File: FaceLatticeAndBoundaryBieberbachGroup.gi

package info (click to toggle)
gap-hapcryst 0.1.15-4
  • links: PTS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,088 kB
  • sloc: xml: 1,475; javascript: 155; makefile: 118; sh: 3
file content (475 lines) | stat: -rw-r--r-- 17,832 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
#############################################################################
##
#W FaceLatticeAndBoundaryBieberbachGroup.gi 			 HAPcryst package		 Marc Roeder
##
#Y This program is free software; you can redistribute it and/or 
#Y modify it under the terms of the GNU General Public License 
#Y as published by the Free Software Foundation; either version 2 
#Y of the License, or (at your option) any later version. 
#Y 
#Y This program is distributed in the hope that it will be useful, 
#Y but WITHOUT ANY WARRANTY; without even the implied warranty of 
#Y MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 
#Y GNU General Public License for more details. 
#Y 
#Y You should have received a copy of the GNU General Public License 
#Y along with this program; if not, write to the Free Software 
#Y Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
##
InstallMethod(FaceLatticeAndBoundaryBieberbachGroup,
        [IsPolymakeObject,IsGroup],
        function(poly,group)  
    local   removeSomeFaces,  orbitDecompositionAsIndices,  
            changeHasseEntries,  reformatHD,  reformatHD_GroupRing,  
            calculateBoundary,  dim,  starttime,  vertices,  hasse,  
            codim,  initialfacenumber,  timetmp,  faceOrbits,  tmp,  
            k,  j,  groupring,  elts;
    
    removeSomeFaces:=function(upfaces,faces)
        local   upfaceentries,  faceindex,  face;
        upfaceentries:=AsSet(Flat(upfaces));
        for faceindex in [1..Size(faces)]
          do
            face:=faces[faceindex];
            if not (IsSubset(upfaceentries,face) and ForAny(upfaces,f->IsSubset(f,face)))
               then
                Unbind(faces[faceindex]);
            fi;
        od;
    end;
    
    
    
    orbitDecompositionAsIndices:=function(facelist,vertexlist,group)
        local   sortedvertices,  sortperm,  vertexpositionlookup,  
                todolist,  setfacelist,  returnlist,  thissize,  list,  
                orbit,  thisorbit,  fpos,  fpositions;

        if not ForAll(facelist,IsSet)
           then
            Error("face list must be a list of sets");
        fi;
        
        sortedvertices:=ShallowCopy(vertexlist);
        sortperm:=Sortex(sortedvertices);
        vertexpositionlookup:=Permuted([1..Size(sortedvertices)],sortperm);
        
        # convert all faces to vectors:
        todolist:=Set(facelist,i->Set(vertexlist{i}));
        if IsSet(facelist)
           then
            setfacelist:=facelist;
        else
            setfacelist:=AsSet(facelist);
        fi;
        returnlist:=[];

        while todolist<>[]
          do
            thissize:=Size(todolist[1]);
            list:=Filtered(todolist,o->Size(o)=thissize);
            SubtractSet(todolist,list);

            while list<>[]
              do
                orbit:=OrbitPartAndRepresentativesInFacesStandardSpaceGroup(group,list[1],list);
                thisorbit:=[];
                for fpos in [1..Size(orbit)]
                  do
                    fpositions:=Set(orbit[fpos][1],i->vertexpositionlookup[PositionSet(sortedvertices,i)]);
                    if fpositions in setfacelist
                       then
                        Add(thisorbit,[Position(facelist,fpositions),orbit[fpos][2]]);
                    fi;
                od;
                Add(returnlist,thisorbit);
                SubtractSet(list,List(orbit,i->i[1]));
            od;
        od;
        return returnlist;
    end;
    

    
        changeHasseEntries:=function(orbitsandreps,codim,vertices,hasse,group)
        local   genIndices,  faces,  nrupfaces,  upfaces,  
                newhasseentry,  idMat,  orbit,  gen,  genIndex,  
                upindices,  upface,  genvertices,  o,  oface,  entry;

        genIndices:=[];
        faces:=hasse[codim+1];
        nrupfaces:=Size(hasse[codim]);
        upfaces:=hasse[codim]{[1..nrupfaces]}[1];
        newhasseentry:=[];
        idMat:=IdentityMat(Size(hasse));
        for orbit in orbitsandreps 
          do
            gen:=faces[orbit[1][1]];
            Add(newhasseentry,[gen,[]]);
            genIndex:=Size(newhasseentry);
            upindices:=Filtered([1..nrupfaces],
                       i->IsSubset(upfaces[i],gen));
            #update boundary for faces containing new generator:
            for upface in upindices
              do
                AddSet(hasse[codim][upface][2],[genIndex,idMat]);
            od;
            
