1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238
|
<Chapter Label="Funct">
<Heading>&LAGUNA; functions</Heading>
<Section Label="GenSec">
<Heading>General functions for group algebras</Heading>
<ManSection>
<Prop Name="IsGroupAlgebra"
Arg="KG"
Comm="determines if a group ring is a group algebra" />
<Description>
A group ring over a field is called a group algebra.
For a group ring <A>KG</A>,
<C>IsGroupAlgebra</C> returns <K>true</K>,
if the underlying ring of <A>KG</A> is a field;
<K>false</K> is returned otherwise.
This property will be set automatically for every
group ring created by the function <C>GroupRing</C>.
</Description>
</ManSection>
<Example>
<![CDATA[
gap> IsGroupAlgebra( GroupRing( GF( 2 ), DihedralGroup( 16 ) ) );
true
gap> IsGroupAlgebra( GroupRing( Integers, DihedralGroup( 16 ) ) );
false
]]>
</Example>
<ManSection>
<Prop Name="IsFModularGroupAlgebra"
Arg="KG"
Comm="determines if group algebra is modular" />
<Description>
<Index>modular group algebra</Index>
A group algebra <M>KG</M> over a field <M>K</M> is
called <E>modular</E>, if the characteristic of the field
<M>K</M> divides the order of some element in <M>G</M>.
For a group algebra <A>KG</A> of a finite group
<M>G</M>, <C>IsModularGroupAlgebra</C> returns
<K>true</K>, if <A>KG</A> is modular
according to this definition;
<K>false</K> is returned otherwise.
This property will be set automatically for every
group algebra, created by the function
<C>GroupRing</C>.
</Description>
</ManSection>
<Example>
<![CDATA[
gap> IsFModularGroupAlgebra( GroupRing( GF( 2 ), SymmetricGroup( 6 ) ) );
true
gap> IsFModularGroupAlgebra( GroupRing( GF( 2 ), CyclicGroup( 3 ) ) );
false
]]>
</Example>
<ManSection>
<Prop Name="IsPModularGroupAlgebra"
Arg="KG"
Comm="determines if group algebra is p-modular" />
<Description>
A group algebra <M>KG</M> is said to be <M>p</M>-modular,
if <M>K</M> is a field of characteristic <M>p</M> and
<M>G</M> is a finite <M>p</M>-group for the same prime
<M>p</M>.
For a group algebra <A>KG</A> of a finite
group <M>G</M>, <C>IsPModularGroupAlgebra</C>
returns <K>true</K>, if <A>KG</A> is
<M>p</M>-modular according to this definition;
<K>false</K> is returned otherwise.
This property will be set automatically for every
group algebra, created by the function
<C>GroupRing</C>.
</Description>
</ManSection>
<Example>
<![CDATA[
gap> IsPModularGroupAlgebra( GroupRing( GF( 2 ), DihedralGroup( 16 ) ) );
true
gap> IsPModularGroupAlgebra( GroupRing( GF( 2 ), SymmetricGroup( 6 ) ) );
false
]]>
</Example>
<ManSection>
<Attr Name="UnderlyingGroup"
Label="of a group ring"
Arg="KG" />
<Returns>
the underlying group of a group ring
</Returns>
<Description>
This attribute stores the underlying group of a
group ring <A>KG</A>. In fact, it refers to
the attribute <C>UnderlyingMagma</C> which
returns the same result, and was introduced for group
rings for convenience, and for teaching purposes.
</Description>
</ManSection>
<Example>
<![CDATA[
gap> KG := GroupRing( GF ( 2 ), DihedralGroup( 16 ) );
<algebra-with-one over GF(2), with 4 generators>
gap> G := UnderlyingGroup( KG );
<pc group of size 16 with 4 generators>
]]>
</Example>
<ManSection>
<Attr Name="UnderlyingRing"
Arg="KG" />
<Returns>
the underlying ring of a group ring
</Returns>
<Description>
This attribute stores the underlying ring of a
group ring <A>KG</A>. In fact, it refers to
the attribute <C>LeftActingDomain</C> which
returns the same result, and was introduced for group
rings for convenience, and for teaching purposes.
</Description>
</ManSection>
<Example>
<![CDATA[
gap> KG := GroupRing( GF( 2 ), DihedralGroup( 16 ) );
<algebra-with-one over GF(2), with 4 generators>
gap> UnderlyingRing( KG );
GF(2)
]]>
</Example>
<ManSection>
<Attr Name="UnderlyingField"
Arg="KG" />
<Returns>
the underlying field of a group algebra
</Returns>
<Description>
This attribute stores the underlying field of a
group algebra <A>KG</A>. In fact, it refers to
the attribute <C>LeftActingDomain</C> which
returns the same result, and was introduced for group
algebras for convenience, and for teaching purposes.
</Description>
</ManSection>
<Example>
<![CDATA[
gap> KG := GroupRing( GF( 2 ), DihedralGroup( 16 ) );
<algebra-with-one over GF(2), with 4 generators>
gap> UnderlyingField( KG );
GF(2)
]]>
</Example>
</Section>
<!-- ######################################################### -->
<Section Label="ElemFunctions">
<Heading>Operations with group algebra elements</Heading>
<ManSection>
<Attr Name="Support"
Arg="x" />
<Returns>
support of x as a list of elements of the underlying group
</Returns>
<Description>
Returns the support of a group ring element <A>x</A>.
The support of a non-zero element
<M> x = \alpha_1 \cdot g_1 + \alpha_2 \cdot g_2 + \cdots + \alpha_k \cdot g_k</M>
of a group ring is the list of elements <M>g_i \in G</M> for which
the coefficient <M>\alpha_i</M> is non-zero. The support of the zero
element of a group ring is defined to be the empty list.
This method is also applicable to elements of magma rings.
