File: example.xml

package info (click to toggle)
gap-laguna 3.9.3%2Bds-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 392 kB
  • sloc: xml: 2,530; makefile: 20
file content (352 lines) | stat: -rw-r--r-- 9,990 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
<Chapter Label="Example">
<Heading>A sample calculation with &LAGUNA;</Heading>

Before explaining the theory behind the &LAGUNA; package we present 
a sample calculation to show the reader what &LAGUNA; is able 
to compute. We will carry out some calculations in the group algebra 
of the dihedral group of order 16 over the field of two elements. 
First we create this modular group algebra.

<Example>
<![CDATA[
gap> K := GF( 2 );
GF(2)
gap> G := DihedralGroup( 16 );
<pc group of size 16 with 4 generators>
gap> KG := GroupRing( K, G );
<algebra-with-one over GF(2), with 4 generators>
]]>
</Example>

The group algebra <Code>KG</Code> has some properties and attributes 
that are direct consequences of its definition. These can be checked 
very quickly.

<Example>
<![CDATA[
gap> IsGroupAlgebra( KG ); 
true
gap> IsPModularGroupAlgebra( KG );
true
gap> IsFModularGroupAlgebra( KG );
true
gap> UnderlyingGroup( KG );
<pc group of size 16 with 4 generators>
gap> LeftActingDomain( KG );
GF(2)
]]>
</Example>

Since <Code>KG</Code> is naturally a group algebra, the information provided by
<Code>LeftActingDomain</Code> can also be obtained using two other functions 
as follows.

<Example>
<![CDATA[
gap> UnderlyingRing( KG );
GF(2)
gap> UnderlyingField( KG );
GF(2)
]]>
</Example>

Let us construct a certain element of the group algebra.
For example, we take a minimal generating system of
the group <Code>G</Code> and find the corresponding elements in
<Code>KG</Code>.

<Example>
<![CDATA[
gap> MinimalGeneratingSet( G );
[ f1, f2 ]
gap> l := List( last, g -> g^Embedding( G, KG ) );
[ (Z(2)^0)*f1, (Z(2)^0)*f2 ]
]]>
</Example>

Now we construct an element <Code>x</Code> as follows.

<Example>
<![CDATA[
gap> a :=l[1]; b:=l[2]; # a and b are images of group generators in KG
(Z(2)^0)*f1
(Z(2)^0)*f2
gap> e := One( KG );    # for convenience, we denote the identity by e
(Z(2)^0)*<identity> of ...
gap> x := ( e + a ) * ( e + b ); 
(Z(2)^0)*<identity> of ...+(Z(2)^0)*f1+(Z(2)^0)*f2+(Z(2)^0)*f1*f2  
]]>
</Example>

We may investigate some of the basic properties of our element.

<Example>
<![CDATA[
gap> Support( x );
[ <identity> of ..., f1, f2, f1*f2 ]
gap> CoefficientsBySupport( x );
[ Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0 ]
gap> Length( x );
4
gap> TraceOfMagmaRingElement( x );
Z(2)^0
]]>
</Example>

We can also calculate the augmentation of <Code>x</Code>, 
which is defined as the sum of its coefficients.

<Example>
<![CDATA[
gap> Augmentation( x );
0*Z(2)
gap> IsUnit( KG, x );
false
]]>
</Example>

Since the  augmentation of <Code>x</Code> 
is zero, <Code>x</Code> is not invertible, but
<Code>1+x</Code> is. This is again very easy to check.

<Example>
<![CDATA[
gap> y := e + x;
(Z(2)^0)*f1+(Z(2)^0)*f2+(Z(2)^0)*f1*f2
gap> IsUnit( KG, y );
true  
]]>
</Example>

&LAGUNA; can calculate the inverse of <Code>1+x</Code> very quickly.

<Example>
<![CDATA[
gap> y^-1;
(Z(2)^0)*f1+(Z(2)^0)*f2+(Z(2)^0)*f3+(Z(2)^0)*f4+(Z(2)^0)*f1*f2+(Z(2)^
0)*f1*f3+(Z(2)^0)*f1*f4+(Z(2)^0)*f2*f4+(Z(2)^0)*f1*f2*f4+(Z(2)^0)*f2*f3*f4+(
Z(2)^0)*f1*f2*f3*f4
gap> y * y^-1;
(Z(2)^0)*<identity> of ... 
]]>
</Example>

We may also want to  check whether <Code>y</Code> is symmetric, that is, 
whether it is invariant under the classical involution; or whether it is
unitary, that is, whether the classical involution inverts <Code>y</Code>.
We find that <Code>y</Code> is neither.

