File: spacegroups.xml

package info (click to toggle)
gap-hapcryst 0.1.15-4
  • links: PTS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,088 kB
  • sloc: xml: 1,475; javascript: 155; makefile: 118; sh: 3
file content (298 lines) | stat: -rw-r--r-- 9,768 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
We introduce a way to calculate a sufficient part of an orbit and the
stabilizer of a point.


<Section><Heading>Orbit Stabilizer for Crystallographic Groups</Heading>

<ManSection>
    <Meth Name="OrbitStabilizerInUnitCubeOnRight"
          Arg="group, x"/>
  <Returns> 
   A record containing
   <List>
    <Item>
      <K>.stabilizer</K>: the stabilizer of <Arg>x</Arg>.
    </Item>
    <Item>
     <K>.orbit</K> set of vectors from <M>[0,1)^n</M> which
     represents the orbit. 
    </Item>
   </List>
  </Returns>
  <Description>
   Let <Arg>x</Arg> be a rational vector from <M>[0,1)^n</M> and
   <Arg>group</Arg> a space group in standard form.

   The function then calculates the part of the orbit which lies inside the
   cube <M>[0,1)^n</M> and the stabilizer of <Arg>x</Arg>. Observe that every
   element of the full orbit differs from a point in the returned orbit only
   by a pure translation.
  </Description>
</ManSection>

Note that the restriction to points from <M>[0,1)^n</M> makes sense if orbits
should be compared and the vector passed to
<C>OrbitStabilizerInUnitCubeOnRight</C> should be an element of the returned
orbit (part).

<Example>
   <![CDATA[
gap> S:=SpaceGroup(3,5);;
gap> OrbitStabilizerInUnitCubeOnRight(S,[1/2,0,9/11]);   
rec( orbit := [ [ 0, 1/2, 2/11 ], [ 1/2, 0, 9/11 ] ], 
  stabilizer := Group([ [ [ 1, 0, 0, 0 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 0 ], 
          [ 0, 0, 0, 1 ] ] ]) )
gap> OrbitStabilizerInUnitCubeOnRight(S,[0,0,0]);     
rec( orbit := [ [ 0, 0, 0 ] ], stabilizer := <matrix group with 2 generators> )
]]>
</Example>

If you are interested in other parts of the orbit, you can use <Ref
Meth="VectorModOne"/> for the base point and the functions <Ref
Meth="ShiftedOrbitPart"/>, <Ref Meth="TranslationsToOneCubeAroundCenter"/> and
<Ref Meth="TranslationsToBox"/> for the resulting orbit<Br/>

Suppose we want to calculate the part of the orbit of <C>[4/3,5/3,7/3]</C> in
the cube of sidelength <C>1</C> around this point:

<Example>
gap> S:=SpaceGroup(3,5);;
gap> p:=[4/3,5/3,7/3];;
gap> o:=OrbitStabilizerInUnitCubeOnRight(S,VectorModOne(p)).orbit;
[ [ 1/3, 2/3, 1/3 ], [ 1/3, 2/3, 2/3 ] ]
gap> box:=p+[[-1,1],[-1,1],[-1,1]];
[ [ 1/3, 8/3, 7/3 ], [ 1/3, 8/3, 7/3 ], [ 1/3, 8/3, 7/3 ] ]
gap> o2:=Concatenation(List(o,i->i+TranslationsToBox(i,box)));;
gap> # This is what we looked for. But it is somewhat large:
gap> Size(o2);
54
</Example>


<ManSection>
    <Meth Name="OrbitStabilizerInUnitCubeOnRightOnSets"
          Arg="group, set"/>
  <Returns>
   A record containing
   <List>
    <Item>
     <K>.stabilizer</K>:  the stabilizer of <Arg>set</Arg>.
    </Item>
    <Item>
     <K>.orbit</K> set of sets of vectors from <M>[0,1)^n</M> which
     represents the orbit. 
    </Item>
   </List>
  </Returns>

  <Description>
   Calculates orbit and stabilizer of a set of vectors. Just as <Ref
   Meth="OrbitStabilizerInUnitCubeOnRight"></Ref>, it needs input from
   <M>[0,1)^n</M>.