</Description>
</ManSection>
<Example>
<![CDATA[
# First we create an element x to use in in the series of examples.
# We map the minimal generating system of the group G to its group algebra
# and denote their images as a and b
gap> G:=DihedralGroup(16);; KG:=GroupRing(GF(2),G);;
gap> l := List( MinimalGeneratingSet( G ), g -> g^Embedding( G, KG ) );
[ (Z(2)^0)*f1, (Z(2)^0)*f2 ]
gap> a := l[1]; b := l[2]; e := One( KG ); # we denote the identity by e
(Z(2)^0)*f1
(Z(2)^0)*f2
(Z(2)^0)*<identity> of ...
gap> x := ( e + a ) * ( e + b );
(Z(2)^0)*<identity> of ...+(Z(2)^0)*f1+(Z(2)^0)*f2+(Z(2)^0)*f1*f2
gap> Support( x );
[ <identity> of ..., f1, f2, f1*f2 ]
]]>
</Example>
<ManSection>
<Attr Name="CoefficientsBySupport"
Arg="x" />
<Returns>
coefficients of support elements as list of elements
of the underlying ring
</Returns>
<Description>
Returns a list that contains the coefficients
corresponding to the elements of <C>Support( x )</C>
in the same order as the elements appear in
<C>Support( x )</C>.
This method is also applicable to elements of magma rings.
</Description>
</ManSection>
<Example>
<![CDATA[
gap> x;
(Z(2)^0)*<identity> of ...+(Z(2)^0)*f1+(Z(2)^0)*f2+(Z(2)^0)*f1*f2
gap> CoefficientsBySupport( x );
[ Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0 ]
]]>
</Example>
<ManSection>
<Attr Name="TraceOfMagmaRingElement"
Arg="x"
Comm="returns the trace of a magma ring element" />
<Returns>
an element of the underlying ring
</Returns>
<Description>
Returns the trace of a group ring element
<A>x</A>.
By definition, the trace of an element
<M> x = \alpha_1 \cdot 1 + \alpha_2 \cdot g_2 + \cdots + \alpha_k \cdot g_k </M>
is equal to <M>\alpha_1</M>, that is, the coefficient of the
identity element in <M>G</M>. The trace of the zero
element is zero. This method is also applicable to
elements of magma rings.
</Description>
</ManSection>
<Example>
<![CDATA[
gap> x;
(Z(2)^0)*<identity> of ...+(Z(2)^0)*f1+(Z(2)^0)*f2+(Z(2)^0)*f1*f2
gap> TraceOfMagmaRingElement( x );
Z(2)^0
]]>
</Example>
<ManSection>
<Attr Name="Length"
Arg="x"
Comm="returns the length of a group ring element" />
<Description>
The length of an element of a group ring
<A>x</A> is defined as the number of elements in
its support.
This method is also applicable to elements of magma rings.
</Description>
</ManSection>
<Example>
<![CDATA[
gap> x;
(Z(2)^0)*<identity> of ...+(Z(2)^0)*f1+(Z(2)^0)*f2+(Z(2)^0)*f1*f2
gap> Length( x );
4
]]>
</Example>
<ManSection>
<Attr Name="Augmentation"
Arg="x"
Comm="returns the augmentation of a group ring element" />
<Returns>
the sum of coefficients of a group ring element
</Returns>
<Description>
The augmentation of a group ring element
<M> x = \alpha_1 \cdot g_1 + \alpha_2 \cdot g_2 + \cdots + \alpha_k \cdot g_k</M>
is the sum of its coefficients <M> \alpha_1 + \alpha_2 + \cdots + \alpha_k </M>.
The method is also applicable to elements of magma rings.
</Description>
</ManSection>
<Example>
<![CDATA[
gap> x;
(Z(2)^0)*<identity> of ...+(Z(2)^0)*f1+(Z(2)^0)*f2+(Z(2)^0)*f1*f2
gap> Augmentation( x );
0*Z(2)
]]>
</Example>
<ManSection>
<Oper Name="PartialAugmentations"
Arg="KG x"
Comm="returns partial augmentations of a group ring element" />
<Returns>
a list of partial augmentations and a list of conjugacy class
representatives
</Returns>
<Description>
<Index>partial augmentation</Index>
The partial augmentation of an element
<M> x = \alpha_1 \cdot g_1 + \alpha_2 \cdot g_2 + \cdots +
\alpha_k \cdot g_k</M>
of the group ring <M>KG</M>,
corresponding to the conjugacy class of an element <M>g</M> from
the underlying group <M>G</M> is the sum of coefficients
<M>\alpha_i</M> taken over all <M>g_i</M> such that <M>g_i</M>
is conjugated to <M>g</M>.
The function returns a list of two lists, the first one is a
list of partial augmentations, and the second is a list of
representatives of appropriate conjugacy classes of elements
of the group <M>G</M>.
</Description>
</ManSection>
<Example>
<![CDATA[
gap> y := x + a*b^2;
(Z(2)^0)*<identity> of ...+(Z(2)^0)*f1+(Z(2)^0)*f2+(Z(2)^0)*f1*f2+(Z(2)^
0)*f1*f3
gap> PartialAugmentations( KG, y );
[ [ Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0 ], [ <identity> of ..., f1, f2, f1*f2 ] ]
]]>
</Example>
<ManSection>
<Oper Name="Involution"
Arg="x [, [f], s ]"
Comm="Involution determined by two or one mappings or the classical involution" />
<Returns>
an element of a group ring
</Returns>
<Description>
Let <M>KG</M> be a group ring, <M>f</M> be a homomorphism from the group <M>G</M>
to the unit group of the ring <M>K</M>. Furthermore, let <M>s</M> be a mapping
<M>G \rightarrow G</M>, such that <M>s^2</M> is the identity mapping on <M>G</M>
and for every element <M>g \in G</M> <M>f(g*s(g))</M> equals <M>f(s(g)*g)</M> and
equals the identity element of the ring <M>K</M>. Then the involution
of <M>KG</M> induced by <M>f</M> and <M>s</M> is defined by
<M> \alpha_1 \cdot g_1 + \alpha_2 \cdot g_2 + \cdots + \alpha_k \cdot g_k
\mapsto
\alpha_1 \cdot f(g_1) \cdot s(g_1) + \alpha_2 \cdot f(g_2) \cdot s(g_2) + \cdots +
\alpha_k \cdot f(g_k) \cdot s(g_k)</M>.
