1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
|
<Chapter Label="Example">
<Heading>A sample calculation with &LAGUNA;</Heading>
Before explaining the theory behind the &LAGUNA; package we present
a sample calculation to show the reader what &LAGUNA; is able
to compute. We will carry out some calculations in the group algebra
of the dihedral group of order 16 over the field of two elements.
First we create this modular group algebra.
<Example>
<![CDATA[
gap> K := GF( 2 );
GF(2)
gap> G := DihedralGroup( 16 );
<pc group of size 16 with 4 generators>
gap> KG := GroupRing( K, G );
<algebra-with-one over GF(2), with 4 generators>
]]>
</Example>
The group algebra <Code>KG</Code> has some properties and attributes
that are direct consequences of its definition. These can be checked
very quickly.
<Example>
<![CDATA[
gap> IsGroupAlgebra( KG );
true
gap> IsPModularGroupAlgebra( KG );
true
gap> IsFModularGroupAlgebra( KG );
true
gap> UnderlyingGroup( KG );
<pc group of size 16 with 4 generators>
gap> LeftActingDomain( KG );
GF(2)
]]>
</Example>
Since <Code>KG</Code> is naturally a group algebra, the information provided by
<Code>LeftActingDomain</Code> can also be obtained using two other functions
as follows.
<Example>
<![CDATA[
gap> UnderlyingRing( KG );
GF(2)
gap> UnderlyingField( KG );
GF(2)
]]>
</Example>
Let us construct a certain element of the group algebra.
For example, we take a minimal generating system of
the group <Code>G</Code> and find the corresponding elements in
<Code>KG</Code>.
<Example>
<![CDATA[
gap> MinimalGeneratingSet( G );
[ f1, f2 ]
gap> l := List( last, g -> g^Embedding( G, KG ) );
[ (Z(2)^0)*f1, (Z(2)^0)*f2 ]
]]>
</Example>
Now we construct an element <Code>x</Code> as follows.
<Example>
<![CDATA[
gap> a :=l[1]; b:=l[2]; # a and b are images of group generators in KG
(Z(2)^0)*f1
(Z(2)^0)*f2
gap> e := One( KG ); # for convenience, we denote the identity by e
(Z(2)^0)*<identity> of ...
gap> x := ( e + a ) * ( e + b );
(Z(2)^0)*<identity> of ...+(Z(2)^0)*f1+(Z(2)^0)*f2+(Z(2)^0)*f1*f2
]]>
</Example>
We may investigate some of the basic properties of our element.
<Example>
<![CDATA[
gap> Support( x );
[ <identity> of ..., f1, f2, f1*f2 ]
gap> CoefficientsBySupport( x );
[ Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0 ]
gap> Length( x );
4
gap> TraceOfMagmaRingElement( x );
Z(2)^0
]]>
</Example>
We can also calculate the augmentation of <Code>x</Code>,
which is defined as the sum of its coefficients.
<Example>
<![CDATA[
gap> Augmentation( x );
0*Z(2)
gap> IsUnit( KG, x );
false
]]>
</Example>
Since the augmentation of <Code>x</Code>
is zero, <Code>x</Code> is not invertible, but
<Code>1+x</Code> is. This is again very easy to check.
<Example>
<![CDATA[
gap> y := e + x;
(Z(2)^0)*f1+(Z(2)^0)*f2+(Z(2)^0)*f1*f2
gap> IsUnit( KG, y );
true
]]>
</Example>
&LAGUNA; can calculate the inverse of <Code>1+x</Code> very quickly.
<Example>
<![CDATA[
gap> y^-1;
(Z(2)^0)*f1+(Z(2)^0)*f2+(Z(2)^0)*f3+(Z(2)^0)*f4+(Z(2)^0)*f1*f2+(Z(2)^
0)*f1*f3+(Z(2)^0)*f1*f4+(Z(2)^0)*f2*f4+(Z(2)^0)*f1*f2*f4+(Z(2)^0)*f2*f3*f4+(
Z(2)^0)*f1*f2*f3*f4
gap> y * y^-1;
(Z(2)^0)*<identity> of ...
]]>
</Example>
We may also want to check whether <Code>y</Code> is symmetric, that is,
whether it is invariant under the classical involution; or whether it is
unitary, that is, whether the classical involution inverts <Code>y</Code>.
We find that <Code>y</Code> is neither.
