4);

Resolution of length 4 in characteristic 0 for SL(2,O-6) .

No contracting homotopy available.

gap> G:=R!.group;;

gap> M:=HomogeneousPolynomials(G,24);;

A HAP tutorial 182

gap> C:=HomToIntegralModule(R,M);;

gap> Cohomology(C,1);

[2, 2, 2, 2, 12, 24, 9240, 55440, 0, 0, 0, 0]

gap> Cohomology(C,2);

gap> Cohomology(C,2);

[2,

2, 6, 6, 6, 6, 6, 6, 6, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 24, 120,

120, 840, 840, 840, 2520, 27720, 27720, 24227280, 24227280, 411863760,

411863760, 2454438243748928651877425142836664498129840,

14726629462493571911264550857019986988779040, 0, 0, 0, 0]

gap> Cohomology(C,3);

[2,

2, 2,

2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 12, 12]

The following commands construct free resolutions up to degree 5 for the groups SL2(Z[1
2]),

GL2(O−2), GL2(O2), PGL2(O2), GL3(O−2), PGL3(O−2). The final command constructs a free reso-
lution up to degree 3 for PSL4(Z).

Example
gap> R1:=ResolutionSL2ZInvertedInteger(2,5);

Resolution of length 5 in characteristic 0 for SL(2,Z[1/2]) .

gap> R2:=ResolutionGL2QuadraticIntegers(-2,5);

Resolution of length 5 in characteristic 0 for GL(2,O-2) .

No contracting homotopy available.

gap> R3:=ResolutionGL2QuadraticIntegers(2,5);

Resolution of length 5 in characteristic 0 for GL(2,O2) .

No contracting homotopy available.

gap> R4:=ResolutionPGL2QuadraticIntegers(2,5);

Resolution of length 5 in characteristic 0 for PGL(2,O2) .

No contracting homotopy available.

gap> R5:=ResolutionGL3QuadraticIntegers(-2,5);

Resolution of length 5 in characteristic 0 for GL(3,O-2) .

No contracting homotopy available.

gap> R6:=ResolutionPGL3QuadraticIntegers(-2,5);

Resolution of length 5 in characteristic 0 for PGL(3,O-2) .

No contracting homotopy available.

gap> R7:=ResolutionArithmeticGroup("PSL(4,Z)",3);

Resolution of length 3 in characteristic 0 for <matrix group with 655 generators> .

No contracting homotopy available.

A HAP tutorial 183

13.13 Ideals and finite quotient groups

The following commands first construct the number field Q(
√
−7), its ring of integers O−7 =

O(Q(
√
−7)), and the principal ideal I = 〈5+2

√
−7〉/O(Q(

√
−7)) of norm N (I) = 53. The ring I

is prime since its norm is a prime number. The primality of I is also demonstrated by observing that
the quotient ring R = O−7/I is an integral domain and hence isomorphic to the unique finite field of
order 53, R∼= Z/53Z . (In a ring of quadratic integers prime ideal is the same as maximal ideal).

The finite group G = SL2(O−7 / I) is then constructed and confirmed to be isomorphic to
SL2(Z/53Z). The group G is shown to admit a periodic ZG-resolution of Z of period dividing 52.

Finally the integral homology

Hn(G,Z) =
{

0 n 6= 3,7, for 0≤ n≤ 8,
Z2808 n = 3,7,

is computed.
Example

gap> Q:=QuadraticNumberField(-7);

Q(Sqrt(-7))

gap> OQ:=RingOfIntegers(Q);

O(Q(Sqrt(-7)))

gap> I:=QuadraticIdeal(OQ,5+2*Sqrt(-7));

ideal of norm 53 in O(Q(Sqrt(-7)))

gap> R:=OQ mod I;

ring mod ideal of norm 53

gap> IsIntegralRing(R);

true

gap> gens:=GeneratorsOfGroup(SL2QuadraticIntegers(-7));;

gap> G:=Group(gens*One(R));;G:=Image(IsomorphismPermGroup(G));;

gap> StructureDescription(G);

"SL(2,53)"

gap> IsPeriodic(G);

true

gap> CohomologicalPeriod(G);

52

gap> GroupHomology(G,1);

[]

gap> GroupHomology(G,2);

[]

gap> GroupHomology(G,3);

[8, 27, 13]

gap> GroupHomology(G,4);

[]

gap> GroupHomology(G,5);

[]

gap> GroupHomology(G,6);

A HAP tutorial 184

[]

gap> GroupHomology(G,7);

[8, 27, 13]

gap> GroupHomology(G,8);

[]

The following commands show that the rational prime 7 is not prime in O−5 = O(Q(
√
−5)).

Moreover, 7 totally splits in O−5 since the final command shows that only the rational primes 2 and 5
ramify in O−5.

Example
gap> Q:=QuadraticNumberField(-5);;

gap> OQ:=RingOfIntegers(Q);;

gap> I:=QuadraticIdeal(OQ,7);;

gap> IsPrime(I);

false

gap> Factors(Discriminant(OQ));

[-2, 2, 5]

For d < 0 the rings Od = O(Q(
√

d)) are unique factorization domains for precisely

d =−1,−2,−3,−7,−11,−19,−43,−67,−163.

This result was conjectured by Gauss, and essentially proved by Kurt Heegner, and then later proved
by Harold Stark.

The following commands construct the classic example of a prime ideal I that is not principal.
They then illustrate reduction modulo I.

Example
gap> Q:=QuadraticNumberField(-5);;

gap> OQ:=RingOfIntegers(Q);;

gap> I:=QuadraticIdeal(OQ,[2,1+Sqrt(-5)]);

ideal of norm 2 in O(Q(Sqrt(-5)))

gap> 6 mod I;

0

13.14 Congruence subgroups for ideals

Given a ring of integers O and ideal I/O there is a canonical homomorphism πI:SL2(O)→ SL2(O/I).
A subgroup Γ ≤ SL2(O) is said to be a congruence subgroup if it contains kerπI . Thus congruence
subgroups are of finite index. Generalizing the definition in 13.1 above, we define the principal
congruence subgroup Γ(I) = kerπI , and the congruence subgroup Γ0(I) consisting of preimages of
the upper triangular matrices in SL2(O/I).

The following commands construct Γ = Γ0(I) for the ideal I /OQ(
√
−5) generated by 12 and

36
√
−5. The group Γ has index 385 in SL2(OQ(

√
−5)). The final command displays a tree in a

Cayley graph for SL2(OQ(
√
−5)) whose nodes represent a transversal for Γ.

A HAP tutorial 185

Example
gap> Q:=QuadraticNumberField(-5);;

gap> OQ:=RingOfIntegers(Q);;

gap> I:=QuadraticIdeal(OQ,[36*Sqrt(-5), 12]);;

gap> G:=HAP_CongruenceSubgroupGamma0(I);

CongruenceSubgroupGamma0(ideal of norm 144 in O(Q(Sqrt(-5))))

gap> IndexInSL2O(G);

385

gap> HAP_SL2TreeDisplay(G);

The next commands first construct the congruence subgroup Γ0(I) of index 144 in
SL2(OQ(

√
−2)) for the ideal I in OQ(

√
−2) generated by 4+ 5

√
−2. The commands then com-

pute
H1(Γ0(I),Z) = Z3⊕Z6⊕Z30⊕Z8 ,

H2(Γ0(I),Z) = (Z2)
9⊕Z7 ,

H3(Γ0(I),Z) = (Z2)
9 .

Example
gap> Q:=QuadraticNumberField(-2);;

gap> OQ:=RingOfIntegers(Q);;

gap> I:=QuadraticIdeal(OQ,4+5*Sqrt(-2));;

gap> G:=HAP_CongruenceSubgroupGamma0(I);

CongruenceSubgroupGamma0(ideal of norm 66 in O(Q(Sqrt(-2))))

gap> IndexInSL2O(G);

144

gap> R:=ResolutionSL2QuadraticIntegers(-2,4,true);;

gap> S:=ResolutionFiniteSubgroup(R,G);;

gap> Homology(TensorWithIntegers(S),1);

[3, 6, 30, 0, 0, 0, 0, 0, 0, 0, 0]

gap> Homology(TensorWithIntegers(S),2);

[2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0]

gap> Homology(TensorWithIntegers(S),3);

[2, 2, 2, 2, 2, 2, 2, 2, 2]

13.15 First homology

The isomorphism H1(G,Z) ∼= Gab allows for the computation of first integral homology using com-
putational methods for finitely presented groups. Such methods underly the following computation
of

H1(Γ0(I),Z)∼= Z⊕Z2⊕·· ·⊕Z124336989193985597

where I is the prime ideal in the Gaussian integers generated by −95+66
√
−1.

A HAP tutorial 186

Example
gap> Q:=QuadraticNumberField(-1);;

gap> OQ:=RingOfIntegers(Q);;

gap> I:=QuadraticIdeal(OQ,-95+66*Sqrt(-1));

ideal of norm 13381 in O(GaussianRationals)

gap> G:=HAP_CongruenceSubgroupGamma0(I);;

gap> AbelianInvariants(G);

[0, 2, 2, 2, 2, 3, 4, 5, 16, 31, 223, 857, 13913, 106103, 1267133821,

141880858099, 1290077458421, 92119226692240157, 124336989193985597]

The command AbelianInvariants(G) can be quite time consuming. An alternative ap-
proach is to compute the first homology of G from a chain complex C using the command
ContractedComplex(C,b). This command inputs a chain complex and optionally a positive inte-
ger b and attempts to return a quasi-isomorphic chain complex with fewer generators in each degree.
The optional integer b is used to limit the extent to which simplification of C takes place. If no integer
b is entered then no limit is placed on the simplification procedure.

Example
gap> R:=ResolutionSL2QuadraticIntegers(-1,3,true);;

gap> S:=ResolutionFiniteSubgroup(R,G);;

gap> C:=TensorWithIntegers(S);;

gap> List([0..3],C!.dimension);

[13382, 53528, 93674, 93674]

gap> C:=ContractedComplex(C,20);;

gap> List([0..3],C!.dimension);

[1, 681, 11418, 50884]

gap> C:=ContractedComplex(C,40);;

gap> List([0..3],C!.dimension);

[1, 541, 10765, 50371]

gap> C:=ContractedComplex(C,60);;

gap> List([0..3],C!.dimension);

[1, 521, 10555, 50181]

gap> C:=ContractedComplex(C,80);;

gap> List([0..3],C!.dimension);

[1, 506, 10251, 49892]

gap> C:=ContractedComplex(C,100);;

gap> List([0..3],C!.dimension);

[1, 481, 9778, 49444]

gap> C:=ContractedComplex(C,200);;

gap> List([0..3],C!.dimension);

[1, 433, 7648, 47362]

gap> C:=ContractedComplex(C,300);;

gap> List([0..3],C!.dimension);

[1, 354, 6652, 46445]

gap> h:=Homology(C,1);

[2, 2, 2, 2, 4, 5575961616921963080290825077053419457519929798345389608972206812096744968225641101360, 0]

We write Gab
tors to denote the maximal finite summand of the first homology group of G and refer

to this as the torsion subgroup. Nicholas Bergeron and Akshay Venkatesh [Ber16] have conjectured
relationships between the torsion in congruence subgroups Γ and the volume of their quotient manifold

A HAP tutorial 187

h3/Γ. For instance, for the Gaussian integers they conjecture

log |Γ0(I)ab
tors|

Norm(I)
→ λ

18π
, λ = L(2,χQ(

√
−1)) = 1− 1

9
+

1
25
− 1

49
+ · · ·

as the norm of the prime ideal I tends to ∞. The following approximates λ/18π = 0.0161957 and
log |Γ0(I)ab

tors|
Norm(I) = 0.0147988 for the above example.