<P/>
The method returns the image of <A>x</A> under the involution of <M>KG</M>
induced by <M>f</M> and <M>s</M>. If the mapping <M>f</M> is omitted, <M>f</M>
is assumed to map everything to the identity element of the ring <M>K</M>.
If both mappings are omitted, it returns the result of so-called classical
involution, induced by the mapping <M> x \mapsto x^{-1}</M>.
</Description>
</ManSection>
<Example>
<![CDATA[
gap> x;
(Z(2)^0)*<identity> of ...+(Z(2)^0)*f1+(Z(2)^0)*f2+(Z(2)^0)*f1*f2
gap> Involution( x );
(Z(2)^0)*<identity> of ...+(Z(2)^0)*f1+(Z(2)^0)*f1*f2+(Z(2)^0)*f2*f3*f4
gap> l := List( MinimalGeneratingSet( G ), g -> g^Embedding( G, KG ) );
[ (Z(2)^0)*f1, (Z(2)^0)*f2 ]
gap> List( l, Involution ); # check how involution acts on elements of G
[ (Z(2)^0)*f1, (Z(2)^0)*f2*f3*f4 ]
gap> List( l, g -> g^-1 );
[ (Z(2)^0)*f1, (Z(2)^0)*f2*f3*f4 ]
]]>
</Example>
<ManSection>
<Attr Name="IsSymmetric"
Arg="x"
Comm="checks whether an element is fixed under the classical involution" />
<Description>
<Index>symmetric element</Index>
An element of a group ring is called <E>symmetric</E> if it is fixed under the
classical involution. This property is checked here.
</Description>
</ManSection>
<Example>
<![CDATA[
gap> IsSymmetric( x );
false
gap> IsSymmetric( x * Involution( x ) );
true
]]>
</Example>
<ManSection>
<Attr Name="IsUnitary"
Arg="x"
Comm="checks whether an element is unitary w.r.t. classical involution" />
<Description>
<Index>unitary element</Index>
A unit of a group ring is called unitary if the classical involution
inverts it. This property is checked here.
</Description>
</ManSection>
<Example>
<![CDATA[
gap> IsUnitary(x);
false
gap> l:=List(MinimalGeneratingSet(G),g -> g^Embedding(G,KG));
[ (Z(2)^0)*f1, (Z(2)^0)*f2 ]
gap> List(l,IsUnitary); # check that elements of G are unitary
[ true, true ]
]]>
</Example>
<ManSection>
<Meth Name="IsUnit"
Arg="[ KG, ] x"
Comm="for a modular group algebra and its element or for a magma ring element" />
<Description>
This method improves a standard &GAP; functionality for modular group algebras.
<P/>
In the two-argument version the method returns <K>true</K> if
<A>x</A> is an invertible element of the modular
group algebra <A>KG</A> and <K>false</K>
otherwise. This can be done very quickly by checking
whether the augmentation of the element <A>x</A>
is non-zero.
<P/>
If the first argument is omitted, then &LAGUNA; constructs the
group <M>H</M> generated by the
support of <A>x</A>, and, if this group is
a finite <M>p</M>-group, then checks whether
the coefficients of <A>x</A> belong to a
field <M>F</M> of characteristic <M>p</M>. If this is the
case, then <C>IsUnit( FH, x )</C> is called;
otherwise, standard &GAP; method is used.
</Description>
</ManSection>
<Example>
<![CDATA[
gap> x;
(Z(2)^0)*<identity> of ...+(Z(2)^0)*f1+(Z(2)^0)*f2+(Z(2)^0)*f1*f2
gap> IsUnit( KG, x ); # clearly, is not a unit due to augmentation zero
false
gap> y := One( KG ) + x; # this should give a unit
(Z(2)^0)*f1+(Z(2)^0)*f2+(Z(2)^0)*f1*f2
gap> IsUnit( KG, y );
true
]]>
</Example>
<ManSection>
<Meth Name="InverseOp"
Arg="x"
Comm="for an element of the modular group algebra" />
<Returns>
the inverse element of an element of a group ring
</Returns>
<Description>
This method improves a standard &GAP; functionality for modular group algebras.
It calculates the inverse of a group algebra element.
The user can also invoke this function by typing
<C> x&circum;-1 </C>.
</Description>
</ManSection>
<Example>
<![CDATA[
gap> y;
(Z(2)^0)*f1+(Z(2)^0)*f2+(Z(2)^0)*f1*f2
gap> y^-1;
(Z(2)^0)*f1+(Z(2)^0)*f2+(Z(2)^0)*f3+(Z(2)^0)*f4+(Z(2)^0)*f1*f2+(Z(2)^
0)*f1*f3+(Z(2)^0)*f1*f4+(Z(2)^0)*f2*f4+(Z(2)^0)*f1*f2*f4+(Z(2)^0)*f2*f3*f4+(
Z(2)^0)*f1*f2*f3*f4
gap> y * y^-1;
(Z(2)^0)*<identity> of ...
]]>
</Example>
<ManSection>
<Oper Name="BicyclicUnitOfType1"
Arg="[KG,] a g"
Comm="for elements of a group, possibly embedded into group ring" />
<Oper Name="BicyclicUnitOfType2"
Arg="[KG,] a g"
Comm="for elements of a group, possibly embedded into group ring" />
<Returns>
an element of a group ring
</Returns>
<Description>
<Index>bicyclic unit</Index>
let <M>a</M> be an element of order <M>n</M> of a group
<M>G</M>. We put
<M>\alpha = 1 + a + a^2 + ... +a^{n-1} </M>.