            #replace all faces in the generator-orbit with representatives:
            if Size(orbit)>1
               then
                genvertices:=Set(vertices{gen});
                for o in orbit{[2..Size(orbit)]}
                  do
                    oface:=faces[o[1]];
                    upindices:=Filtered([1..nrupfaces],
                                       i->IsSubset(upfaces[i],oface));
                    
                    entry:=[genIndex,o[2]];
                    
                    for upface in upindices
                      do
                        AddSet(hasse[codim][upface][2],entry); 
                    od;
                od;
            fi;
        od;
        return newhasseentry;
    end;

    
    
    
    #this replaces the matrices in the partial Hasse diagram with integers and
    # returns a list of matrices. This is done to comply with the structure
    # of a resolution in HAP.
    
    reformatHD:=function(hasse)
        local   elts,  faces,  face,  line;
        
        elts:=[];
        for faces in hasse 
          do
            for face in faces
              do
                for line in face[2]
                  do
                    Add(elts,line[2]);
                od;
            od;
        od;
#        if elts<>[]
#           then
#            elts:=Set(elts);
#            AddSet(elts,IdentityMat(Size(elts[1])));
#            for faces in hasse 
#              do
#                for face in faces
#                  do
#                    for line in face[2]
#                      do
#                        if not IsInt(line[2]) 
#                           then
#                            line[2]:=PositionSet(elts,line[2]);
#                        fi;
#                    od;
#                od;
#            od;
#        fi;

        return elts;
    end;
    
    
    ## This does not generate group ring elements. The group ring is
    ## generated in the resolution generator. So here, we only generate
    ## the coefficient-group element pairs.
    reformatHD_GroupRing:=function(groupring,hasse)
        local   zero,  family,  groupelements,  dim,  face,  term,  
                firstpos,  firstgen,  position,  firspos,  one,  
                onepos;
        zero:=Zero(groupring);
        family:=FamilyObj(zero);
        groupelements:=[];
        for dim in [2..Size(hasse)]
          do
            for face in hasse[dim]
              do
                for term in face[2]
                  do
                    if IsMatrix(term[2])
                       then
                        Add(groupelements,term[2]);
                        term[2]:=SignInt(term[1])*
                                 ElementOfMagmaRing(family,0,[1],[term[2]]);
                        term[1]:=AbsInt(term[1]);
                    fi;
                od;
                Sort(face[2]);
                firstpos:=1;
                firstgen:=face[2][firstpos][1];
                for position in [2..Size(face[2])]
                  do
                    if face[2][position][1]=firstgen
                       then
                        face[2][firstpos][2]:=face[2][firstpos][2]
                                              +face[2][position][2];
                        Unbind(face[2][position]);
                    else
                        firstpos:=position;
                        firstgen:=face[2][position][1];
                    fi;
                od;
                face[2]:=Compacted(face[2]);
                #                face[2]:=vector;
            od;
        od;
        groupelements:=Set(groupelements);
        one:=One(UnderlyingMagma(groupring));
        if groupelements[1]<>one
           then
            onepos:=Position(groupelements,one);
            groupelements[onepos]:=groupelements[1];
            groupelements[1]:=one;
        fi;
        return groupelements;
    end;
    
    
    
######################################################################
######################################################################

    
    