Example
gap> Q:=QuadraticNumberField(-1);;

gap> Lfunction(Q,2)/(18*3.142);

0.0161957

gap> Loge10:=0.434294481903;; #Log_10(e)

gap> T:=Product([2, 2, 2, 2, 3, 4, 5, 16, 31, 223, 857, 13913, 106103,

> 1267133821, 141880858099, 1290077458421, 92119226692240157,

> 124336989193985597]);;

gap> 1.0*Log(Product(T,10)/(Loge*Norm(I));

0.0147988

The link with volume is given by the Humbert volume formula

Vol(h3/PSL2(Od)) =
|D|3/2

24
ζQ(
√

d)(2)/ζQ(2)

valid for square-free d < 0, where D is the discriminant of Q(
√

d). The volume of a finite index
subgroup Γ is obtained by multiplying the right-hand side by the index |PSL2(Od) : Γ|.

The following commands produce a graph of log |Γ0(I)ab
tors|

Norm(I) against Norm(I) for prime ideals I of
norm 49≤ Norm(I)≤ 6833 (where one ideal for each norm is taken).

Example
gap> Q:=QuadraticNumberField(-1);;

gap> OQ:=RingOfIntegers(Q);;

gap> N:=QuadraticIntegersByNorm(OQ,20000);;

gap> ###

gap> fn:=function(x);

> if IsRat(x) then return x; fi;

> return x!.rational+x!.irrational*Sqrt(-1);

> end;

gap> ###

gap> NN:=List(N,fn);

gap> P:=Filtered(NN,x->IsPrime(QuadraticIdeal(OQ,x)));

gap> PP:=Classify(P,x->Norm(Q,x));

gap> PP:=List(PP,x->x[1]);;

gap> PP:=Filtered(PP,x->not x=0);

gap> Loge:=0.434294481903;; ###Log_10(e)

gap> ###

gap> ffn:=function(x)

> local I, G, A, T, S, F;

A HAP tutorial 188

> I:=QuadraticIdeal(OQ,x);

> G:=HAP_CongruenceSubgroupGamma0(I);;

> A:=AbelianInvariants(G);

> T:=Filtered(A,x->not x=0);

> return [Norm(Q,x),1.0*Log(Product(T),10)/(Loge*Norm(I))];

> end;

gap> ###

gap> S:=List(PP{[9..447]},ffn);

gap> ScatterPlot(S);

Chapter 14

Fundamental domains for Bianchi groups

14.1 Bianchi groups

The Bianchi groups are the groups G−d = PSL2(O−d) where d is a square free positive integer and
O−d is the ring of integers of the imaginary quadratic field Q(

√
−d). These groups act on upper-half

space
h3 = {(z, t) ∈ C×R | t > 0}

by the formula (
a b
c d

)
· (z+ t j) = (a(z+ t j)+b)(c(z+ t j)+d)−1

where we use the symbol j satisfying j2 =−1, i j =− ji and write z+t j instead of (z, t). Alternatively,
the action is given by(

a b
c d

)
· (z+ t j) =

(az+b)(cz+d)+act2

|cz+d|2 + |c|2t2 +
t

|cz+d|2 + |c|2t2 j .

We take the boundary ∂h3 to be the Riemann sphere C∪∞ and let h
3

denote the union of h3 and its
boundary. The action of G−d extends to the boundary. The element ∞ and each element of the number
field Q(

√
−d) are thought of as lying in the boundary ∂h3 and are referred to as cusps. Let X denote

the union of h3 with the set of cusps, X = h3∪{∞}∪Q(
√
−d). It follows from work of Bianchi and

Humbert that the space X admits the structure of a regular CW-complex (depending on d) for which
the action of G−d on h3 extends to a cellular action on X which permutes cells. Moreover, G−d acts
transitively on the 3-cells of X and each 3-cell has trivial stabilizer in G−d . Details are provided in
Richard Swan’s paper [Swa71b].

We refer to the closure in X of any one of these 3-cells as a fundamental domain for the action
G−d . Cohomology of G−d can be computed from a knowledge of the combinatorial structure of this
fundamental domain together with a knowledge of the stabilizer groups of the cells of dimension≤ 2.

14.2 Swan’s description of a fundamental domain

A pair (a,b) of elements in O−d is said to be unimodular if the ideal generated by a,b is the whole
ring O−d and a 6= 0. A unimodular pair can be represented by a hemisphere in h

3
with base centred

189

A HAP tutorial 190

at the point b/a ∈ C and of radius |1/a|. The radius is ≤ 1. Think of the points in h3 as lying strictly
above C. Let B denote the space obtained by removing the interiors of all such hemispheres from h3.

When d ≡ 3 mod 4 let F be the subspace of h
3

consisting of the points x+ iy+ jt with−1/2≤ x≤
1/2, −1/4≤ y≤ 1/4, t ≥ 0. Otherwise, let F be the subspace of h

3
consisting of the points x+ iy+ jt

with −1/2≤ x≤ 1/2, −1/2≤ y≤ 1/2, t ≥ 0.
It is explained in [Swa71b] that F ∩B is a 3-cell in the above mentioned regular CW-complex

structure on X .

14.3 Computing a fundamental domain

Explicit fundamental domains for certain values of d were calculated by Bianchi in the 1890s and
further calculations were made by Swan in 1971 [Swa71b]. In the 1970s, building on Swan’s work,
Robert Riley developed a computer program for computing fundamental domains of certain Kleinian
groups (including Bianchi groups). In their 2010 PhD theses Alexander Rahm and M.T. Aranes inde-
pendently developed Pari/GP and Sage software based on Swan’s ideas. In 2011 Dan Yasaki used a
different approach based on Voronoi’s theory of perfect forms in his Magma software for fundamen-
tal domains of Bianchi groups. Aurel Page developed software for fundamental domains of Kleinian
groups in his 2010 masters thesis. In 2018 Sebastian Schoennenbeck used a more general approach
based on perfect forms in his Magma software for computing fundamental domains of Bianchi and
other groups. Output from the code of Alexander Rahm and Sebastian Schoennenbeck for certain
Bianchi groups has been stored iin HAP for use in constructing free resolutions.

More recently a GAP implementation of Swan’s algorithm has been included in HAP. The im-
plementation uses exact computations in Q(

√
−d) and in Q(

√
d). A bespoke implementation of these

two fields is part of the implementation so as to avoid making apparently slower computations with
cyclotomic numbers. The account of Swan’s algorithm in the thesis of Alexander Rahm was the main
reference during the implementation.

14.4 Examples

The fundamental domain D = F ∩B (where the overline denotes closure) has boundary ∂D involving
the four vertical quadrilateral 2-cells contained in the four vertical quadrilateral 2-cells of ∂F . We
refer to these as the vertical 2-cells of D. When visualizing D we ignore the 3-cell and the four
vertical 2-cells entirely and visualize only the remaining 2-cells. These 2-cells can be viewed as
a 2-dimensional image by projecting them onto the complex plane, or they can be viewed as an
interactive 3-dimensional image.

A fundamental domain for G−39 can be visualized using the following commands.
Example

gap> D:=BianchiPolyhedron(-39);

3-dimensional Bianchi polyhedron over OQ(Sqrt(-39))

involving hemispheres of minimum squared radius 1/39

and non-cuspidal vertices of minimum squared height 1/49 .

gap> Display3D(D);;

gap> Display2D(D);;

https://www.sciencedirect.com/science/article/pii/S0723086913000042
https://theses.hal.science/tel-00526976/en/
https://wrap.warwick.ac.uk/id/eprint/35128/
https://mathstats.uncg.edu/sites/yasaki/publications/bianchipolytope.pdf
http://www.normalesup.org/~page/Recherche/Logiciels/logiciels-en.html
https://github.com/schoennenbeck/VMH-DivisionAlgebras

A HAP tutorial 191

A cusp vertex of D is any vertex of D lying in C∪∞. In the above visualizations for G−39 several
cusp vertices in C are : in the 2-dimensional visualization they are represented by red dots. Computer
calculations show that these cusps lie in precisely three orbits under the action of G−d . Thus, together
with the orbit of ∞ there are four distinct orbits of cusps. By the well-known correspondence between
cusp orbits and elements of the class group it follows that the class group of Q(

√
−39) is of order 4.

The following additional commands comvert the Bianchi polyhedron D to a regular CW-complex
and then display its 1-skeleton.

Example
gap> D:=BianchiPolyhedron(-39);;

gap> Y:=RegularCWComplex(D);

Regular CW-complex of dimension 2

gap> Display(GraphOfRegularCWComplex(Y));

A fundamental domain for G−22 can be visualized using the following commands.
Example

gap> D:=BianchiPolyhedron(-22);;

gap> Display3D(OQ,D);;

gap> Display2D(OQ,D);;

Two cusps are visible in these visualizations for G−22. They lie in a single orbit. Thus, together
with the orbit of ∞, there are two orbits of cusps for this group.

An alternative visualization for G−22 can be produced, in which the cells in a given orbit are
coloured with a common colour. The following commands produce this visualization.

Example
gap> K:=BianchiGcomplex(-22);;

gap> Display3D(K);

A fundamental domain for G−163 can be visualized using the following commands.
Example

gap> D:=BianchiPolyhedron(-163);;

gap> Display3D(OQ,D);;

gap> Display2D(OQ,D);;

gap> K:=BianchiGcomplex(-163);;

gap> Display3D(K);

There is just a single orbit of cusps in this example, the orbit containing ∞, since Q(
√
−163) is a

principal ideal domain and hence has trivial class group.
A fundamental domain for G−33 is visualized using the following commands.