<Example>
<![CDATA[
gap> Involution( y );
(Z(2)^0)*f1+(Z(2)^0)*f1*f2+(Z(2)^0)*f2*f3*f4
gap> y = Involution( y );
false
gap> IsSymmetric( y );
false
gap> y * Involution( y );
(Z(2)^0)*<identity> of ...+(Z(2)^0)*f2+(Z(2)^0)*f2*f3*f4  
gap> IsUnitary( y );
false
]]>
</Example>

Now we calculate some 
important ideals of <Code>KG</Code>. First we obtain the augmentation
ideal which is the set of elements with augmentation zero. In our case the 
augmentation ideal of <Code>KG</Code> coincides with the radical of 
<Code>KG</Code>, and this is taken into account in &LAGUNA;.

<Example>
<![CDATA[
gap> AugmentationIdeal( KG );
<two-sided ideal in <algebra-with-one over GF(2), with 4 generators>,
  (dimension 15)>
gap> RadicalOfAlgebra( KG ) = AugmentationIdeal( KG );
true
]]>
</Example>

It is well-known that the augmentation ideal of <Code>KG</Code> is a 
nilpotent ideal. Using Jennings' theory on dimension subgroups, we can 
obtain its nilpotency index without immediate calculation of its powers. 
This is implemented in &LAGUNA;.

<Example>
<![CDATA[
gap> AugmentationIdealNilpotencyIndex( KG );
9
]]>
</Example>

<Alt Only="LaTeX">\newpage</Alt>  

On the other hand, we can also calculate the powers of the augmentation ideal.

<Example>
<![CDATA[
gap> s := AugmentationIdealPowerSeries( KG );;
gap> s[2];
<algebra of dimension 13 over GF(2)>
gap> List(s,Dimension);
[ 15, 13, 11, 9, 7, 5, 3, 1, 0 ]
gap> Length(s);
9
]]>
</Example>

We see that the length of this list is exactly the nilpotency index
of the augmentation ideal of <Code>KG</Code>.
<P/>

Now let's work with the unit group of <Code>KG</Code>.
First we calculate the normalized unit group, which is the set of elements with
augmentation one. The generators of the unit group
are obtained as explained in Chapter <Ref Chap="Theory"/>. 
This can be computed very quickly, but further computation with this group 
is very inefficient.

<Example>
<![CDATA[
gap> V := NormalizedUnitGroup( KG );
<group of size 32768 with 15 generators>   
]]>
</Example>

In order to make our computation in the normalised unit group efficient,  
we calculate a power-commutator presentation for this group. 

<Example>
<![CDATA[
gap> W := PcNormalizedUnitGroup( KG );
<pc group of size 32768 with 15 generators>
]]>
</Example>

&GAP; has many efficient and practical algorithms for groups given by a
power-commutator presentation. In order to use these
algorithms to carry out computation in the normalised unit group, we need to
set up isomorphisms between the outputs of <Code>NormalizedUnitGroup</Code>
and <Code>PcNormalizedUnitGroup</Code>.
<P/>

The first isomorphism maps <Code>NormalizedUnitGroup(KG)</Code>
onto the polycyclically presented <Code>PcNormalizedUnitGroup(PC)</Code>.
Let's find the images of the elements of the group <Code>G</Code> 
in <Code>W</Code>. 

<Example>
<![CDATA[
gap> t := NaturalBijectionToPcNormalizedUnitGroup( KG );
MappingByFunction( <group of size 32768 with 15 generators>, <pc group of size\
 32768 with 15 generators>, function( x ) ... end )
gap> Image(t) = W;
true
gap> List( AsList( G ), x -> ( x^Embedding( G, KG ) )^t );
[ <identity> of ..., f1, f2, f4, f8, f1*f2, f1*f4, f1*f8, f2*f4, f2*f8, 
  f4*f8, f1*f2*f4, f1*f2*f8, f1*f4*f8, f2*f4*f8, f1*f2*f4*f8 ]
]]>
</Example>

<Alt Only="LaTeX">\newpage</Alt>  

The second isomorphism is the inverse of the first.

<Example>
<![CDATA[
gap> f := NaturalBijectionToNormalizedUnitGroup( KG );;
gap> Image(f) = V;
true
]]>
</Example>

For example, we may calculate the conjugacy classes of the group <Code>W</Code>, 
and then map their representatives back into the group algebra.