Then <M>(a-1)*g*\alpha</M> and <M>\alpha*g*(a-1)</M>
are nilpotent of index two for any element <M>g</M> of the
group <M>G</M> not containing in the normalizer
<M>N_G(\langle a \rangle)</M>, and the units
<M>u_{a,g} = 1 + (a-1) * g * \alpha </M>
and
<M>v_{a,g} = 1 + \alpha * g * (a-1) </M>
are called <E>bicyclic units</E> of the 1st and 2nd type
respectively. Note that
<M>u_{a,g}</M> and <M>v_{a,g}</M> may coincide for some
<M>a</M> and <M>g</M>, but in general this does not hold.
In the three-argument version these methods construct
bicyclic units of both types when <A>a</A> and <A>g</A> are elements
of the underlying group <M>G</M> of a group ring <A>KG</A>.
The two-argument version accepts images of elements <A>a</A> and <A>g</A>
from the underlying group in the group ring <M>KG</M> obtained using the
mapping <C>Embedding( G, KG )</C>.
Note that it is not actually
checked that <M>g</M> is not contained in
<M>N_G(\langle a \rangle)</M>, because this is
verified in <Ref Attr="BicyclicUnitGroup" />.
</Description>
</ManSection>
<Example>
<![CDATA[
gap> G := SmallGroup(32,6);
<pc group of size 32 with 5 generators>
gap> KG := GroupRing( GF(2), G );
<algebra-with-one over GF(2), with 5 generators>
gap> g := MinimalGeneratingSet( G );
[ f1, f2 ]
gap> g[1] in Normalizer( G, Subgroup( G, [g[2]] ) );
false
gap> g[2] in Normalizer( G, Subgroup( G, [g[1]] ) );
false
gap> g := List( g, x -> x^Embedding( G, KG ) );
[ (Z(2)^0)*f1, (Z(2)^0)*f2 ]
gap> BicyclicUnitOfType1(g[1],g[2]) = BicyclicUnitOfType2(g[1],g[2]);
false
]]>
</Example>
<ManSection>
<Oper Name="BassCyclicUnit"
Arg="[ZG,] g k" />
<Returns>
an element of a group ring
</Returns>
<Description>
<Index>Bass cyclic unit</Index>
Let <A>g</A> be an element of order <M>n</M> of the group <M>G</M>,
and 1 < <A>k</A> < <M>n</M> be such that <A>k</A> and <M>n</M>
are coprime, then <A>k</A>^Phi(<M>n</M>) is congruent
to 1 modulo <M>n</M>. The unit
<Alt Only="LaTeX">
$$b(g,k)=\left(\sum_{j=0}^{k-1}g^j\right)^{\varphi(n)}+\frac{1-k^{\varphi (n)}}{n}\hat{g},$$
</Alt>
<Alt Not="LaTeX">
b(g,k)= ( \sum_{j=0}^{k-1} g^j )^Phi(n) + ( (1-k^Phi(n))/n ) * Hat(g),
</Alt>
where
<Alt Only="LaTeX">$\hat{g} = g + g^2 + ... + g^n$,</Alt>
<Alt Not="LaTeX">Hat(g) = g + g^2 + ... + g^n,</Alt>
is called a <E>Bass cyclic unit</E> of the integral group ring <A>ZG</A>.
<P/>
The three-argument version constructs the Bass cyclic unit <M>b(g,k)</M> for the
element <A>g</A> from the underlying group <M>G</M> of the group ring <A>ZG</A>.
The two-argument version accepts the image of <A>g</A> in the group ring <M>ZG</M>
obtained using the mapping <C>Embedding( G, KG )</C>.
<P/>
Remark that when <M>G</M> is a finite nilpotent group, the group
generated by the Bass cyclic units contain a subgroup of finite
index in the centre of the unit group of <A>ZG</A> <Cite Key="JePaSe96" />.
</Description>
</ManSection>
<Example>
<![CDATA[
gap> S := SymmetricGroup( 5 );;
gap> ZS := GroupRing( Integers, S );;
gap> f := Embedding( S, ZS );;
gap> BassCyclicUnit( ZS, (1,3,2,5,4) , 3 );
(1)*()+(-2)*(1,2,4,3,5)+(-2)*(1,3,2,5,4)+(3)*(1,4,5,2,3)+(1)*(1,5,3,4,2)
gap> BassCyclicUnit( (1,3,2,5,4)^f, 3 );
(1)*()+(-2)*(1,2,4,3,5)+(-2)*(1,3,2,5,4)+(3)*(1,4,5,2,3)+(1)*(1,5,3,4,2)
]]>
</Example>
</Section>
<!-- ######################################################### -->
<Section Label="Ideals">
<Heading>Important attributes of group algebras</Heading>
<ManSection>
<Attr Name="AugmentationHomomorphism"
Arg="KG"
Comm="returns the augmentation homomorphism" />
<Returns>
a homomorphism from a group ring to the underlying ring
</Returns>
<Description>
The mapping which maps an element of a group ring <M>KG</M>
to its augmentation is a homomorphism from <M>KG</M> onto the
ring <M>K</M>; see <Ref Attr="Augmentation" />.
This attribute stores this homomorphism for the group ring
<A>KG</A>.
<P/>
Please note that for calculation of the augmentation of an element
of a group ring the user is strongly recommended to use
<Ref Attr="Augmentation" /> which works much faster than
<C>AugmentationHomomorphism</C>.
</Description>
</ManSection>
<Example>
<![CDATA[
gap> F := GF( 2 ); G := SymmetricGroup( 3 ); FG := GroupRing( F, G );
GF(2)
Sym( [ 1 .. 3 ] )
<algebra-with-one over GF(2), with 2 generators>
gap> e := Embedding( G,FG );
<mapping: SymmetricGroup( [ 1 .. 3 ] ) -> AlgebraWithOne( GF(2), ... ) >
gap> x := (1,2)^e; y := (1,3)^e;
(Z(2)^0)*(1,2)
(Z(2)^0)*(1,3)
gap> a := AugmentationHomomorphism( FG );
[ (Z(2)^0)*(1,2,3), (Z(2)^0)*(1,2) ] -> [ Z(2)^0, Z(2)^0 ]
gap> x^a; y^a; ( x + y )^a; # this is slower
Z(2)^0
Z(2)^0
0*Z(2)
gap> Augmentation(x); Augmentation(y); Augmentation( x + y ); # this is faster
Z(2)^0
Z(2)^0
0*Z(2)
]]>
</Example>
<ManSection>
<Attr Name="AugmentationIdeal"
Arg="KG"
Comm="returns the augmentation ideal" />
<Returns>
an ideal of a group ring
</Returns>
<Description>
If <M>KG</M> is a group ring, then its augmentation
ideal <M>A</M> is generated by all elements of the form
<M>g-1</M>, where <M>g \in G</M> &bslash; &obrace; <M>1</M> &cbrace;.