Example
gap> D:=BianchiPolyhedron(-33);;

gap> Display3D(OQ,D);;

gap> Display2D(OQ,D);;

A HAP tutorial 192

14.5 Establishing correctness of a fundamental domain

The cusps of a fundamental domain can be calculated independently of the domain computation. The
remaining vertices of the domain will have positive heights. To prove that the computation is correct
we need to establish that no non-cuspidal vertex lies below any hemishpere centered on the complex
plane at b/a ∈C with (a,b) a unimodular pair. As these hemispheres have increasingly smaller radius
we only need to check those finitely many hemispheres with radius smaller than the height of the
lowest non-cuspidal vertex.

For a few values of d the smallest radius r of a hemisphere contributing to the fundamental domain
boundary has been stored. For cases where this smallest radius is not stored a very slow method for
finding r is implemented and the user is advised to speed things up by guessiing a value N = 1/r2

and then test that this value of N is indeed large enough. The following commands illustrate this for
d = −46 with a guess of N = 600. Once the test is done we can see that in fact a smaller guess of
N = 441 would have sufficed.

Example
gap> P:=BianchiPolyhedron(-46);

Try

P:=BianchiPolyhedron(OQ,N);

for some guessed positive integer value of N and then try

SwanBianchiCriterion(P);

to test if the value of N was large enough. If the test returns false then you\

'll need to try a larger value of N.

A successful value of N can be stored as a pair [d,N] in the list HAPRECORD wh\

ich can be edited manually in the file hap/lib/Congruence/bianchi.gi .

gap> P:=BianchiPolyhedron(-46,600);

3-dimensional Bianchi polyhedron over OQ(Sqrt(

-46)) involving hemispheres of minimum squared radius 1/

441 and non-cuspidal vertices of minimum squared height 1/8280 .

gap> SwanBianchiCriterion(P);

true

14.6 Computing a free resolution for SL2(O−d)

The above fundamental domains can be used to construct free resolutions for SL2(O−d) and
PSL2(O−d). The following commands illustrate the computation of free resolutions for SL2(O−43)
and SL2(O−10) and SL2(O−14) and their integral homology (which in each case is periodic of period
dividing 4 in degrees ≥ 3). The computation of fundamental domains uses exact arithmetic in the two
field extensions Q(

√
d) and Q(

√
−d).

Example
gap> K:=BianchiGcomplex(-43);;

gap> R:=FreeGResolution(K,11);;

gap> C:=TensorWithIntegers(R);;

gap> List([0..10],n->Homology(C,n));

[[0], [0, 0], [2, 2, 12, 0], [2, 2, 24], [2, 2], [2],

A HAP tutorial 193

[2, 2, 12], [2, 2, 24], [2, 2], [2], [2, 2, 12]]

gap> K:=BianchiGcomplex(-10);;

gap> R:=FreeGResolution(K,11);;

gap> List([0..10],k->Homology(TensorWithIntegers(R),k));

[[0], [2, 2, 0, 0, 0], [2, 2, 2, 12, 0, 0], [2, 2, 2, 24],

[2, 4, 12], [2, 2, 2, 6], [2, 2, 2, 12], [2, 2, 2, 24],

[2, 4, 12], [2, 2, 2, 6], [2, 2, 2, 12]]

gap> K:=BianchiGcomplex(-14);;

gap> R:=FreeGResolution(K,11);;

gap> List([0..10],k->Homology(TensorWithIntegers(R),k));

[[0], [6, 0, 0, 0, 0, 0], [2, 2, 2, 4, 12, 0, 0, 0, 0],

[2, 2, 2, 2, 24], [2, 2, 2, 4, 12], [2, 2, 2, 2, 24],

[2, 2, 2, 4, 12], [2, 2, 2, 2, 24], [2, 2, 2, 4, 12],

[2, 2, 2, 2, 24], [2, 2, 2, 4, 12]]

The following commands count the number of orbits of cusps (in addition to the orbit of ∞). They
determine that there is precisely one element in the ideal class group of O−43 (i.e it is a principal ideal
domain) and that there are precisely two elements in the ideal class group of O−10 and precisely four
elements in the ideal class group of O−14.

Example
gap> K:=BianchiGcomplex(-43);;

gap> List([1..K!.dimension(0)],k->Order(K!.stabilizer(0,k)));

[24, 24, 6, 6, 4, 4, 12, 12]

gap> K:=BianchiGcomplex(-10);;

gap> List([1..K!.dimension(0)],k->Order(K!.stabilizer(0,k)));

[6, 6, 4, 4, 6, infinity]

gap> K:=BianchiGcomplex(-14);;

gap> List([1..K!.dimension(0)],k->Order(K!.stabilizer(0,k)));

[6, 6, 2, 2, 2, infinity, infinity, 2, infinity, 6, 4]

14.7 Some sanity checks

There is ample scope for bugs in the implementation of the above method for computing resolutions
of Bianchi groups. The following sanity checks lend confidence to the implementation.

14.7.1 Equivariant Euler characteristic

Let X be any cell complex with an action of a group G such that (i) X has finitely many G-orbits of
cells, and (ii) the stabilizer subgroup in G for each cell is either finite or free abelian. One defines
the equivariant Euler characteristic $$\chi_G(X) = \sum_e (-1)^{dim~ e} / |Stab_G(e)|$$ where
e ranges over a set of representatives of the orbits of those cells with finite stabilizers. If G has a
finite index torsion free subgroup and if the complex X is contractible then one can define the Euler
characteristic of the group to be χ(G) = χG(X). It is known that χ(SLn(O)) = χ(GLn(O)) = 0 for O
the ring of integers of a number field [DSGG+16].

A HAP tutorial 194

One easy test to make in our computations is to check that the equivariant Euler characteristic of
the 2-complex is indeed zero. The following commands perform this test for the group SL2(O−23).

Example
gap> K:=BianchiGcomplex(-23);;

gap> chi:=0;;

gap> for n in [0..2] do

> for k in [1..K!.dimension(n)] do

> g:=Order(K!.stabilizer(n,k));

> if g < infinity then chi:=chi + (-1)^n/g; fi;

> od;od;

gap> chi;

0

14.7.2 Boundary squares to zero

The signs in the boundary maps of the free resolution are delicate. Another easy test is to check that
the boundary in the resolution squares to zero. The following commands perform this check for the
group SL2(O−23).

Example
gap> K:=BianchiGcomplex(-23);;

gap> R:=FreeGResolution(K,10);;

gap> n:=2;;List([1..R!.dimension(n)],k->ResolutionBoundaryOfWord(R,n-1,R!.boundary(n,k)));

[[], [], [], [], [], [], [], [], [], [], [], [],

[], [], [], [], [], [], [], [], [], [], [], [],

[], [], []]

gap> n:=3;;List([1..R!.dimension(n)],k->ResolutionBoundaryOfWord(R,n-1,R!.boundary(n,k)));

[[], [], [], [], [], [], [], [], [], [], [], [],

[], [], [], [], [], [], [], [], [], [], [], [],

[], [], []]

gap> n:=4;;List([1..R!.dimension(n)],k->ResolutionBoundaryOfWord(R,n-1,R!.boundary(n,k)));

[[], [], [], [], [], [], [], [], [], [], [], [],

[], [], [], [], [], [], [], [], [], [], [], [],

[], [], []]

gap> n:=5;;List([1..R!.dimension(n)],k->ResolutionBoundaryOfWord(R,n-1,R!.boundary(n,k)));

[[], [], [], [], [], [], [], [], [], [], [], [],

[], [], [], [], [], [], [], [], [], [], [], [],

[], [], []]

14.7.3 Compare different algorithms or implementations

Sebastian Schoennenbeck in his thesis work computed some contractible 2-complexes on which
Bianchi groups act with finite stabilizers (even when the ideal class is greater than 1) using a different
approach to that of Swan. These computed complexes are stored in HAP and provide an alternative
way of computing cohomology for the stored groups. Alexander Rahm in his thesis work implemented
Swan’s approach and has provided some 2-complexes that are also stored in HAP in cases where the
ideal class is equal to 1.

A HAP tutorial 195

The following commands test that Sebastian Schoennenbeck’s 2-complex for SL2(O−23) yields
the same integral homology as the above HAP implementation. Both computations use HAP’s im-
plementation of Wall’s perturbation technique for computing the resolution from the 2-complex.

Example
gap> K:=ContractibleGcomplex("SL(2,O-23)");;

gap> R:=FreeGResolution(K,10);;

gap> List([0..9],n->Homology(TensorWithIntegers(R),n));

[[0], [12, 0, 0, 0], [2, 2, 12, 0, 0], [2, 2, 12], [2, 2, 12],

[2, 2, 12], [2, 2, 12], [2, 2, 12], [2, 2, 12], [2, 2, 12]]

gap> K:=BianchiGcomplex(-23);;

gap> R:=FreeGResolution(K,10);;

gap> List([0..9],n->Homology(TensorWithIntegers(R),n));

[[0], [12, 0, 0, 0], [2, 2, 12, 0, 0], [2, 2, 12], [2, 2, 12],

[2, 2, 12], [2, 2, 12], [2, 2, 12], [2, 2, 12], [2, 2, 12]]

14.7.4 Compare geometry to algebra

The number of cusps (i.e. the number of orbits of vertices with infinite stabilizer subgroup) must
be precisely one less than the number of elements in the ideal class group of O−d . The following
commands check this for SL2(O−23) where O−23 is known to have class number 3. (This class number
is easily computed from a formula in Swan’s paper.)

Example
gap> K:=BianchiGcomplex(-23);;

gap> List([1..K!.dimension(0)],k->Order(K!.stabilizer(0,k)));

[6, 2, 2, 4, infinity, infinity]

A visualization of the fundamental domain tells us a certain amount about the algebra. In the case of
SL2(O−23)

a fundamental domain for the action on C by the translation subgroup generated by the matrices
$$ \left(\begin{array}{ll} 1 &1\\ 0 &1\end{array}\right), \left(\begin{array}{ll} 1 &\omega\\
0 &1\end{array}\right) $$ ω = (1+

√
−23)/2 is indicated by the white rectangle. From this we

see that under the action of SL2(O−23) there are at most 11 orbits of 2-cells, the central decagon and
ten quadrilaterals. However, the matrix $$ \left(\begin{array}{rr} 0 &-1\\ 1 &0\end{array}\right)
$$ maps (z,0) to (−1/z,0) and fixes (0,1). This isometry identifies points on the boundary of the
decagon pairwise. These observations are consistent with the above listing of the six orbit stabilizers
and the following algebraic information on the boundaries of the 2-cells in the Bianchi 2-complex.

Example
gap> K:=BianchiGcomplex(-23);;

gap> List([1..K!.dimension(2)],k->Length(K!.boundary(2,k)));

[10, 4, 4, 4, 4, 4]

14.8 Group presentations

Swan’s reason for studying fundamental domains was to obtain explicit group presentations for
SL2(O−d) for various values of d. The following commands obtain a presentation for SL2(O−23).