    
    ##################################################
    ## THIS IS JUST FOR BIEBERBACH GROUPS!
    ##
    ## here,  hasse has to be a list contining the generators of 
    ## dimension $k$ in the $k+1$st entry.
    ## each of the genertors already knows it's unoriented boundary.
    ##
    ## Signs are now assigned to the boundary to define a proper 
    ##  boundary homomorphism.
    ##
    
    calculateBoundary:=function(k,j,hasse)
        local   dirLess,  boundaryFromPair,  face,  facebound,  
                linesdone,  linestodo,  linesinpoint,  pointset,  
                idMat,  line,  linemat,  points,  point,  pos,  
                firstlinepos,  firstline,  linesforthisrun,  
                nextlines,  pointsdone,  linebound,  lineboundDirless,  
                dirlessline,  pointsign,  otherline,  otherlinepos,  
                otherlinebound,  orientedOtherLine;
        
        dirLess:=function(face)
            return [AbsInt(face[1]),face[2]];
        end;
        

        boundaryFromPair:=function(dim,pair,hasse)
            local   gen,  bound;
            gen:=hasse[dim+1][AbsInt(pair[1])];
            bound:=gen[2];
            return List(bound,b->[SignInt(pair[1])*b[1],b[2]*pair[2]]);
        end;

        
        face:=hasse[k+1][j];
        
        ################################
        ## face is of the form
        ## [ <verts>, <bound>]
        ## where 
        ##  <verts> is a list of integers enumerating the vertices of the 
        ## fundamental domain
        ## 
        ##  <bound> is a list of pairs [<downfaceindex>,<mapping>]
        ##   with an integer <downfaceindex> denoting the position of a face 
        ##   in the list hasse[k]. <mapping> is an affine matrix taking the ##
        ##   hasse[k][downfaceindex] to the desired face.                   ##
        ##                                                                  ##
        ##                                         ###########################
        
        
        if k=1    # First, define the boundary of 1-faces
           then
            facebound:=face[2];
            if facebound[1]>facebound[2]
               then
                linesdone:=[facebound[1],[-facebound[2][1],facebound[2][2]]];
            else
                linesdone:=[[-facebound[1][1],facebound[1][2]],facebound[2]];
            fi;
        else
            #
            #now the other faces. Note that in an n-face every 
            # n-2 face is contained in exactly 2 n-1 faces.
            ##############################

            linestodo:=Set(face[2],i->dirLess(i));
            #    # the edges which are generators for this module:
            #    GenLinesTodo:=Filtered(linestodo,i->i[2]=idMat);
            #    # edges which are images under generators for this module:
            #    ImLinesTodo:=Filtered(linestodo,i->i[2]<>idMat);  


            # As the group is Bieberbach, each point has a unique name.
            # generate a list to look up the incident lines for each point:
            linesinpoint:=[];
            pointset:=[];
            idMat:=IdentityMat(Size(hasse));
            for line in linestodo  
              # form: line=[<pos>,<mat>]
              # <pos>: generator position
              # <mat>: matrix taking generator to actual line.
              do
                linemat:=line[2];
                points:=List(hasse[k][line[1]][2],p->[AbsInt(p[1]),p[2]*linemat]);
                for point in points
                  #form of point as form of line but one dimension lower
                  do
                    if not point in pointset
                       then
                        Add(linesinpoint,[point,[line]]);
                    else
                        pos:=PositionSet(pointset,point);
                        AddSet(linesinpoint[pos][2],line);
                    fi;
                od;
                UniteSet(pointset,points);
                Sort(linesinpoint);
            od;
            
            firstlinepos:=PositionProperty(linestodo,i->i[2]=idMat);
            if firstlinepos=fail
               then
                firstline:=Remove(linestodo);
            else
                firstline:=linestodo[firstlinepos];
                Remove(linestodo,firstlinepos);
            fi;

            linesforthisrun:=[firstline];
            nextlines:=[];
            pointsdone:=[];
            linesdone:=[];

            repeat
                for line in linesforthisrun
                  do
                    linesdone:=Set(linesdone);
                    if not ([line[1],line[2]] in linesdone 
                            or [-line[1],line[2]] in linesdone)
                       then
                        Add(linesdone,line);
                    fi;
                    linebound:=boundaryFromPair(k-1,line,hasse);
                    lineboundDirless:=List(linebound,dirLess);
                    SortParallel(lineboundDirless,linebound);
                    
                    dirlessline:=dirLess(line);
                    points:=Difference(lineboundDirless,pointsdone);
                    
                    for point in points
                      do
                        Add(pointsdone,point);
                        pointsign:=SignInt(linebound[PositionSet(lineboundDirless,point)][1]);
                                           