The augmentation ideal
consists of all elements of <M>FG</M> with augmentation
<M>0</M>; see <Ref Meth="Augmentation" />.
This method changes a standard &GAP; functionality for modular group algebras and returns the augmentation
ideal of a modular group algebra <A>KG</A>.
</Description>
</ManSection>
<Example>
<![CDATA[
gap> KG := GroupRing( GF( 2 ), DihedralGroup( 16 ) );
<algebra-with-one over GF(2), with 4 generators>
gap> AugmentationIdeal( KG );
<two-sided ideal in <algebra-with-one over GF(2), with 4 generators>,
(dimension 15)>
]]>
</Example>
<ManSection>
<Attr Name="RadicalOfAlgebra"
Arg="KG"
Comm="for modular group algebra of finite p-group" />
<Returns>
an ideal of a group algebra
</Returns>
<Description>
This method improves a standard &GAP; functionality for modular group algebras of finite <M>p</M>-groups.
Since in this case the radical of the group algebra coincides with
its augmentation ideal, this method simply checks if
the algebra <A>KG</A> is a <M>p</M>-modular group algebra,
and, if yes, it returns the augmentation ideal;
otherwise, the standard &GAP; method will be used.
</Description>
</ManSection>
<Example>
<![CDATA[
gap> KG := GroupRing( GF( 2 ), DihedralGroup( 16 ) );
<algebra-with-one over GF(2), with 4 generators>
gap> RadicalOfAlgebra( KG );
<two-sided ideal in <algebra-with-one over GF(2), with 4 generators>,
(dimension 15)>
gap> RadicalOfAlgebra( KG ) = AugmentationIdeal( KG );
true
]]>
</Example>
<ManSection>
<Attr Name="WeightedBasis"
Arg="KG"
Comm="for modular group algebra of finite p-group" />
<Returns>
a record of two components: weighted basis elements and
their weights
</Returns>
<Description>
The argument <A>KG</A> must be a <M>p</M>-modular
group algebra.
<P/>
For a group algebra <M>KG</M>, let <M>A</M> denote the
augmentation ideal, and assume that <M>c</M> is the
smallest number such that <M>A^c=0</M>. Then a weighted
basis of <M>KG</M> is some basis <M> b_1, \ldots, b_n </M>
for the augmentation ideal <M>A</M>, for which there are
indices <M> i_1=1, \ldots, i_{c-1} </M> such that
<M> b_{i_k}, \ldots, b_n </M> is a basis for <M>A^k</M>.
The weight of an element <M>b_i</M> of a weighted basis
is the unique integer <M>w</M> such that
<M>b_i</M> belongs to <M>w</M>-th power of <M>A</M> but
does not belong to its <M>(w+1)</M>-th power.
<P/>
Note that this function actually constructs a basis for
the <E>augmentation ideal</E> of <A>KG</A> and not for
<A>KG</A> itself. Since the augmentation ideal has
co-dimension 1 in <C>KG</C>, a basis for <C>KG</C> can
be easily obtained by adjoining the identity element of
the group.
<P/>
The method returns a record whose basis entry is the basis
and the weights entry is a list of the corresponding weights
the of basis elements. See Section <Ref Sect="TheoryThird" />
for more details.
</Description>
</ManSection>
<Example>
<![CDATA[
gap> KG := GroupRing( GF( 2 ), ElementaryAbelianGroup( 4 ) );
<algebra-with-one over GF(2), with 2 generators>
gap> WeightedBasis( KG );
rec(
weightedBasis := [ (Z(2)^0)*<identity> of ...+(Z(2)^0)*f1,
(Z(2)^0)*<identity> of ...+(Z(2)^0)*f2,
(Z(2)^0)*<identity> of ...+(Z(2)^0)*f1+(Z(2)^0)*f2+(Z(2)^0)*f1*f2 ],
weights := [ 1, 1, 2 ] )
]]>
</Example>
<ManSection>
<Attr Name="AugmentationIdealPowerSeries"
Arg="KG"
Comm="for p-modular group algebra" />
<Returns>
a list of ideals of a group algebra
</Returns>
<Description>
The argument <A>KG</A> is a <M>p</M>-modular group
algebra. The method returns a list whose elements are
the terms of the augmentation ideal filtration of
<A>KG</A>, that is
<C>AugmentationIdealPowerSeries(A)[i]</C> is the
<M>i</M>-th power of the augmentation ideal of <A>KG</A>.
</Description>
</ManSection>
<Example>
<![CDATA[
gap> KG := GroupRing( GF( 2 ), DihedralGroup( 16 ) );
<algebra-with-one over GF(2), with 4 generators>
gap> s := AugmentationIdealPowerSeries( KG );;
gap> s[2];
<algebra of dimension 13 over GF(2)>
gap> List(s,Dimension);
[ 15, 13, 11, 9, 7, 5, 3, 1, 0 ]
gap> Length(s);
9
]]>
</Example>
<ManSection>
<Attr Name="AugmentationIdealNilpotencyIndex"
Arg="KG"
Comm="for p-modular group algebra" />
<Description>
For the <M>p</M>-modular group algebra <A>KG</A>
the method returns the smallest number <M>n</M> such
that <M>A^n=0</M>, where <M>A</M> is the
augmentation ideal of <A>KG</A>. This can be
done using Jenning's theory without the explicit
calculations of the powers of the augmentation ideal.