<Example>
<![CDATA[
gap> Involution( y );
(Z(2)^0)*f1+(Z(2)^0)*f1*f2+(Z(2)^0)*f2*f3*f4
gap> y = Involution( y );
false
gap> IsSymmetric( y );
false
gap> y * Involution( y );
(Z(2)^0)*<identity> of ...+(Z(2)^0)*f2+(Z(2)^0)*f2*f3*f4
gap> IsUnitary( y );
false
]]>
</Example>
Now we calculate some
important ideals of <Code>KG</Code>. First we obtain the augmentation
ideal which is the set of elements with augmentation zero. In our case the
augmentation ideal of <Code>KG</Code> coincides with the radical of
<Code>KG</Code>, and this is taken into account in &LAGUNA;.
<Example>
<![CDATA[
gap> AugmentationIdeal( KG );
<two-sided ideal in <algebra-with-one over GF(2), with 4 generators>,
(dimension 15)>
gap> RadicalOfAlgebra( KG ) = AugmentationIdeal( KG );
true
]]>
</Example>
It is well-known that the augmentation ideal of <Code>KG</Code> is a
nilpotent ideal. Using Jennings' theory on dimension subgroups, we can
obtain its nilpotency index without immediate calculation of its powers.
This is implemented in &LAGUNA;.
<Example>
<![CDATA[
gap> AugmentationIdealNilpotencyIndex( KG );
9
]]>
</Example>
<Alt Only="LaTeX">\newpage</Alt>
On the other hand, we can also calculate the powers of the augmentation ideal.
<Example>
<![CDATA[
gap> s := AugmentationIdealPowerSeries( KG );;
gap> s[2];
<algebra of dimension 13 over GF(2)>
gap> List(s,Dimension);
[ 15, 13, 11, 9, 7, 5, 3, 1, 0 ]
gap> Length(s);
9
]]>
</Example>
We see that the length of this list is exactly the nilpotency index
of the augmentation ideal of <Code>KG</Code>.
<P/>
Now let's work with the unit group of <Code>KG</Code>.
First we calculate the normalized unit group, which is the set of elements with
augmentation one. The generators of the unit group
are obtained as explained in Chapter <Ref Chap="Theory"/>.
This can be computed very quickly, but further computation with this group
is very inefficient.
<Example>
<![CDATA[
gap> V := NormalizedUnitGroup( KG );
<group of size 32768 with 15 generators>
]]>
</Example>
In order to make our computation in the normalised unit group efficient,
we calculate a power-commutator presentation for this group.
<Example>
<![CDATA[
gap> W := PcNormalizedUnitGroup( KG );
<pc group of size 32768 with 15 generators>
]]>
</Example>
&GAP; has many efficient and practical algorithms for groups given by a
power-commutator presentation. In order to use these
algorithms to carry out computation in the normalised unit group, we need to
set up isomorphisms between the outputs of <Code>NormalizedUnitGroup</Code>
and <Code>PcNormalizedUnitGroup</Code>.
<P/>
The first isomorphism maps <Code>NormalizedUnitGroup(KG)</Code>
onto the polycyclically presented <Code>PcNormalizedUnitGroup(PC)</Code>.
Let's find the images of the elements of the group <Code>G</Code>
in <Code>W</Code>.
<Example>
<![CDATA[
gap> t := NaturalBijectionToPcNormalizedUnitGroup( KG );
MappingByFunction( <group of size 32768 with 15 generators>, <pc group of size\
32768 with 15 generators>, function( x ) ... end )
gap> Image(t) = W;
true
gap> List( AsList( G ), x -> ( x^Embedding( G, KG ) )^t );
[ <identity> of ..., f1, f2, f4, f8, f1*f2, f1*f4, f1*f8, f2*f4, f2*f8,
f4*f8, f1*f2*f4, f1*f2*f8, f1*f4*f8, f2*f4*f8, f1*f2*f4*f8 ]
]]>
</Example>
<Alt Only="LaTeX">\newpage</Alt>
The second isomorphism is the inverse of the first.
<Example>
<![CDATA[
gap> f := NaturalBijectionToNormalizedUnitGroup( KG );;
gap> Image(f) = V;
true
]]>
</Example>
For example, we may calculate the conjugacy classes of the group <Code>W</Code>,
and then map their representatives back into the group algebra.
<Example>
<![CDATA[
gap> cc := ConjugacyClasses( W );;
gap> Length( cc );
848
gap> Representative( cc[ Length( cc ) ] );
f1*f2*f3*f6*f10*f13
gap> last^f;
(Z(2)^0)*<identity> of ...+(Z(2)^0)*f1*f2+(Z(2)^0)*f1*f3+(Z(2)^0)*f1*f4+(Z(2)^
0)*f2*f3+(Z(2)^0)*f1*f2*f3+(Z(2)^0)*f1*f3*f4
]]>
</Example>
Having a power-commutator presentation of the normalised unit group, we may
use the full power of the &GAP; functionality for such groups.