A HAP tutorial 196

Example
gap> K:=BianchiGcomplex(-23);;

gap> R:=FreeGResolution(K,2);;

gap> P:=PresentationOfResolution(R);

gap> G:=SimplifiedFpGroup(P!.freeGroup/P!.relators);

<fp group on the generators [k, r, s, w, x]>

gap> RelatorsOfFpGroup(G);

[w^-1*k*w*k^-1, s^-1*r*s*r^-1, k^6, x^-1*k^-3*x*k^-3, s^-1*k^-3*s*k^-3,

r^-1*w*x^-1*s*r*w^-1*x*s^-1, r^-1*k^-3*r*k^-3,

x*k^-2*r^-1*x*r^-1*s^-1*k^-1*s^-1, x^-1*k^3*s*r*x^-1*s*r]

gap> #Next we identify the generators as matrices

gap> GeneratorsOfGroup(P!.freeGroup);

[k, m, n, p, q, r, s, t, u, v, w, x, y, z]

gap> P!.gens;

[19, 6, 6, 20, 6, 21, 22, 6, 52, 53, 2, 50, 1, 4]

gap> k:=R!.elts[19];

[[1, 1],

[-1, 0]]

gap> r:=R!.elts[21];

[[3, 3 + -1 Sqrt(-23)],

[-3/2 + -1/2 Sqrt(-23), -5]]

gap> s:=R!.elts[22];

[[2 + 1 Sqrt(-23), 13/2 + 1/2 Sqrt(-23)],

[5/2 + -1/2 Sqrt(-23), -1 Sqrt(-23)]]

gap> w:=R!.elts[2];

[[3/2 + 1/2 Sqrt(-23), -3/2 + 1/2 Sqrt(-23)],

[3/2 + -1/2 Sqrt(-23), 3]]

gap> x:=R!.elts[50];

[[11/2 + 1/2 Sqrt(-23), 15/2 + -1/2 Sqrt(-23)],

[-1 Sqrt(-23), -4 + -1 Sqrt(-23)]]

14.8.1 Swan’s generators

The five generators in the above presentation for SL2(O−23) are obtained by constructing the low
dimensions of a CW-classifying space, forming a maximal tree in its 1-skeleton, constructing a pre-
sentation whose generators correspond to edges not in the tree, and then applying Tietze operations to
simplify this presentation. Swan’s approach instead uses generators corresponding to the "face pair-
ings" of the 3-dimensional fundamental domain. For d 6= 1,3 the number of these face-pairing genera-
tors in SL2(O−d) is equal to 3 plus the number of orbits of 2-cells in the equivariant 2-complex K. The
three extra generators are the two translations corresponding to the vertical faces of the 3-dimensional

fundamental domain which get homotopied to edges in K, plus the element
(
−1 0

0 −1

)
which acts

trivially on H3. For d = 1,3 there is one further generator due to the existence of non-trivial units in
O(Q(

√
−1)) and O(Q(

√
−3)).

The following commands show that for SL2(O−23) there are 6 orbits of 2-cells in K and then lists
Swan’s 9 generators.

Example
gap> K:=BianchiGcomplex(-23);;

A HAP tutorial 197

gap> K!.dimension(2);

6

gap> for g in GeneratorsOfGroup(K!.group) do

> Print(g,"\n");

> od;

[[-1, 0], [0, -1]]

[[1, 1], [0, 1]]

[[1, 1/2 + 1/2 Sqrt(-23)], [0, 1]]

[[-1, 0], [1, -1]]

[[5 + 2 Sqrt(-23), -11], [3/2 + -1/2 Sqrt(-23), 3/2 + 1/2 Sqrt(-23)]]

[[208 + 25 Sqrt(-23), -225 + 25 Sqrt(-23)], [3/2 + 1/2 Sqrt(-23), -3]]

[[18 + 91 Sqrt(-23), -437], [5/2 + 1/2 Sqrt(-23), -5/2 + 1/2 Sqrt(-23)]]

[[1 + -6 Sqrt(-23), -29], [5/2 + -1/2 Sqrt(-23), -5/2 + -1/2 Sqrt(-23)]]

[[1 Sqrt(-23), -6], [4, 1 Sqrt(-23)]]

14.9 Finite index subgroups

The following commands compute the integral homology of a congruence subgroup G of index 24 in
SL2(O−23). They also compute a presentation for G with 13 generators and 24 relators.

Example
gap> OQ:=RingOfIntegers(QuadraticNumberField(-23));;

gap> I:=QuadraticIdeal(OQ,[Sqrt(-23)]);

ideal of norm 23 in O(Q(Sqrt(-23)))

gap> G:=HAP_CongruenceSubgroupGamma0(I);

<group of 2x2 matrices in characteristic 0>

gap> IndexInSL2O(G);

24

gap> K:=BianchiGcomplex(-23);;

gap> R:=FreeGResolution(K,11);;

gap> R:=QuadraticToCyclotomicCoefficients(R);;

gap> S:=ResolutionFiniteSubgroup(R,G);;

gap> List([0..10],n->Homology(TensorWithIntegers(S),n));

[[0], [2, 0, 0, 0, 0, 0, 0, 0, 0],

[2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0], [2, 2, 2, 2, 2, 2, 2, 2],

[2, 2, 2, 2, 2, 2, 2, 2], [2, 2, 2, 2, 2, 2, 2, 2],

[2, 2, 2, 2, 2, 2, 2, 2], [2, 2, 2, 2, 2, 2, 2, 2],

[2, 2, 2, 2, 2, 2, 2, 2], [2, 2, 2, 2, 2, 2, 2, 2],

[2, 2, 2, 2, 2, 2, 2, 2]]

gap> P:=PresentationOfResolution(S);;

gap> H:=SimplifiedFpGroup(P!.freeGroup/P!.relators);

<fp group on the generators [f8, f10, f15, f70, f86, f125, f132, f138, f182,

f187, f191, f273, f279]>

gap> Length(RelatorsOfFpGroup(H));

24

A HAP tutorial 198

14.10 Totally real quadratic fields / Hilbert modular group

For square free d > 0 the group PSL2(Od) is a subgroup of PSL2(R) but not a discrete subgroup.
It embeds as a discrete subgroup of PSL2(R)× PSL2(R) but a fundamental domain for its action
on h2×h2 is not implemented in HAP. One can obtain a contractible GL2(Od)-equivariant complex
using Sebastian Schoennenbeck’s Magma implementation of Voronoi’s algorithm to produce text files
that can be read into HAP. A few of these text files are stored in HAP. The following commands use
one such text file to compute integral homology groups of GL2(O(Q(

√
14))). In this example the

contractible complex is 4-dimensional and has 33 orbits of 4-dimensional cells.
Example

gap> K:=ContractibleGcomplex("GL(2,O14)");

Non-free resolution in characteristic 0 for matrix group .

No contracting homotopy available.

gap> List([0..5],K!.dimension);

[144, 463, 532, 234, 33, 0]

gap> R:=FreeGResolution(K,6);;

gap> List([0..5],n->Homology(TensorWithIntegers(R),n));

[[0], [2, 2, 2, 0], [2, 2, 2, 2, 2, 2, 0, 0, 0, 0],

[2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 24, 24, 0, 0, 0, 0],

[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 12, 24],

[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4]]

14.11 Calling Magma’s Voronoi algorithm directly

If

• the MAGMA computational algebra system can be started using the line command magma and

• Sebastian Schoennenbeck’s Magma implementation of Voronoi’s algorithm for imaginary
quadratic number fields is copied to ~pkg/Voronoi/VMH-ImaginaryQuadraticNumberFields
and

• Sebastian Schoennenbeck’s Magma implementation of Voronoi’s algorithm for totally real
quadratic number fields is copied to ~pkg/Voronoi/VMH-TotallyRealNumberFields

then one can use the GAP commands VoronoiGL(n,d) and VoronoiSL(n,d) to call the MAGMA

implementation of the Voronoi algorithm directly. For example, the following commands do
this to calculate the homology groups H4(GL2(O−5),PO−5(8)) = (Z2)

17 ⊕ (Z4)
2 ⊕ (Z8)

2 and
H4(GL2(O(Q(

√
5)),Z) = (Z2)

7⊕Z60 and Hn(GL3(O−5),Z) for n = 1,2.
Example

gap> V:=VoronoiComplexSL(2,-5);; #makes a call to Magma

gap> R:=FreeGResolution(V,5);;

gap> M:=HomogeneousPolynomials(R!.group,8);;

gap> C:=HomToIntegralModule(R,M);;

gap> Cohomology(C,4);

[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 8, 8]

https://github.com/schoennenbeck/VMH-TotallyRealNumberFields
https://github.com/schoennenbeck/VMH-ImaginaryQuadraticNumberFields
https://github.com/schoennenbeck/VMH-TotallyRealNumberFields

A HAP tutorial 199

gap> V:=VoronoiComplexGL(2,5);; #makes a call to Magma

gap> R:=FreeGResolution(V,5);;

gap> Homology(TensorWithIntegers(R),4);

[2, 2, 2, 2, 2, 2, 2, 60]

gap> #V:=VoronoiComplexGL(3,-5);; #makes a call to Magma (requires much time)

gap> V:=ContractibleGcomplex("SL(3,O-5)");; #loads stored data (is faster)

gap> R:=FreeGResolution(V,4);;

gap> Homology(TensorWithIntegers(R),1);

[2]

gap> Homology(TensorWithIntegers(R),2);

[2, 2, 2, 4]

Chapter 15

Parallel computation

15.1 An embarassingly parallel computation

The following example creates fifteen child processes and uses them simultaneously to compute the
second integral homology of each of the 2328 groups of order 128. The final command shows that

H2(G,Z) = Z21
2

for the 2328-th group G in GAP’s library of small groups. The penulimate command shows that
the parallel computation achieves a speedup of 10.4 .

Example
gap> Processes:=List([1..15],i->ChildProcess());;

gap> fn:=function(i);return GroupHomology(SmallGroup(128,i),2);end;;

gap> for p in Processes do

> ChildPut(fn,"fn",p);

> od;

gap> Exec("date +%s");L:=ParallelList([1..2328],"fn",Processes);;Exec("date +%s");

1716105545

1716105554

gap> Exec("date +%s");L1:=List([1..2328],fn);;Exec("date +%s");

1716105586

1716105680

gap> speedup:=1.0*(680-586)/(554-545);

10.4444

gap> L[2328];

[2, 2]

The function ParallelList() is built from HAP’s six core functions for parallel computation.

15.2 A non-embarassingly parallel computation

The following commands use core functions to compute the product A = M×N of two random ma-
trices by distributing the work over two processors.