</Description>
</ManSection>
<Example>
<![CDATA[
gap> KG := GroupRing( GF( 2 ), DihedralGroup( 16 ) );
<algebra-with-one over GF(2), with 4 generators>
gap> AugmentationIdealNilpotencyIndex( KG );
9
]]>
</Example>
<ManSection>
<Attr Name="AugmentationIdealOfDerivedSubgroupNilpotencyIndex"
Arg="KG"
Comm="for p-modular group algebra" />
<Description>
For the <M>p</M>-modular group algebra <A>KG</A>
this attribute stores the nilpotency index of the
augmentation ideal of <M>KG'</M> where <M>G'</M> denotes the
derived subgroup of <M>G</M>.
</Description>
</ManSection>
<Example>
<![CDATA[
gap> KG := GroupRing( GF( 2 ), DihedralGroup( 16 ) );
<algebra-with-one over GF(2), with 4 generators>
gap> AugmentationIdealOfDerivedSubgroupNilpotencyIndex( KG );
4
gap> D := DerivedSubgroup( UnderlyingGroup( KG ) );
Group([ f3, f4 ])
gap> KD := GroupRing( GF( 2 ), D );
<algebra-with-one over GF(2), with 2 generators>
gap> AugmentationIdealNilpotencyIndex( KD );
4
]]>
</Example>
<ManSection>
<Oper Name="LeftIdealBySubgroup"
Arg="KG H"
Comm="returns the left or twosided ideal of a group ring" />
<Oper Name="RightIdealBySubgroup"
Arg="KG H"
Comm="returns the right or twosided ideal of a group ring" />
<Oper Name="TwoSidedIdalBySubgroup"
Arg="KG H"
Comm="returns the twosided ideal of a group ring" />
<Returns>
an ideal of a group ring
</Returns>
<Description>
Let <A>KG</A> be a group ring of a group <M>G</M> over the
ring <M>K</M>, and <A>H</A> be a subgroup of <M>G</M>.
Then the set <M>J_l(H)</M> of all elements of <A>KG</A>
of the form
<Display>
\sum_{h \in H} x_h(h-1)
</Display>
is the left ideal in <A>KG</A> generated by all elements
<M>h-1</M> with <M>h</M> in <M>H</M>. The right ideal
<M>J_r(H)</M> is defined analogously.
These operations are used to consrtuct such ideals,
taking into account the fact, that the ideal <M>J_l(H)</M>
is two-sided if and only if <A>H</A> is normal in <M>G</M>.
An attempt of constructing two-sided ideal for a non-normal
subgroup <A>H</A> will lead to an error message.
</Description>
</ManSection>
<Example>
<![CDATA[
gap> KG := GroupRing( GF(2), DihedralGroup(16) );
<algebra-with-one over GF(2), with 4 generators>
gap> G := DihedralGroup(16);
<pc group of size 16 with 4 generators>
gap> KG := GroupRing( GF(2), G );
<algebra-with-one over GF(2), with 4 generators>
gap> D := DerivedSubgroup( G );
Group([ f3, f4 ])
gap> LeftIdealBySubgroup( KG, D );
<two-sided ideal in <algebra-with-one over GF(2), with 4 generators>,
(dimension 12)>
gap> H := Subgroup( G, [ GeneratorsOfGroup(G)[1] ]);
Group([ f1 ])
gap> IsNormal( G, H );
false
gap> LeftIdealBySubgroup( KG, H );
<left ideal in <algebra-with-one over GF(2), with 4 generators>, (dimension 8
)>
]]>
</Example>
</Section>
<!-- ######################################################### -->
<Section Label="UnitGroup">
<Heading>Computations with the unit group</Heading>
<ManSection>
<Attr Name="NormalizedUnitGroup"
Arg="KG" />
<Returns>
a group generated by group algebra elements
</Returns>
<Description>
Determines the normalized unit group of a <M>p</M>-modular
group algebra <A>KG</A> over the field of <M>p</M> elements.
Returns the normalized unit group
as the group generated by certain elements of <A>KG</A>;
see Section <Ref Sect="TheoryThird" /> for more details.
<P/>
For efficient computations the user is recommended to use
<Ref Attr="PcNormalizedUnitGroup" />.
</Description>
</ManSection>
<Example>
<![CDATA[
gap> KG := GroupRing( GF( 2 ), DihedralGroup( 16 ) );
<algebra-with-one over GF(2), with 4 generators>
gap> V := NormalizedUnitGroup( KG );
<group of size 32768 with 15 generators>
gap> u := GeneratorsOfGroup( V )[4];
(Z(2)^0)*f3
]]>
</Example>
<ManSection>
<Attr Name="PcNormalizedUnitGroup"
Arg="KG" />
<Returns>
a group given by power-commutator presentation
</Returns>
<Description>
The argument <A>KG</A> is a <M>p</M>-modular group
algebra over the field of <M>p</M> elements.
<C>PcNormalizedUnitGroup</C> returns
the normalized unit group of <A>KG</A> given by a power-commutator
presentation. The generators in this polycyclic presentation
correspond to the weighted basis elements of <A>KG</A>.
For more details, see Section <Ref Sect="TheoryThird" />.
</Description>
</ManSection>
<Example>
<![CDATA[
gap> W := PcNormalizedUnitGroup( KG );
<pc group of size 32768 with 15 generators>
gap> w := GeneratorsOfGroup( W )[4];
f4
]]>
</Example>
<ManSection>
<Attr Name="NaturalBijectionToPcNormalizedUnitGroup"
Arg="KG" />
<Returns>
a homomorphism of groups
</Returns>
<Description>
The normalised unit group of a <M>p</M>-modular group
algebra <M>KG</M> over the field of <M>p</M> elements
can be computed using two methods,
namely <Ref Attr="NormalizedUnitGroup" /> and
<Ref Attr="PcNormalizedUnitGroup" />.