   The returned orbit part <K>.orbit</K> is a set of sets such that every
   element of <K>.orbit</K> has a non-trivial intersection with the
   cube <M>[0,1)^n</M>. In general, these sets will not lie inside
   <M>[0,1)^n</M> completely.
  </Description>  
</ManSection>

<Example>
gap> S:=SpaceGroup(3,5);;
gap> OrbitStabilizerInUnitCubeOnRightOnSets(S,[[0,0,0],[0,1/2,0]]);
rec( orbit := [ [ [ -1/2, 0, 0 ], [ 0, 0, 0 ] ], 
                [ [ 0, 0, 0 ], [ 0, 1/2, 0 ] ],
                [ [ 1/2, 0, 0 ], [ 1, 0, 0 ] ] ],
  stabilizer := Group([ [ [ 1, 0, 0, 0 ], [ 0, 1, 0, 0 ], 
                        [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ] ]) )
</Example>

<ManSection>
  <Meth Name="OrbitPartInVertexSetsStandardSpaceGroup"
	Arg="group vertexset allvertices"/>
<Returns>
 Set of subsets of <A>allvertices</A>.
</Returns>
  <Description>
    If <A>allvertices</A> is a set of vectors and <A>vertexset</A> is
    a subset thereof, then <Ref
    Meth="OrbitPartInVertexSetsStandardSpaceGroup"></Ref> returns
    that part of the orbit of <A>vertexset</A> which consists entirely of
    subsets of <A>allvertices</A>.
    Note that,unlike the other <C>OrbitStabilizer</C> algorithms, this does not
    require the input to lie in some particular part of the space.
  </Description>
</ManSection>

<Example>
gap> S:=SpaceGroup(3,5);;
gap> OrbitPartInVertexSetsStandardSpaceGroup(S,[[0,1,5],[1,2,0]],
> Set([[1,2,0],[2,3,1],[1,2,6],[1,1,0],[0,1,5],[3/5,7,12],[1/17,6,1/2]]));
[ [ [ 0, 1, 5 ], [ 1, 2, 0 ] ], [ [ 1, 2, 6 ], [ 2, 3, 1 ] ] ]
gap> OrbitPartInVertexSetsStandardSpaceGroup(S, [[1,2,0]],
> Set([[1,2,0],[2,3,1],[1,2,6],[1,1,0],[0,1,5],[3/5,7,12],[1/17,6,1/2]]));
[ [ [ 0, 1, 5 ] ], [ [ 1, 1, 0 ] ], [ [ 1, 2, 0 ] ], [ [ 1, 2, 6 ] ], [ [ 2, 3, 1 ] ] ]
</Example>


<ManSection>
  <Meth Name="OrbitPartInFacesStandardSpaceGroup"
	Arg="group vertexset faceset"/>
<Returns>
 Set of subsets of <A>faceset</A>.
</Returns>
  <Description>
    This calculates the orbit of a space group on sets restricted to a set of
faces.<Br/>
    If <A>faceset</A> is a set of sets of vectors and <A>vertexset</A> is
    an element of <A>faceset</A>, then <Ref
    Meth="OrbitPartInFacesStandardSpaceGroup"></Ref> returns
    that part of the orbit of <A>vertexset</A> which consists entirely of
    elements of <A>faceset</A>.<Br/>
    Note that,unlike the other <C>OrbitStabilizer</C> algorithms, this does not
    require the input to lie in some particular part of the space.
  </Description>
</ManSection>



<ManSection>
  <Meth Name="OrbitPartAndRepresentativesInFacesStandardSpaceGroup"
	Arg="group vertexset faceset"/>
<Returns>
 A set of face-matrix pairs .
</Returns>
  <Description>
    This is a slight variation of 
    <Ref Meth="OrbitPartInFacesStandardSpaceGroup"></Ref> 
    that also returns a representative for every orbit element.
  </Description>
</ManSection>

<Example>
gap> S:=SpaceGroup(3,5);;
gap> OrbitPartInVertexSetsStandardSpaceGroup(S,[[0,1,5],[1,2,0]],
> Set([[1,2,0],[2,3,1],[1,2,6],[1,1,0],[0,1,5],[3/5,7,12],[1/17,6,1/2]]));
[ [ [ 0, 1, 5 ], [ 1, 2, 0 ] ], [ [ 1, 2, 6 ], [ 2, 3, 1 ] ] ]
gap> OrbitPartInFacesStandardSpaceGroup(S,[[0,1,5],[1,2,0]],
> Set( [ [ [ 0, 1, 5 ], [ 1, 2, 0 ] ], [[1/17,6,1/2],[1,2,7]]]));
[ [ [ 0, 1, 5 ], [ 1, 2, 0 ] ] ]
gap> OrbitPartAndRepresentativesInFacesStandardSpaceGroup(S,[[0,1,5],[1,2,0]],
> Set( [ [ [ 0, 1, 5 ], [ 1, 2, 0 ] ], [[1/17,6,1/2],[1,2,7]]]));
[ [ [ [ 0, 1, 5 ], [ 1, 2, 0 ] ],
      [ [ 1, 0, 0, 0 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ] ] ]
</Example>