Example
gap> M:=RandomMat(10000,10000);;

gap> N:=RandomMat(10000,10000);;

200

A HAP tutorial 201

gap>

gap> s:=ChildProcess();;

gap>

gap> Exec("date +%s");

1716109418

gap> Mtop:=M{[1..5000]};;

gap> Mbottom:=M{[5001..10000]};;

gap> ChildPut(Mtop,"Mtop",s);

gap> ChildPut(N,"N",s);

gap> NextAvailableChild([s]);;

gap> ChildCommand("Atop:=Mtop*N;;",s);;

gap> Abottom:=Mbottom*N;;

gap> A:=ChildGet("Atop",s);;

gap> Append(A,Abottom);;

gap> Exec("date +%s");

1716110143

gap> AA:=M*N;;Exec("date +%s");

1716111389

gap> speedup:=1.0*(111389-110143)/(110143-109418);

1.71862

The next commands compute the product A = M×N of two random matrices by distributing
the work over fifteen processors. The parallelization is very naive (the entire matrices M and N are
communicated to all processes) and the computation achieves a speedup of 7.6.

Example
gap> M:=RandomMat(15000,15000);;

gap> N:=RandomMat(15000,15000);;

gap> S:=List([1..15],i->ChildCreate());;

gap> Exec("date +%s");

1716156583

gap> ChildPutObj(M,"M",S);

gap> ChildPutObj(N,"N",S);

gap> for i in [1..15] do

> cmd:=Concatenation("A:=M{[1..1000]+(",String(i),"-1)*1000}*N;");

> ChildCommand(cmd,S[i]);

> od;

gap> A:=[];;

gap> for i in [1..15] do

> C:=ChildGet("A",S[i]);

> Append(A,C);

> od;

gap> Exec("date +%s");

1716157489

gap> AA:=M*N;;Exec("date +%s");

1716164405

gap> speedup:=1.0*(64405-57489)/(57489-56583);

A HAP tutorial 202

7.63355

15.3 Parallel persistent homology

Section 5.8 illustrates an alternative method of computing the persitent Betti numbers of a filtered
pure cubical complex. The method lends itself to parallelisation. However, the following parallel
computation of persistent Betti numbers achieves only a speedup of 1.5 due to a significant time
spent transferring data structures between processes. On the other hand, the persistent Betti function
could be used to distribute computations over several computers. This might be useful for larger
computations that require significant memory resources.

Example
gap> file:=HapFile("data247.txt");;

gap> Read(file);;

gap> F:=ThickeningFiltration(T,25);;

gap> S:=List([1..15],i->ChildCreate());;

gap> N:=[0,1,2];;

gap> Exec("date +%s");P:=ParallelPersistentBettiNumbers(F,N,S);;Exec("date +%s");

1717160785

1717161285

gap> Exec("date +%s");Q:=PersistentBettiNumbersAlt(F,N);;Exec("date +%s");

1717161528

1717162276

gap> speedup:=1.0*(1717162276-1717161528)/(1717161285-1717160785);

1.496

Chapter 16

Regular CW-structure on knots (written
by Kelvin Killeen)

16.1 Knot complements in the 3-ball

While methods for endowing knot complements with CW-structure already exist in HAP (see section
2.1), they often result in a large number of cells which can make computing with them taxing. The fol-
lowing example shows how one can obtain a comparatively small 3-dimensional regular CW-complex
corresponding to the complement of a thickened trefoil knot from an arc presentation. Recall that an
arc presentation is encoded in HAP as a list of integer pairs corresponding to the position of the end-
points of each horizontal arc in a grid.

Example
gap> k_:=PureCubicalKnot(3,1);

prime knot 1 with 3 crossings

gap> arc:=ArcPresentation(k_);

[[2, 5], [1, 3], [2, 4], [3, 5], [1, 4]]

gap> k_:=RegularCWComplex(PureComplexComplement(k_));

Regular CW-complex of dimension 3

gap> Size(k_);

13291

gap> k:=KnotComplement(arc);

Regular CW-complex of dimension 3

gap> Size(k);

395

An optional argument of "rand" in the KnotComplement function randomises the order in which
2-cells are added to the complex. This allows for alternate presentations of the knot group.

Example
gap> arc:=ArcPresentation(PureCubicalKnot(3,1));

[[2, 5], [1, 3], [2, 4], [3, 5], [1, 4]]

gap> k:=KnotComplement(arc,"rand");

Random 2-cell selection is enabled.

Regular CW-complex of dimension 3

203

A HAP tutorial 204

gap> g:=FundamentalGroup(k); RelatorsOfFpGroup(g);

#I there are 2 generators and 1 relator of total length 6

<fp group of size infinity on the generators [f1, f2]>

[f2^-1*f1*f2^-1*f1^-1*f2*f1^-1]

gap> k:=KnotComplement(arc,"rand");

Random 2-cell selection is enabled.

Regular CW-complex of dimension 3

gap> g:=FundamentalGroup(k); RelatorsOfFpGroup(g);

#I there are 2 generators and 1 relator of total length 7

<fp group of size infinity on the generators [f1, f2]>

[f1*f2^-2*f1*f2*f1^-1*f2]

It is often useful to obtain an inclusion of regular CW-complexes ι : ∂ (N(K)) ↪→ B3\N(K) from the
boundary of a tubular neighbourhood of some knot N(K) into its complement in the 3-ball B3\N(K).
The below example does this for the first prime knot on 11 crossings.

Example
gap> arc:=ArcPresentation(PureCubicalKnot(11,1));

[[2, 9], [1, 3], [2, 6], [4, 7], [3, 5], [6, 10], [4, 8],

[9, 11], [7, 10], [1, 8], [5, 11]]

gap> k:=KnotComplementWithBoundary(arc);

Map of regular CW-complexes

gap> Size(Source(i));

616

gap> Size(Target(i));

1043

Note that we can add n-cells to regular CW-complexes by specifying the (n−1)-cells in their bound-
aries and (n+1)-cells in their coboundaries.

Example
gap> k:=KnotComplement([[1,2],[1,2]])!.boundaries;;

gap> Homology(RegularCWComplex(k),0);

[0]

gap> AddCell(k,0,[0],[]);

gap> Homology(RegularCWComplex(k),0);

[0, 0]

16.2 Tubular neighbourhoods

Let Y denote a CW-subcomplex of a regular CW-complex X and let N(Y) denote an open tubular
neighbourhood of Y . Given an inclusion of regular CW-complexes f :Y ↪→X , this algorithm describes
a procedure for obtaining the associated inclusion f ′ : ∂C ↪→C where C = X\N(Y) and ∂C denotes
the boundary of C. The following is also assumed:

Let en denote a cell of X\Y of dimension n with ēn denoting its closure. For each n-cell, all of the
connected components of the subcomplex ēn∩Y are contractible.

A HAP tutorial 205

Some additional terminology and notation is needed to describe this algorithm. The output regular
CW-complex X\N(Y) consists of the cell complex X\Y as well as some additional cells to maintain
regularity. A cell of X\N(Y) is referred to as internal if it lies in X\Y , it is external otherwise. Let
ēn denote the closure in X of an internal cell en. Note that ēn is a CW-subcomplex of X and so is the
intersection ēn∩Y which can be expressed as the union

ēn∩Y = A1∪A2∪·· ·∪Ak
of its path components Ai all of which are CW-subcomplexes of Y . For each n-cell of X\Y there

is one internal n-cell en of X\N(Y). For n≥ 1 there is also one external (n−1)-cell f en

Ai
for each path

component Ai of ēn∩Y . Lastly, we need a method for determining the homological boundary of the
internal and external cells:
• The boundary of an internal n-cell en consists of all those internal (n− 1)-cells of ēn together

with all external (n−1)-cells f en

Ai
where Ai is a path component of ēn∩Y .

• The boundary of an external (n− 1)-cell f en

Ai
consists of all those external (n− 2)-cells f en−1

B j

where en−1 is an (n−1)-cell of ēn and B j ⊆ Ai is a path component of Ai.
The following three steps comprise the algorithm.
(1) For each internal n-cell en ⊂ X\Y , compute the CW-complex ēn∩Y as a union of path com-

ponents A1∪A2∪·· ·∪Ak. This information can be used to determine the number of cells of X\N(Y)
in each dimension.

(2) Create a list B = [[], [], . . . , []] of length dimX +1.
(3) For 0≤ n≤ dimX set B[n+1] = [b1,b2, . . . ,bαn] where αn is the number of n-cells in X\N(Y)

and bi is a list of integers describing the (n−1)-cells of the ith n-cell of X\N(Y). The internal cells
will always be listed before the external cells in each sublist. Return B as a regular CW-complex.

The following example computes the tubular neighbourhood of a 1-dimensional subcomplex of a
3-dimensional complex corresponding to the Hopf link embedded in the closed 3-ball.

Example
gap> arc:=[[2,4],[1,3],[2,4],[1,3]];;

gap> f:=ArcPresentationToKnottedOneComplex(arc);

Map of regular CW-complexes

gap> comp:=RegularCWComplexComplement(f);

Testing contractibility...

151 out of 151 cells tested.

The input is compatible with this algorithm.

Regular CW-complex of dimension 3

Note that the output of this algorithm is just a regular CW-complex, not an inclusion map. The
function BoundaryMap can be employed to obtain the boundary of a pure complex. This results
in three path components for this example: two corresponding to the boundary of the knotted tori
and the other corresponding to the boundary of the 3-ball in which the link was embedded. These
path components can be obtained as individual CW-subcomplexes if desired. A CW-subcomplex is
represented in HAP as a list [X ,s] where X is a regular CW-complex and s is a list of length n whose ith

entry lists the indexing of each (i−1)-cell of the n-dimensional subcomplex of X . CW-subcomplexes
and CW maps can be converted between each other interchangeably. This next example obtains the
inclusion detailed in the above algorithm, finds the path components of the source of said inclusion,
shows that they are in fact disjoint, and then obtains the first four integral homology groups of each
component.