These two methods return two different objects, and they
can be used for different types of computations. The
elements of <C>NormalizedUnitGroup(KG)</C> are
represented in their natural group algebra representation,
and hence they can easily be identified in the group
algebra. However, the more quickly constructed
<C>NormalizedUnitGroup(KG)</C> is often not suitable
for further fast calculations. Hence one will have to use
<C>PcNormalizedUnitGroup(KG)</C> if one wants to
find some group theoretic properties of the normalized
unit group. This method returns the bijection from
<C>NormalizedUnitGroup(<A>KG</A>)</C> onto
<C>PcNormalizedUnitGroup(<A>KG</A>)</C>. This bijection can
be used to map the result of a computation in
<C>PcNormalizedUnitGroup(<A>KG</A>)</C> into <C>NormalizedUnitGroup(<A>KG</A>)</C>.
</Description>
</ManSection>
<Example>
<![CDATA[
gap> f := NaturalBijectionToPcNormalizedUnitGroup( KG );
MappingByFunction( <group of size 32768 with 15 generators>, <pc group of size\
32768 with 15 generators>, function( x ) ... end )
gap> u := GeneratorsOfGroup( V )[4];;
gap> u^f;
f4
gap> GeneratorsOfGroup( V )[4]^f = GeneratorsOfGroup( W )[4];
true
]]>
</Example>
<ManSection>
<Attr Name="NaturalBijectionToNormalizedUnitGroup"
Arg="KG" />
<Returns>
a homomorphism of groups
</Returns>
<Description>
For a <M>p</M>-modular group algebra <A>KG</A>
over the field of <M>p</M> elements
this function returns the inverse of the mapping
<Ref Attr="NaturalBijectionToPcNormalizedUnitGroup" />
</Description>
</ManSection>
<Example>
<![CDATA[
gap> t := NaturalBijectionToNormalizedUnitGroup(KG);;
gap> w := GeneratorsOfGroup(W)[4];;
gap> w^t;
(Z(2)^0)*f3
gap> GeneratorsOfGroup( W )[4]^t = GeneratorsOfGroup( V )[4];
true
]]>
</Example>
<ManSection>
<Oper Name="Embedding"
Label="from group to unit group"
Arg="H V" />
<Returns>
a homomorphism from an underlying group to a normalized unit group in pc-presentation
</Returns>
<Description>
Let <A>H</A> be a subgroup of a group <M>G</M> and
<A>V</A> be the normalized unit group of the group algebra
<M>KG</M> given by the power-commutator presentation
(see <Ref Attr="PcNormalizedUnitGroup"/>.
Then <C>Embedding( H, V )</C> returns the homomorphism from
<A>H</A> to <A>V</A>, which is the composition of
<C>Embedding( H, KG )</C> and
<C>NaturalBijectionToPcNormalizedUnitGroup( KG )</C>.
</Description>
</ManSection>
<Example>
<![CDATA[
gap> G := DihedralGroup( 16 );
<pc group of size 16 with 4 generators>
gap> KG := GroupRing( GF( 2 ), G );
<algebra-with-one over GF(2), with 4 generators>
gap> V:=PcNormalizedUnitGroup( KG );
<pc group of size 32768 with 15 generators>
gap> ucs := UpperCentralSeries( V );;
gap> f := Embedding( G, V );
[ f1, f2, f3, f4 ] -> [ f1, f2, f4, f8 ]
gap> G1 := Image( f, G );
Group([ f1, f2, f4, f8 ])
gap> H := Intersection( ucs[2], G1 ); # compute intersection in V(KG)
Group([ f4, f8, f4*f8 ])
gap> T:=PreImage( f, H ); # find its preimage in G
Group([ f3, f4, f3*f4 ])
gap> IdGroup( T );
[ 4, 1 ]
]]>
</Example>
<ManSection>
<Attr Name="Units"
Arg="KG" />
<Returns>
the unit group of a group ring
</Returns>
<Description>
This improves a standard &GAP; functionality for modular group
algebras of finite <M>p</M>-groups over the field of <M>p</M> elements.
It returns the unit group of <A>KG</A> as a direct product of
<C>Units(K)</C> and <C>NormalizedUnitGroup(KG)</C>, where the latter is
generated by certain elements of <A>KG</A>;
see Chapter <Ref Chap="Theory" /> for more details.
</Description>
</ManSection>
<Example>
<![CDATA[
gap> U := Units( KG );
#I LAGUNA package: Computing the unit group ...
<group of size 32768 with 15 generators>
gap> GeneratorsOfGroup( U )[5]; # now elements of U are already in KG
(Z(2)^0)*f1+(Z(2)^0)*f3+(Z(2)^0)*f1*f3
gap> FH := GroupRing( GF(3), SmallGroup(27,3) );
<algebra-with-one over GF(3), with 3 generators>
gap> T := Units( FH );
#I LAGUNA package: Computing the unit group ...
<group of size 5083731656658 with 27 generators>
gap> x := GeneratorsOfGroup( T )[1];
DirectProductElement( [ Z(3), (Z(3)^0)*<identity> of ... ] )
gap> x in FH;
false
gap> x[1] * x[2] in FH; # how to get the corresponding element of FH
true
]]>
</Example>
<ManSection>
<Attr Name="PcUnits"
Arg="KG" />
<Returns>
a group given by power-commutator presentation
</Returns>
<Description>
Returns the unit group of <A>KG</A> as a direct product of
<C>Units(K)</C> and <C>PcNormalizedUnitGroup(KG)</C>, where the latter
is a group given by a polycyclic presentation.
See Section <Ref Sect="TheoryFourth" /> for more details.