<Example>
<![CDATA[
gap> cc := ConjugacyClasses( W );;
gap> Length( cc );
848
gap> Representative( cc[ Length( cc ) ] );
f1*f2*f3*f6*f10*f13
gap> last^f;
(Z(2)^0)*<identity> of ...+(Z(2)^0)*f1*f2+(Z(2)^0)*f1*f3+(Z(2)^0)*f1*f4+(Z(2)^
0)*f2*f3+(Z(2)^0)*f1*f2*f3+(Z(2)^0)*f1*f3*f4
]]>
</Example>

Having a power-commutator presentation of the normalised unit group, we may 
use the full power of the &GAP; functionality for such groups. 
For example, the lower central series can be calculated very quickly.

<Example>
<![CDATA[
gap> LowerCentralSeries( W );
[ <pc group of size 32768 with 15 generators>, 
  Group([ f4*f8, f5*f7*f11*f13*f15, f6*f7*f9*f11*f13*f14*f15, f8, f9*f13, 
      f10*f11, f12*f13, f13*f15, f14*f15 ]), 
  Group([ f8, f9*f15, f10*f11, f12*f15, f13*f15, f14*f15 ]), 
  Group([ f12*f15, f13*f15, f14*f15 ]), Group([ <identity> of ... ]) ]
]]>
</Example>

<Alt Only="LaTeX">\newpage</Alt>  

Let's now compute, for instance, a minimal system of generators of the centre of
the normalised unit group. First we carry out the computation in the group 
which is determined by the power-commutator presentation, then we map the 
result into our group algebra.

<Example>
<![CDATA[
gap> C := Centre( W );;
gap> m := MinimalGeneratingSet( C );
[ f8*f13*f14*f15, f13*f14*f15, f8*f12*f14*f15, f15, f4*f6*f8*f13 ]
gap> List( m, g -> g^f );
[ (Z(2)^0)*<identity> of ...+(Z(2)^0)*f3+(Z(2)^0)*f1*f2+(Z(2)^0)*f3*f4+(Z(2)^
    0)*f1*f2*f3+(Z(2)^0)*f1*f2*f4+(Z(2)^0)*f1*f2*f3*f4, 
  (Z(2)^0)*f3+(Z(2)^0)*f4+(Z(2)^0)*f1*f2+(Z(2)^0)*f3*f4+(Z(2)^0)*f1*f2*f3+(
    Z(2)^0)*f1*f2*f4+(Z(2)^0)*f1*f2*f3*f4, (Z(2)^0)*<identity> of ...+(Z(2)^
    0)*f1+(Z(2)^0)*f3+(Z(2)^0)*f1*f2+(Z(2)^0)*f1*f3+(Z(2)^0)*f1*f4+(Z(2)^
    0)*f3*f4+(Z(2)^0)*f1*f2*f3+(Z(2)^0)*f1*f2*f4+(Z(2)^0)*f1*f3*f4+(Z(2)^
    0)*f1*f2*f3*f4, (Z(2)^0)*f1+(Z(2)^0)*f2+(Z(2)^0)*f3+(Z(2)^0)*f4+(Z(2)^
    0)*f1*f2+(Z(2)^0)*f1*f3+(Z(2)^0)*f1*f4+(Z(2)^0)*f2*f3+(Z(2)^0)*f2*f4+(
    Z(2)^0)*f3*f4+(Z(2)^0)*f1*f2*f3+(Z(2)^0)*f1*f2*f4+(Z(2)^0)*f1*f3*f4+(Z(2)^
    0)*f2*f3*f4+(Z(2)^0)*f1*f2*f3*f4, (Z(2)^0)*f1+(Z(2)^0)*f2+(Z(2)^0)*f3+(
    Z(2)^0)*f4+(Z(2)^0)*f1*f3+(Z(2)^0)*f1*f4+(Z(2)^0)*f3*f4+(Z(2)^
    0)*f1*f3*f4+(Z(2)^0)*f2*f3*f4 ]
]]>
</Example>

We  finish our example by calculating some properties of the  
Lie algebra associated with <Code>KG</Code>. 
This example needs no further explanation.

<Example>
<![CDATA[
gap> L := LieAlgebra( KG );
#I  LAGUNA package: Constructing Lie algebra ...
<Lie algebra of dimension 16 over GF(2)>
gap> D := LieDerivedSubalgebra( L );
#I  LAGUNA package: Computing the Lie derived subalgebra ...
<Lie algebra of dimension 9 over GF(2)>
gap> LC := LieCentre( L );
<Lie algebra of dimension 7 over GF(2)>
gap> LieLowerNilpotencyIndex( KG );
5
gap> LieUpperNilpotencyIndex( KG );
5
gap> IsLieAbelian( L );
false
gap> IsLieSolvable( L );
#I  LAGUNA package: Checking Lie solvability ...
true
gap> IsLieMetabelian( L );
false
gap> IsLieCentreByMetabelian( L );
true
]]>
</Example>

</Chapter>