                        otherline:=linesinpoint[PositionSet(pointset,point)];
                        otherline:=First(otherline[2],l->l<>dirlessline); 
                                                
                        if otherline in linestodo
                           then
                            RemoveSet(linestodo,otherline);
                            otherlinebound:=boundaryFromPair(k-1,otherline,hasse);
                            if pointsign=SignInt(First(otherlinebound,i->dirLess(i)=point)[1])
                            then 
                                orientedOtherLine:=[-otherline[1],otherline[2]];
                            else
                                orientedOtherLine:=otherline;
                            fi;
                            Add(linesdone,orientedOtherLine);
                            Add(nextlines,orientedOtherLine);
                        fi;
                    od;
                od;
                linesforthisrun:=ShallowCopy(nextlines);
                nextlines:=[];
            until linesforthisrun=[];
        fi;
        ## return new boundary entry:
        return Set(linesdone);
    end;

######################################################################
######################################################################

    if not IsStandardSpaceGroup(group) and IsAffineCrystGroupOnRight(group)
       then
        Error("<group> must be a StandardSpaceGroup acting on right");
    fi;
    dim:=DimensionOfMatrixGroup(group)-1;
    starttime:=Runtime();
    
    Polymake(poly,"VERTICES");
    vertices:=Polymake(poly,"VERTICES");
    MakeImmutable(vertices);
    if not dim=Size(vertices[1]-1)
       then
        Error("group and polyhedron do not match");
    fi;
    ##
    # Add initial (top) node:
    # Note that the face lattice is generated top- down. So the 
    # order has to be reversed to be ascending in dimension.
    ##
    hasse:=Concatenation([[[[1..Size(vertices)],[]]]],
                   #StructuralCopy(Polymake(poly,"FACE_LATTICE"){[1..dim]}));
                   StructuralCopy(PolymakeFaceLattice(poly){[1..dim]}));
    #moduleGenerators:=List([1..dim+1],i->[]);

    #moduleGenerators is a list of list. The i^{th} entry contains the 
    # positions of the module generators of dimension i in the Hasse diagram.
    #    moduleGenerators[1]:=[1];# so this means [hasse[1][1]];

    #Now the next nodes:
    for codim in [1..dim]
      do
        #At this stage, hasse[codim+1] is a list of faces.
        initialfacenumber:=Size(hasse[codim+1]);##########
        timetmp:=Runtime();########
        removeSomeFaces(List(hasse[codim],i->i[1]),hasse[codim+1]);
        hasse[codim+1]:=Set(hasse[codim+1]);
        faceOrbits:=orbitDecompositionAsIndices(hasse[codim+1],vertices,group);
        hasse[codim+1]:=changeHasseEntries(faceOrbits,codim,vertices,hasse,group);
        Info(InfoHAPcryst,3,codim,"(",Size(hasse[codim+1]),"/",initialfacenumber,"):",StringTime(Runtime()-timetmp));
    od;
    
    for codim in [1..Int((dim+1)/2)]
      do
        tmp:=hasse[codim];
        hasse[codim]:=hasse[dim+2-codim];
        hasse[dim+2-codim]:=tmp;
    od;
    Info(InfoHAPcryst,3,"Face lattice done (",StringTime(Runtime()-starttime),"). Calculating boundary ");
    for k in [1..dim]
      do
        for j in [1..Size(hasse[k+1])]
          do
            hasse[k+1][j][2]:=calculateBoundary(k,j,hasse);
        od;
    od;
    if fail in Flat(hasse)
       then
        Error("boundary generation failed");
    fi;

    Info(InfoHAPcryst,3,"done (",StringTime(Runtime()-timetmp),") Reformating...\c");
    #    elts:=reformatHD(hasse);
    groupring:=GroupRing(Integers,group);
    elts:=reformatHD_GroupRing(groupring,hasse);
#    elts:=[IdentityMat(dim+1)];
    return rec(hasse:=hasse,elts:=elts,groupring:=groupring);
end);