A HAP tutorial 206

Example
gap> f_:=BoundaryMap(comp);

Map of regular CW-complexes

gap> f_:=RegularCWMapToCWSubcomplex(f_);;

gap> paths:=PathComponentsCWSubcomplex(f_);

[[Regular CW-complex of dimension 3

,

[[1, 2, 3, 4, 5, 6, 7, 8, 9, 18, 19, 20],

[1, 2, 3, 4, 5, 6, 13, 14, 15, 16, 17, 18, 33, 34, 35, 46, 47, 48

], [11, 12, 13, 14, 15, 16, 35, 36]]],

[Regular CW-complex of dimension 3

, [[21, 24, 25, 27, 30, 31, 32, 37, 38, 39, 40, 43, 45, 46, 48],

[49, 51, 53, 56, 57, 59, 61, 63, 65, 67, 69, 71, 73, 74, 76, 79,

82, 83, 86, 87, 90, 91], [37, 39, 41, 44, 45, 47, 49]]],

[Regular CW-complex of dimension 3

, [[22, 23, 26, 28, 29, 33, 34, 35, 36, 41, 42, 44, 47, 49, 50],

[50, 52, 54, 55, 58, 60, 62, 64, 66, 68, 70, 72, 75, 77, 78, 80,

81, 84, 85, 88, 89, 92], [38, 40, 42, 43, 46, 48, 50]]]]

gap> paths:=List(paths,CWSubcomplexToRegularCWMap);

[Map of regular CW-complexes

, Map of regular CW-complexes

, Map of regular CW-complexes

]

gap> List([1..3],x->List(Difference([1..3],[x]),y->IntersectionCWSubcomplex(paths[x],paths[y])));

[[[Regular CW-complex of dimension 3

, [[], [], []]], [Regular CW-complex of dimension 3

, [[], [], []]]], [[Regular CW-complex of dimension 3

, [[], [], []]], [Regular CW-complex of dimension 3

, [[], [], []]]], [[Regular CW-complex of dimension 3

, [[], [], []]], [Regular CW-complex of dimension 3

, [[], [], []]]]]

gap> List(paths,x->List([0..3],y->Homology(Source(x),y)));

[[[0], [], [0], []], [[0], [0, 0], [0], []],

[[0], [0, 0], [0], []]]

As previously mentioned, for the tubular neighbourhood algorithm to work, we require that no exter-
nal cells yield non-contractible path-components in their intersection with the subcomplex. If this
is ever the case then we can subdivide the offending cell to prevent this from happening. We have
implemented two subdivision algorithms in HAP, one for barycentrically subdividing a given cell, and
the other for subdividing an n-cell into as many n-cells as there are (n− 1)-cells in its boundary.
Barycentric subdivision is integrated into the RegularCWComplexComplement function and will be
performed automatically as required. The following example shows this automatic subdivision run-
ning via the complement of a tubular neighbourhood of the unknot, then obtains an inclusion map
from the closure of an arbitrary 3-cell of this complex and then compares the difference in size of the
two different subdivisions of a 2-cell in the boundary of this 3-cell.

Example
gap> arc:=[[1,2],[1,2]];;

gap> unknot:=ArcPresentationToKnottedOneComplex(arc);

A HAP tutorial 207

Map of regular CW-complexes

gap> f:=RegularCWComplexComplement(unknot);

Testing contractibility...

79 out of 79 cells tested.

Subdividing 3 cell(s):

100% complete.

Testing contractibility...

145 out of 145 cells tested.

The input is compatible with this algorithm.

Regular CW-complex of dimension 3

gap> f:=Objectify(HapRegularCWMap,rec(source:=f,target:=f,mapping:={i,j}->j));

Map of regular CW-complexes

gap> closure:=ClosureCWCell(Target(f),3,1);

[Regular CW-complex of dimension 3

,

[[1, 2, 3, 4, 7, 8, 9, 10, 11, 13, 14, 20, 21, 22, 23, 25],

[1, 2, 3, 7, 8, 9, 10, 11, 15, 16, 17, 20, 21, 22, 23, 24, 25, 27, 28, 55, 58, 59,

60, 63], [1, 4, 7, 8, 9, 13, 14, 15, 18, 52], [1]]]

gap> Size(Target(f));

195

gap> Size(Target(BarycentricallySubdivideCell(f,2,1)));

231

gap> Size(Target(SubdivideCell(f,2,1)));

207

16.3 Knotted surface complements in the 4-ball

A construction of Satoh’s, the tube map, associates a ribbon torus-knot to virtual knot diagrams.
A virtual knot diagram differs from a knot diagram in that it allows for a third type of crossing, a
virtual crossing. The image of such a crossing via the tube map is two tori which pass through each
other. An arc diagram is a triple of lists [arc,cross,cols] that encode virtual knot diagrams. arc
is an arc presentation. cross is a list of length the number of crossings in the knot associated to
the arc presentation whose entries are −1,0 or 1 corresponding to an undercrossing (horizontal arc
underneath vertical arc), a virtual crossing (depicted by intersecting horizontal and vertical arcs) and
an overcrossing (horizontal arc above vertical arc) respectively. cols is a list of length the number of
0 entries in cross and its entries are 1,2,3 or 4. It describes the types of ’colourings’ we assign to
the virtual crossings. We interpret each integer as the change in 4-dimensional height information as
represented by a colour scale from blue (lower down in 4-space), to green (0 level), to red (higher up
in 4-space). Without loss of generality, we impose that at each virtual crossing, the vertical arc passes
through the horizontal arc. Thus, 1 corresponds to the vertical bar entering the horizontal bar as blue
and leaving as blue, 2 corresponds to entering as blue and leaving as red, 3 corresponds to entering as
red and leaving as blue and 4 corresponds to entering and leaving as red. A coloured arc diagram can
be visualised using the ViewColouredArcDiagram function.

A HAP tutorial 208

Example
gap> arc:=ArcPresentation(PureCubicalKnot(6,1));

[[5, 8], [4, 6], [3, 5], [2, 4], [1, 3], [2, 7], [6, 8], [1, 7]]

gap> cross:=[0,0,1,-1,-1,0];;

gap> cols:=[1,4,3];;

gap> ViewArc2Presentation([arc,cross,cols]);

convert-im6.q16: pixels are not authentic `/tmp/HAPtmpImage.txt' @ error/cache.c/QueueAuthenticPixelCacheNexus/4381.

Towards obtaining a regular CW-decomposition of ribbon torus-knots, we first begin by embed-
ding a self-intersecting knotted torus in the 3-ball. The function ArcDiagramToTubularSurface

inputs a coloured arc diagram and outputs an inclusion from the boundary of some (potentially
self-intersecting) torus in the 3-ball. By inputting just an arc presentation, one can obtain an in-
clusion identical to the KnotComplementWithBoundary function. By additionally inputting a list of
−1s and 1s, one can obtain an inclusion similar to KnotComplementWithBoundary but where there
is extra freedom in determining whether or not a given crossing is an under/overcrossing. If one inputs
both of the above but includes 0 entries in the cross list and includes the list of colours, the output
is then an inclusion from an embedded self-intersecting torus into the 3-ball where each 2-cell (the
top-dimensional cells of the self-intersecting surface) is assigned a colour.

Example
gap> tub:=ArcDiagramToTubularSurface(arc);

Map of regular CW-complexes

gap> tub:=ArcDiagramToTubularSurface([arc,cross]);

Map of regular CW-complexes

gap> tub:=ArcDiagramToTubularSurface([arc,cross,cols]);

Map of regular CW-complexes

gap> List([1..Length(Source(tub)!.boundaries[3])],x->tub!.colour(2,tub!.mapping(2,x)));

[[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0],

[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0],

[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0],

[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0],

[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [-1], [-1],

[0], [0], [-1], [-1], [-1], [-1], [0], [0], [0], [0], [1], [1],

[0], [0], [1], [1], [1], [1], [0], [0], [0], [0], [1], [1], [0],

[0], [-1], [-1], [1], [-1], [0], [0], [0], [0], [-1], [-1], [0],

[1], [1], [0], [0], [0], [0], [1], [-1], [0]]

From this self-intersecting surface with colour, we can lift it to a surface without self-intersections
in R4. We do this by constructing a regular CW-complex of the direct product B3× [a,b] where
B3 denotes the 3-ball, a is 1 less than the smallest integer assigned to a cell by the colouring, and
b is 1 greater than the largest integer assigned to a cell by the colouring. The subcomplex of the
direct product corresponding to the surface without intersection can be obtained using the colouring
with additional care taken to not lift any 1-cells arising as double-point singularities. The following
example constructs the complement of a ribbon torus-link embedded in R4 obtained from the Hopf
link with one virtual crossing and then calculates some invariants of the resulting space. We compare

A HAP tutorial 209

the size of this complex, as well as how long it takes to obtain the same invariants, with a cubical
complex of the same space. As barycentric subdivision can massively increase the size of the cell
complex, the below method sequentially obtains the tubular neighbourhood of the entire subcomplex
by obtaining the tubular neighbourhood of each individual 2-cell. This has yet to be optimised so it
currently takes some time to complete.

Example
gap> arc:=[[2,4],[1,3],[2,4],[1,3]];;

gap> tub:=ArcDiagramToTubularSurface([arc,[0,-1],[2]]);

Map of regular CW-complexes

gap> tub:=LiftColouredSurface(tub);

Map of regular CW-complexes

gap> Dimension(Source(tub));

2

gap> Dimension(Source(tub));

4

gap> map:=RegularCWMapToCWSubcomplex(tub);;

gap> sub:=SortedList(map[2][3]);;

gap> sub:=List(sub,x->x-(Position(sub,x)-1));;

gap> clsr:=ClosureCWCell(map[1],2,sub[1])[2];;

gap> seq:=CWSubcomplexToRegularCWMap([map[1],clsr]);;

gap> tub:=RegularCWComplexComplement(seq);

Testing contractibility...

3501 out of 3501 cells tested.

The input is compatible with this algorithm.

gap> for i in [2..Length(sub)] do

> clsr:=ClosureCWCell(tub,2,sub[i])[2];;

> seq:=CWSubcomplexToRegularCWMap([tub,clsr]);;

> tub:=RegularCWComplexComplement(seq);

> od;

Testing contractibility...

3612 out of 3612 cells tested.

The input is compatible with this algorithm.

Testing contractibility...

3693 out of 3693 cells tested.

The input is compatible with this algorithm.

Testing contractibility...

3871 out of 3871 cells tested.

The input is compatible with this algorithm.

Testing contractibility...

3925 out of 3925 cells tested.

The input is compatible with this algorithm.

Testing contractibility...

4084 out of 4084 cells tested.

The input is compatible with this algorithm.

Testing contractibility...

4216 out of 4216 cells tested.

The input is compatible with this algorithm.

Testing contractibility...

4348 out of 4348 cells tested.

The input is compatible with this algorithm.

A HAP tutorial 210

Testing contractibility...

4529 out of 4529 cells tested.

The input is compatible with this algorithm.

Testing contractibility...

4688 out of 4688 cells tested.

The input is compatible with this algorithm.

Testing contractibility...

4723 out of 4723 cells tested.

The input is compatible with this algorithm.

Testing contractibility...

4918 out of 4918 cells tested.

The input is compatible with this algorithm.

Testing contractibility...

5107 out of 5107 cells tested.

The input is compatible with this algorithm.

Testing contractibility...

5269 out of 5269 cells tested.

The input is compatible with this algorithm.