For example, the lower central series can be calculated very quickly.
<Example>
<![CDATA[
gap> LowerCentralSeries( W );
[ <pc group of size 32768 with 15 generators>,
Group([ f4*f8, f5*f7*f11*f13*f15, f6*f7*f9*f11*f13*f14*f15, f8, f9*f13,
f10*f11, f12*f13, f13*f15, f14*f15 ]),
Group([ f8, f9*f15, f10*f11, f12*f15, f13*f15, f14*f15 ]),
Group([ f12*f15, f13*f15, f14*f15 ]), Group([ <identity> of ... ]) ]
]]>
</Example>
<Alt Only="LaTeX">\newpage</Alt>
Let's now compute, for instance, a minimal system of generators of the centre of
the normalised unit group. First we carry out the computation in the group
which is determined by the power-commutator presentation, then we map the
result into our group algebra.
<Example>
<![CDATA[
gap> C := Centre( W );;
gap> m := MinimalGeneratingSet( C );
[ f8*f13*f14*f15, f13*f14*f15, f8*f12*f14*f15, f15, f4*f6*f8*f13 ]
gap> List( m, g -> g^f );
[ (Z(2)^0)*<identity> of ...+(Z(2)^0)*f3+(Z(2)^0)*f1*f2+(Z(2)^0)*f3*f4+(Z(2)^
0)*f1*f2*f3+(Z(2)^0)*f1*f2*f4+(Z(2)^0)*f1*f2*f3*f4,
(Z(2)^0)*f3+(Z(2)^0)*f4+(Z(2)^0)*f1*f2+(Z(2)^0)*f3*f4+(Z(2)^0)*f1*f2*f3+(
Z(2)^0)*f1*f2*f4+(Z(2)^0)*f1*f2*f3*f4, (Z(2)^0)*<identity> of ...+(Z(2)^
0)*f1+(Z(2)^0)*f3+(Z(2)^0)*f1*f2+(Z(2)^0)*f1*f3+(Z(2)^0)*f1*f4+(Z(2)^
0)*f3*f4+(Z(2)^0)*f1*f2*f3+(Z(2)^0)*f1*f2*f4+(Z(2)^0)*f1*f3*f4+(Z(2)^
0)*f1*f2*f3*f4, (Z(2)^0)*f1+(Z(2)^0)*f2+(Z(2)^0)*f3+(Z(2)^0)*f4+(Z(2)^
0)*f1*f2+(Z(2)^0)*f1*f3+(Z(2)^0)*f1*f4+(Z(2)^0)*f2*f3+(Z(2)^0)*f2*f4+(
Z(2)^0)*f3*f4+(Z(2)^0)*f1*f2*f3+(Z(2)^0)*f1*f2*f4+(Z(2)^0)*f1*f3*f4+(Z(2)^
0)*f2*f3*f4+(Z(2)^0)*f1*f2*f3*f4, (Z(2)^0)*f1+(Z(2)^0)*f2+(Z(2)^0)*f3+(
Z(2)^0)*f4+(Z(2)^0)*f1*f3+(Z(2)^0)*f1*f4+(Z(2)^0)*f3*f4+(Z(2)^
0)*f1*f3*f4+(Z(2)^0)*f2*f3*f4 ]
]]>
</Example>
We finish our example by calculating some properties of the
Lie algebra associated with <Code>KG</Code>.
This example needs no further explanation.
<Example>
<![CDATA[
gap> L := LieAlgebra( KG );
#I LAGUNA package: Constructing Lie algebra ...
<Lie algebra of dimension 16 over GF(2)>
gap> D := LieDerivedSubalgebra( L );
#I LAGUNA package: Computing the Lie derived subalgebra ...
<Lie algebra of dimension 9 over GF(2)>
gap> LC := LieCentre( L );
<Lie algebra of dimension 7 over GF(2)>
gap> LieLowerNilpotencyIndex( KG );
5
gap> LieUpperNilpotencyIndex( KG );
5
gap> IsLieAbelian( L );
false
gap> IsLieSolvable( L );
#I LAGUNA package: Checking Lie solvability ...
true
gap> IsLieMetabelian( L );
false
gap> IsLieCentreByMetabelian( L );
true
]]>
</Example>
</Chapter>
|