<ManSection>
  <Meth Name="StabilizerOnSetsStandardSpaceGroup"
        Arg="group set"/>
  <Returns>finite group of affine matrices (OnRight)</Returns>
  <Description>
   Given a set <A>set</A> of vectors and a space group <A>group</A> in
   standard form, this method calculates the stabilizer of that set in
   the full crystallographic group.<Br/>
  </Description>
</ManSection>

<Example> 
<![CDATA[
gap> G:=SpaceGroup(3,12);;
gap> v:=[ 0, 0,0 ];;
gap> s:=StabilizerOnSetsStandardSpaceGroup(G,[v]);
<matrix group with 2 generators>
gap> s2:=OrbitStabilizerInUnitCubeOnRight(G,v).stabilizer;
<matrix group with 2 generators>
gap> s2=s;
true
]]>
</Example>

<ManSection>
  <Meth Name="RepresentativeActionOnRightOnSets"
	Arg="group set imageset"/>
<Returns>
Affine matrix.
</Returns>
  <Description>
    Returns an element of the space group
    <M>S</M> which takes the set <A>set</A> to the set
    <A>imageset</A>. The group must be in standard form and act on the right.
  </Description>	  
</ManSection>

<Example>
gap> S:=SpaceGroup(3,5);;
gap> RepresentativeActionOnRightOnSets(G, [[0,0,0],[0,1/2,0]],
>        [ [ 0, 1/2, 0 ], [ 0, 1, 0 ] ]);
[ [ 0, -1, 0, 0 ], [ -1, 0, 0, 0 ], [ 0, 0, -1, 0 ], [ 0, 1, 0, 1 ] ]
</Example>


<Subsection><Heading>Getting other orbit parts</Heading>

<Package>HAPcryst</Package> does not calculate the full orbit but only the part
of it having coefficients between <M>-1/2</M> and <M>1/2</M>. The other parts
of the orbit can be calculated using the following functions.
</Subsection>

<ManSection>
    <Meth Name="ShiftedOrbitPart" Arg="point, orbitpart"/>
   <Returns>Set of vectors </Returns>
   <Description>
    Takes each vector in <A>orbitpart</A> to the cube unit cube centered in
    <A>point</A>.
   </Description>
</ManSection>

<Example>
gap> ShiftedOrbitPart([0,0,0],[[1/2,1/2,1/3],-[1/2,1/2,1/2],[19,3,1]]);
[ [ 1/2, 1/2, 1/3 ], [ 1/2, 1/2, 1/2 ], [ 0, 0, 0 ] ]
gap> ShiftedOrbitPart([1,1,1],[[1/2,1/2,1/2],-[1/2,1/2,1/2]]);
[ [ 3/2, 3/2, 3/2 ] ]
</Example>



<ManSection>
  <Meth Name="TranslationsToOneCubeAroundCenter" Arg="point, center"/>
  <Returns>List of integer vectors</Returns>
  <Description>
   This method returns the list of all integer vectors which translate
   <A>point</A> into the box <A>center</A><M>+[-1/2,1/2]^n</M>
  </Description>
</ManSection>

<Example>
gap> TranslationsToOneCubeAroundCenter([1/2,1/2,1/3],[0,0,0]);
[ [ 0, 0, 0 ], [ 0, -1, 0 ], [ -1, 0, 0 ], [ -1, -1, 0 ] ]
gap> TranslationsToOneCubeAroundCenter([1,0,1],[0,0,0]);
[ [ -1, 0, -1 ] ]
</Example>


<ManSection>
 <Meth Name="TranslationsToBox" Arg="point, box"/>
<!-- <Returns>List of integer vectors or the empty list</Returns>-->
 <Returns>An iterator of integer vectors or the empty iterator</Returns>
 <Description>
  Given a vector <M>v</M> and a list of pairs, this function returns the
  translation vectors (integer vectors) which take <M>v</M> into the box
  <A>box</A>.  The box <A>box</A> has to be given as a list of pairs.
 </Description>
</ManSection>

<Example>
gap> TranslationsToBox([0,0],[[1/2,2/3],[1/2,2/3]]);
[  ]
gap> TranslationsToBox([0,0],[[-3/2,1/2],[1,4/3]]);
[ [ -1, 1 ], [ 0, 1 ] ]
gap> TranslationsToBox([0,0],[[-3/2,1/2],[2,1]]);
Error, Box must not be empty called from
...
</Example>



</Section>