Testing contractibility...

5401 out of 5401 cells tested.

The input is compatible with this algorithm.

Testing contractibility...

5548 out of 5548 cells tested.

The input is compatible with this algorithm.

Testing contractibility...

5702 out of 5702 cells tested.

The input is compatible with this algorithm.

Testing contractibility...

5846 out of 5846 cells tested.

The input is compatible with this algorithm.

Testing contractibility...

6027 out of 6027 cells tested.

The input is compatible with this algorithm.

Testing contractibility...

6089 out of 6089 cells tested.

The input is compatible with this algorithm.

Testing contractibility...

6124 out of 6124 cells tested.

The input is compatible with this algorithm.

Testing contractibility...

6159 out of 6159 cells tested.

The input is compatible with this algorithm.

Testing contractibility...

6349 out of 6349 cells tested.

The input is compatible with this algorithm.

Testing contractibility...

6467 out of 6467 cells tested.

The input is compatible with this algorithm.

Testing contractibility...

6639 out of 6639 cells tested.

The input is compatible with this algorithm.

Testing contractibility...

A HAP tutorial 211

6757 out of 6757 cells tested.

The input is compatible with this algorithm.

Testing contractibility...

6962 out of 6962 cells tested.

The input is compatible with this algorithm.

Testing contractibility...

7052 out of 7052 cells tested.

The input is compatible with this algorithm.

Testing contractibility...

7242 out of 7242 cells tested.

The input is compatible with this algorithm.

Testing contractibility...

7360 out of 7360 cells tested.

The input is compatible with this algorithm.

Testing contractibility...

7470 out of 7470 cells tested.

The input is compatible with this algorithm.

Testing contractibility...

7561 out of 7561 cells tested.

The input is compatible with this algorithm.

Testing contractibility...

7624 out of 7624 cells tested.

The input is compatible with this algorithm.

Testing contractibility...

7764 out of 7764 cells tested.

The input is compatible with this algorithm.

Testing contractibility...

7904 out of 7904 cells tested.

The input is compatible with this algorithm.

Testing contractibility...

7979 out of 7979 cells tested.

The input is compatible with this algorithm.

Testing contractibility...

8024 out of 8024 cells tested.

The input is compatible with this algorithm.

Testing contractibility...

8086 out of 8086 cells tested.

The input is compatible with this algorithm.

Testing contractibility...

8148 out of 8148 cells tested.

The input is compatible with this algorithm.

Testing contractibility...

8202 out of 8202 cells tested.

The input is compatible with this algorithm.

Testing contractibility...

8396 out of 8396 cells tested.

The input is compatible with this algorithm.

Testing contractibility...

8534 out of 8534 cells tested.

The input is compatible with this algorithm.

Testing contractibility...

8625 out of 8625 cells tested.

A HAP tutorial 212

The input is compatible with this algorithm.

Testing contractibility...

8736 out of 8736 cells tested.

The input is compatible with this algorithm.

Testing contractibility...

8817 out of 8817 cells tested.

The input is compatible with this algorithm.

Testing contractibility...

8983 out of 8983 cells tested.

The input is compatible with this algorithm.

Testing contractibility...

9073 out of 9073 cells tested.

The input is compatible with this algorithm.

Testing contractibility...

9218 out of 9218 cells tested.

The input is compatible with this algorithm.

Testing contractibility...

9323 out of 9323 cells tested.

The input is compatible with this algorithm.

Testing contractibility...

9442 out of 9442 cells tested.

The input is compatible with this algorithm.

Testing contractibility...

9487 out of 9487 cells tested.

The input is compatible with this algorithm.

Testing contractibility...

9538 out of 9538 cells tested.

The input is compatible with this algorithm.

Testing contractibility...

9583 out of 9583 cells tested.

The input is compatible with this algorithm.

Testing contractibility...

9634 out of 9634 cells tested.

The input is compatible with this algorithm.

gap> Size(tub);

9685

gap> total_time_1:=0;;

gap> List([0..4],x->Homology(tub,x)); total_time_1:=total_time_1+time;;

[[0], [0, 0], [0, 0, 0, 0], [0, 0], []]

gap> c:=ChainComplexOfUniversalCover(tub);; total_time_1:=total_time_1+time;;

gap> l:=Filtered(LowIndexSubgroups(c!.group,5),g->Index(c!.group,g)=5);; total_time_1:=total_time_1+time;;

gap> inv:=Set(l,g->Homology(TensorWithIntegersOverSubgroup(c,g),2)); total_time_1:=total_time_1+time;;

[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

]

gap> total_time_1;

3407

gap> hopf:=PureComplexComplement(HopfSatohSurface());;

gap> hopf:=RegularCWComplex(hopf);;

gap> Size(hopf);

4508573

gap> total_time_2:=0;;

gap> c_:=ChainComplexOfUniversalCover(hopf);; total_time_2:=total_time_2+time;;

A HAP tutorial 213

gap> l_:=Filtered(LowIndexSubgroups(c_!.group,5),g->Index(c_!.group,g)=5);; total_time_2:=total_time_2+time;;

gap> inv_:=Set(l_,g->Homology(TensorWithIntegersOverSubgroup(c_,g),2));; total_time_2:=total_time_2+time;;

gap> total_time_2;

1116000

gap> inv_=inv;

true

References

[AL70] A. Atkin and J. Lehner. Hecke operators on γ0(m). Math. Ann., 185:134--160, 1970.
171

[BCNS15] O. Braun, R. Coulangeon, G. Nebe, and S. Schoennenbeck. Computing in arithmetic
groups with voronoï’s algorithm. J. Algebra, 435:263--285, 2015. 175

[BE14] A. Bui and G. Ellis. The homology of sl2(z[1/m]) for small m. Journal of Algebra,
408:102--108, 2014. 166

[Ber00] E. Berkove. On the Mod-2 Cohomology of the Bianchi Groups. Trans. of the AMS.,
352, no. 10, 2000. 176

[Ber06] E. Berkove. The integral Cohomology of the Bianchi Groups. Trans. of the AMS., 358,
no. 3, 2006. 176

[Ber16] N. Bergeron. Torsion homology growth in arithmetic groups. EuropeanMathematical
Society, European Congress of Mathematicians, July 18-22, 2016. 186

[BL87] R. Brown and J.-L. Loday. Van kampen theorems for diagrams of spaces. Topology,
26:311--335, 1987. 156

[BLR20] E. Berkove, G. Lakeland, and A. Rahm. The mod2 cohomology rings of congruence
subgroups in the Bianchi groups. J. Algebraic Combin. 52, 2020. 176

[Bro60] E. Brody. The topological classification of the lens spaces. Ann. of Math. 71, 163–184,
1960. 49

[CKL14] D. Coeurjolly, B. Kerautret, and J.-O. Lachaud. Extraction of Connected Region Bound-
ary in Multidimensional Images. Image Processing On Line, 2014. 74

[DPR91] R. Dijkgraaf, V. Pasquier, and P. Roche. Quasi-Hopf algebras, group cohomology and
orbifold models. Nuclear Phys. B Proc. Suppl. 18B, 60-72, 1991. 109

[DSGG+16] M. Dutour Sikiric, H. Gangl, P. Gunnells, J. Hanke, A. Schuermann, and D. Yasaki. On
the cohomology of linear groups over imaginary quadratic fields. J. Pure and Applied
Algebra, volume 220, issue 7, 2016. 193

[EHS06] G. Ellis, J. Harris, and E. Skoldberg. Polytopal resolutions for finite groups. J. Reine
Angew. Math., 598:131--137, 2006. 165

[Eic57] M. Eichler. Eine verallgemeinerung der abelschen integrale. Mathematische Zeitschrift,
67:267--298, 1957. 163

214

A HAP tutorial 215

[GM15] D. Goncalves and S. Martins. Diagonal approximation and the cohomology ring of the
fundamental groups of surfaces. European Journal of Mathematics, 1, pp122--137,
2015. 19

[Gre13] J. Greene. The lens space realization problem. Annals of Mathematics 177, pages
449-511, 2013. 52

[Hat01] A. Hatcher. Algebraic Topology. Available online, 2001. 155

[Hor00] K. Horadam. An introduction to cocyclic generalised Hadamard matrices. Discrete
Applied Math, 102, 115-130, 2000. 109

[IO01] K. Igusa and K. E. Orr. Links, pictures and the homology of nilpotent groups. Topology,
Volume 40, Issue 6, pp-1125--1166, 2001. 101

[Joh16] F. Johnson. Syzygies and dihedral resolutions for dihedral groups. Communication in
Algebra 44(5), pp 2034-2047, 2016. 139

[KFM08] L. H. Kauffman and J. Faria Martins. Invariants of welded virtual knots via crossed
module invariants of knotted surfaces. Compos. Math., 144(4):1046--1080, 2008. 38

[Kho01] I. Kholodna. Low-dimensional homotopical syzygies. PhD Thesis, National University
of Ireland Galway, 2001. 139

[KS98] Y. V. Kuz’min and Y. S. Semenov. On the homology of a free nilpotent group of class 2.
Mat. Sb. 189, no. 4, pp 49--82, 1998. 101

[Kso00] R. Ksontini. Proprietes homotopiques du complexe de Quillen du groupe symetrique.
These de doctorat, Universitet de Lausanne, 2000. 9

[Kul91] R. Kulkarni. An arithmetic-geometric method in the study of the subgroups of the
modular group. American Journal of Mathematics, 113, No. 6:1053--1133, 1991. 166

[LY24a] C. Liu and W. Ye. Crystallography, group cohomology, and lieb-schultz-mattis con-
straints. https://arxiv.org/abs/2410.03607/, 2024. 127, 128

[LY24b] C. Liu and W. Ye. Space group cohomology and lsm -- a github repository.
https://github.com/liuchx1993/Space-Group-Cohomology-and-LSM, 2024. 127

[MFTM01] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A Database of Human Segmented Natu-
ral Images and its Application to Evaluating Segmentation Algorithms and Measuring
Ecological Statistics. Proc. 8th Int’l Conf. Computer Vision, 2, pp 416--423, 2001. 73

[Mil58] J. Milnor. On simply connected 4-manifolds. International symposium on algebraic
topology, Universidad Nacional Autonoma de Mexico and UNESCO, Mexico City,
1958. 18

[Moi52] E. Moise. Affine structures in 3-manifolds V. The triangulation theorem and
Hauptvermu- tung. Annals of Math. 56, 96--114, 1952. 49

[Mos71] L. Moser. Elementary surgery along a torus knot. Pacific Journal of Mathematics, Vol.
38, No. 3, 1971. 52

A HAP tutorial 216

[PY03] J. Przytycki and A. Yasukhara. Symmetry of links and classification of lens spaces.
Geom. Dedicata 98, 57--61, 2003. 49

