1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
|
#############################################################################
##
#W misc.gi HAPcryst package Marc Roeder
##
##
##
##
#Y Copyright (C) 2006 Marc Roeder
#Y
#Y This program is free software; you can redistribute it and/or
#Y modify it under the terms of the GNU General Public License
#Y as published by the Free Software Foundation; either version 2
#Y of the License, or (at your option) any later version.
#Y
#Y This program is distributed in the hope that it will be useful,
#Y but WITHOUT ANY WARRANTY; without even the implied warranty of
#Y MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
#Y GNU General Public License for more details.
#Y
#Y You should have received a copy of the GNU General Public License
#Y along with this program; if not, write to the Free Software
#Y Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
##
# there seems to be not method for rationals, even though SignInt
# did work in all of the cases I tried.
InstallMethod(SignRat, "for rationals",[IsRat],
function(rat)
if rat>0
then
return 1;
elif rat<0
then
return -1;
elif rat=0
then
return 0;
else
Error("cannot calculate sign of rational");
fi;
#return SignInt(rat*DenominatorRat(rat));
end);
##############################
InstallMethod(IsSquareMat,"for matrices",[IsMatrix],
function(mat)
return Size(Set(mat,Size))=1;
end);
##############################
InstallMethod(DimensionSquareMat,"for matrices",[IsMatrix],
function(mat)
if not IsSquareMat(mat)
then
Error("Matrix is not square");
else
return DimensionsMat(mat)[1];
fi;
end);
##############################
#
# Return the linear part of an affine matrix. This is sometimes called
# "rotational part" for crystallographic groups.
#
InstallMethod(LinearPartOfAffineMatOnRight,"for affine matrices on right",
[IsMatrix],
function(mat)
local dim;
if not IsAffineMatrixOnRight(mat)
then
Error("matrix must be an affine matrix acting from the right");
fi;
dim:=DimensionSquareMat(mat);
return mat{[1..dim-1]}{[1..dim-1]};
end);
##############################
#
# Calculate what a basis change of $n$ dimensional space does to an affine
# transformation represented by an affine $(n+1)\times(n+1)$ matrix.
#
InstallMethod(BasisChangeAffineMatOnRight,"for affine matrices on right",
[IsMatrix,IsMatrix],
function(transform,mat)
local dim, linpart, transpart, transformed;
dim:=DimensionSquareMat(mat);
if not dim>1 and IsAffineMatrixOnRight(mat)
then
Error("This matrix is not affine acting on right");
fi;
linpart:=LinearPartOfAffineMatOnRight(mat);
transpart:=mat[dim]{[1..dim-1]};
transformed:=IdentityMat(dim);
transformed{[1..dim-1]}{[1..dim-1]}:=linpart^transform;
transformed[dim]{[1..dim-1]}:=transpart*transform;
return transformed;
end);
##############################
#
# Return an affine matrix on right which represents the translation
# by <vector>
#
InstallMethod(TranslationOnRightFromVector,
[IsVector],
function(vector)
local dim, translation;
dim:=Size(vector)+1;
translation:=IdentityMat(dim);
translation[dim]{[1..dim-1]}:=ShallowCopy(vector);
return translation;
end);
##############################
#
#
InstallMethod(VectorModOne,
[IsVector],
function(vector)
return List(vector,FractionModOne);
end);
|