[Rah10] A. Rahm. Cohomologies and K-theory of Bianchi groups using computational geomet-
ric models. These de doctorat, Universite Joseph-Fourier -- Grenoble I, 2010. 175

[Rah13a] A. Rahm. Higher torsion in the Abelianization of the full Bianchi groups. LMS J.
Comput. Math. 16, 2013. 176

[Rah13b] A. Rahm. The homological torsion of PSL2 of the imaginary quadratic integers. Trans.
Amer. Math. Soc. 365, 2013. 176

[Rei35] K. Reidemeister. Homotopieringe und Linsenraume. Abh. Math. Sem. Univ. Hamburg
11 , 102–109, 1935. 49

[RF13] A. Rahm and M. Fuchs. The integral homology of PSL2 of imaginary quadratic integers
with nontrivial class group. J. Pure Appl. Algebra 215, 2013. 176, 178

[RHM+13] A. Romero, J. Heras, G. Mata, J. Rubio, and F. Sergereart. Spectral sequences for
computing persistent homology of digital images. Proceedings ACA 2013, 2013. 136

[Sat00] S. Satoh. Virtual knot presentation of ribbon torus-knots. J. Knot Theory Ramifications,
9(4):531--542, 2000. 38

[Sen11] M. H. Sengun. On the integral cohomology of bianchi groups. Experimental Mathemat-
ics, 20(4):487--505, 2011. 176

[Shi59] G. Shimura. Sur les integrales attachees aux formes automorphes. Journal of the Math-
ematical Society of Japan, 67:291--311, 1959. 163

[SK11] J. Spreer and W. Khuenel. Combinatorial properties of the K3 surface: Simplicial
blowups and slicings. Experimental Mathematics Volume 20 Issue 2, 2011. 10, 15

[Ste07] W. Stein. Modular forms, a computational approach, volume 79. AMS Graduate Studies
in Mathematics, 2007. 164, 170, 171

[SV83] J. Schwermer and K. Vogtmann. The Integral Homology of SL2 and PSL2 of Euclidean
Imaginary Quadratic Integer. Comment. Math. Helvetica 58, 1983. 176, 177

[Swa60] R. Swan. Periodic resolutions for finite groups. Annals of Mathematics 72, pages
267-291, 1960. 139

[Swa71a] R. Swan. Generators and relations for certain general linear groups. Advances in Math-
ematics, 6:1--77, 1971. 175

[Swa71b] R. Swan. Generators and relations for certain Special Linear Groups. Advances in
Mathematics 6, 1--77, 1971. 189, 190

[Sym10] P. Symmonds. ON THE CASTELNUOVO-MUMFORD REGULARITY OF THE CO-
HOMOLOGY RING OF A GROUP. Journal of the Americal Mathematical Society,
Volume 23, 2010. 119, 120

A HAP tutorial 217

[Thu02] W. Thurston. The Geometry and Topology of Three-Manifolds.
http://www.msri.org/publications/books/gt3m/, 2002. 65

[TZ08] S. Tomoda and P. Zvengrowski. Remarks on the cohomology of finite fundamental
groups of 3-manifolds. Geometry and Topology Monographs 14, 519-556, 2008. 108

[Vog85] K. Vogtmann. Cohomology of Bianchi Groups, Math. Math. Ann. 272, 1985. 176

[Web87] P. Webb. Subgroup complexes. Proceedings of Symposia in Pure Mathematics, Volume
47, 1987. 112

[Wie78] G. Wieser. Computational arithmetic of modular forms. Universitat Duisburg-Essen,
2007/8. 164

[Wue92] M. Wuestner. An example of a nonsolvable Lie algebra. Seminar Sophus Lie 2, 57-58,
1992. 116

	Simplicial complexes & CW complexes
	The Klein bottle as a simplicial complex
	Other simplicial surfaces
	The Quillen complex
	The Quillen complex as a reduced CW45complex
	Simple homotopy equivalences
	Cellular simplifications preserving homeomorphism type
	Constructing a CW45structure on a knot complement
	Constructing a regular CW45complex by attaching cells
	Constructing a regular CW45complex from its face lattice
	Cup products
	Intersection forms of 445manifolds
	Cohomology Rings
	Bockstein homomorphism
	Diagonal maps on associahedra and other polytopes
	CW maps and induced homomorphisms
	Constructing a simplicial complex from a regular CW45complex
	Some limitations to representing spaces as regular CW complexes
	Equivariant CW complexes
	Orbifolds and classifying spaces

	Cubical complexes & permutahedral complexes
	Cubical complexes
	Permutahedral complexes
	Constructing pure cubical and permutahedral complexes
	Computations in dynamical systems

	Covering spaces
	Cellular chains on the universal cover
	Spun knots and the Satoh tube map
	Cohomology with local coefficients
	Distinguishing between two non45homeomorphic homotopy equivalent spaces
	 Second homotopy groups of spaces with finite fundamental group
	Third homotopy groups of simply connected spaces
	Computing the second homotopy group of a space with infinite fundamental group

	Three Manifolds
	Dehn Surgery
	Connected Sums
	Dijkgraaf45Witten Invariant
	Cohomology rings
	Linking Form
	Determining the homeomorphism type of a lens space
	Surgeries on distinct knots can yield homeomorphic manifolds
	Finite fundamental groups of 345manifolds
	Poincare's cube manifolds
	There are at least 25 distinct cube manifolds
	There are at most 41 distinct cube manifolds
	There are precisely 18 orientable cube manifolds, of which 9 are spherical and 5 are euclidean
	Cube manifolds with boundary
	Octahedral manifolds
	Dodecahedral manifolds
	Prism manifolds
	Bipyramid manifolds

	Topological data analysis
	Persistent homology
	Mapper clustering
	Some tools for handling pure complexes
	Digital image analysis and persistent homology
	A second example of digital image segmentation
	A third example of digital image segmentation
	Naive example of digital image contour extraction
	Alternative approaches to computing persistent homology
	Knotted proteins
	Random simplicial complexes
	Computing homology of a clique complex (Vietoris45Rips complex)

	Group theoretic computations
	Third homotopy group of a supsension of an Eilenberg45MacLane space
	Representations of knot quandles
	Identifying knots
	Aspherical 245complexes
	Group presentations and homotopical syzygies
	Bogomolov multiplier
	Second group cohomology and group extensions
	Cocyclic groups: a convenient way of representing certain groups
	Effective group presentations
	Second group cohomology and cocyclic Hadamard matrices
	Third group cohomology and homotopy 245types

	Cohomology of groups (and Lie Algebras)
	Finite groups
	Nilpotent groups
	Crystallographic and Almost Crystallographic groups
	Arithmetic groups
	Artin groups
	Graphs of groups
	Lie algebra homology and free nilpotent groups
	Cohomology with coefficients in a module
	Cohomology as a functor of the first variable
	Cohomology as a functor of the second variable and the long exact coefficient sequence
	Transfer Homomorphism
	Cohomology rings of finite fundamental groups of 345manifolds
	Explicit cocycles
	Quillen's complex and the p45part of homology
	Homology of a Lie algebra
	Covers of Lie algebras

	Cohomology rings and Steenrod operations for groups
	Mod45p cohomology rings of finite groups
	Poincare Series for Mod45p cohomology
	Functorial ring homomorphisms in Mod45p cohomology
	Steenrod operations for finite 245groups
	Steenrod operations on the classifying space of a finite p45group
	Mod45p cohomology rings of crystallographic groups

	Bredon homology
	Davis complex
	Arithmetic groups
	Crystallographic groups

	Chain Complexes
	Chain complex of a simplicial complex and simplicial pair
	Chain complex of a cubical complex and cubical pair
	Chain complex of a regular CW45complex
	Chain Maps of simplicial and regular CW maps
	Constructions for chain complexes
	Filtered chain complexes
	Sparse chain complexes

	Resolutions
	Resolutions for small finite groups
	Resolutions for very small finite groups
	Resolutions for finite groups acting on orbit polytopes
	Minimal resolutions for finite p45groups over Fp
	Resolutions for abelian groups
	Resolutions for nilpotent groups
	Resolutions for groups with subnormal series
	Resolutions for groups with normal series
	Resolutions for polycyclic (almost) crystallographic groups
	Resolutions for Bieberbach groups
	Resolutions for arbitrary crystallographic groups
	Resolutions for crystallographic groups admitting cubical fundamental domain
	Resolutions for Coxeter groups
	Resolutions for Artin groups
	Resolutions for G=SL2(Z[1/m])
	Resolutions for selected groups G=SL2(O(Q(d))
	Resolutions for selected groups G=PSL2(O(Q(d))
	Resolutions for a few higher45dimensional arithmetic groups
	Resolutions for finite45index subgroups
	Simplifying resolutions
	Resolutions for graphs of groups and for groups with aspherical presentations
	Resolutions for FG45modules

	Simplicial groups
	Crossed modules
	Eilenberg45MacLane spaces as simplicial groups (not recommended)
	Eilenberg45MacLane spaces as simplicial free abelian groups (recommended)
	Elementary theoretical information on H(K(,n),Z)
	The first three non45trivial homotopy groups of spheres
	The first two non45trivial homotopy groups of the suspension and double suspension of a K(G,1)
	Postnikov towers and 5(S3)
	Towards 4(K(G,1))
	Enumerating homotopy 245types
	Identifying cat145groups of low order
	Identifying crossed modules of low order

	Congruence Subgroups, Cuspidal Cohomology and Hecke Operators
	Eichler45Shimura isomorphism
	Generators for SL2(Z) and the cubic tree
	One45dimensional fundamental domains and generators for congruence subgroups
	Cohomology of congruence subgroups
	Cuspidal cohomology
	Hecke operators on forms of weight 2
	Hecke operators on forms of weight 2
	Reconstructing modular forms from cohomology computations
	The Picard group
	Bianchi groups
	(Co)homology of Bianchi groups and SL2(O-d)
	Some other infinite matrix groups
	Ideals and finite quotient groups
	Congruence subgroups for ideals
	First homology

	Fundamental domains for Bianchi groups
	Bianchi groups
	Swan's description of a fundamental domain
	Computing a fundamental domain
	Examples
	Establishing correctness of a fundamental domain
	Computing a free resolution for SL2(O-d)
	Some sanity checks
	Group presentations
	Finite index subgroups
	Totally real quadratic fields / Hilbert modular group
	Calling Magma's Voronoi algorithm directly

	Parallel computation
	An embarassingly parallel computation
	A non45embarassingly parallel computation
	Parallel persistent homology

	Regular CW45structure on knots (written by Kelvin Killeen)
	Knot complements in the 345ball
	Tubular neighbourhoods
	Knotted surface complements in the 445ball

	References