</Description>
</ManSection>
<Example>
<![CDATA[
gap> W := PcUnits( KG );
<pc group of size 32768 with 15 generators>
gap> GeneratorsOfGroup( W )[5];
f5
gap> FH := GroupRing( GF(3), SmallGroup(27,3) );
<algebra-with-one over GF(3), with 3 generators>
gap> T := PcUnits(FH);
<group of size 5083731656658 with 27 generators>
gap> x := GeneratorsOfGroup( T )[2];
DirectProductElement( [ Z(3)^0, f1 ] )
]]>
</Example>
<ManSection>
<Prop Name="IsGroupOfUnitsOfMagmaRing"
Arg="U" />
<Description>
This property will be automatically set
<K>true</K>, if <A>U</A> is a group generated by
some units of a magma ring, including
<C>Units(KG)</C> and <C>NormalizedUnitgroup(KG)</C>.
Otherwise this property will not be bound.
</Description>
</ManSection>
<Example>
<![CDATA[
gap> IsGroupOfUnitsOfMagmaRing( NormalizedUnitGroup( KG ) );
true
gap> IsGroupOfUnitsOfMagmaRing( Units( KG ) );
true
]]>
</Example>
<ManSection>
<Prop Name="IsUnitGroupOfGroupRing"
Arg="U"/>
<Description>
This property will be automatically set <K>true</K>,
if <A>U</A> is the unit group of a <M>p</M>-modular group
algebra, obtained either by <C>Units(KG)</C> or by
<C>PcUnits(KG)</C>. Otherwise this property will not be
bound.
</Description>
</ManSection>
<Example>
<![CDATA[
gap> IsUnitGroupOfGroupRing( Units( KG ) );
true
gap> IsUnitGroupOfGroupRing( PcUnits( KG ) );
true
]]>
</Example>
<ManSection>
<Prop Name="IsNormalizedUnitGroupOfGroupRing"
Arg="U" />
<Description>
This property will be automatically set <K>true</K>,
if <A>U</A> is the normalized unit group of a
<M>p</M>-modular group algebra, obtained either by
<C>NormalizedUnitGroup(KG)</C> or by
<C>PcNormalizedUnitGroup(KG)</C>.
Otherwise this property will not be bound.
</Description>
</ManSection>
<Example>
<![CDATA[
gap> IsNormalizedUnitGroupOfGroupRing( NormalizedUnitGroup( KG ) );
true
gap> IsNormalizedUnitGroupOfGroupRing( PcNormalizedUnitGroup( KG ) );
true
]]>
</Example>
<ManSection>
<Attr Name="UnderlyingGroupRing"
Arg="U" />
<Returns>
a group ring
</Returns>
<Description>
If <A>U</A> is the (normalized) unit group of a
<M>p</M>-modular group algebra <M>KG</M>
obtained using one of the
functions <C>Units(KG)</C>, <C>PcUnits(KG)</C>,
<C>NormalizedUnitGroup(KG)</C> or
<C>PcNormalizedUnitGroup(KG)</C>,
then the attribute <C>UnderlyingGroupRing</C> stores
<M>KG</M>.
</Description>
</ManSection>
<Example>
<![CDATA[
gap> UnderlyingGroupRing( Units( KG ) );
<algebra-with-one of dimension 16 over GF(2)>
gap> UnderlyingGroupRing( PcUnits( KG ) );
<algebra-with-one of dimension 16 over GF(2)>
gap> UnderlyingGroupRing( NormalizedUnitGroup( KG ) );
<algebra-with-one of dimension 16 over GF(2)>
gap> UnderlyingGroupRing( PcNormalizedUnitGroup( KG ) );
<algebra-with-one of dimension 16 over GF(2)>
]]>
</Example>
<ManSection>
<Attr Name="UnitarySubgroup"
Arg="U" />
<Returns>
the subgroup of the unit group
</Returns>
<Description>
Let <A>U</A> be the normalized unit group of a group ring
in either natural (see <Ref Attr="NormalizedUnitGroup"/>)
or power-commutator (see <Ref Attr="PcNormalizedUnitGroup"/>)
presentation.
The attribute stores the unitary subgroup of <A>U</A>,
generated by all unitary units of <A>U</A>
(see <Ref Attr="IsUnitary"/>).
The method is straightforward, so it is not recommended
to run it for large groups.
</Description>
</ManSection>
<Example>
<![CDATA[
gap> KG := GroupRing( GF( 2 ), DihedralGroup( 8 ) );
<algebra-with-one over GF(2), with 3 generators>
gap> U := NormalizedUnitGroup( KG );
<group of size 128 with 7 generators>
gap> HU := UnitarySubgroup( U );
<group with 5 generators>
gap> IdGroup( HU );
[ 64, 261 ]
gap> V := PcNormalizedUnitGroup( KG );
<pc group of size 128 with 7 generators>
gap> HV := UnitarySubgroup( V );
Group([ f1, f2, f5, f6, f7 ])
gap> IdGroup( HV );
[ 64, 261 ]
gap> Image(NaturalBijectionToPcNormalizedUnitGroup( KG ), HU ) = HV;
true
]]>
</Example>
<ManSection>
<Attr Name="BicyclicUnitGroup"
Arg="U" />
<Returns>
the subgroup of the unit group, generated by bicyclic units
</Returns>
<Description>
Let <A>U</A> be the normalized unit group of a group ring
in either natural (see <Ref Attr="NormalizedUnitGroup"/>)
or power-commutator (see <Ref Attr="PcNormalizedUnitGroup"/>)
presentation.
The attribute stores the subgroup of <A>U</A>,
generated by all bicyclic units <M>u_{g,h}</M> and
<M>v_{g,h}</M> (see <Ref Oper="BicyclicUnitOfType1"/> and
<Ref Oper="BicyclicUnitOfType2"/>),
where <M>g</M> and <M>h</M> run over the elements of the
underlying group, and <M>h</M> do not belongs to the
normalizer of <M> \langle g \rangle </M> in <M>G</M>.
</Description>
</ManSection>
<Example>
<![CDATA[
gap> KG := GroupRing( GF( 2 ), DihedralGroup( 8 ) );
<algebra-with-one over GF(2), with 3 generators>
gap> U := NormalizedUnitGroup( KG );
<group of size 128 with 7 generators>
gap> BU := BicyclicUnitGroup( U );
<group with 2 generators>
gap> IdGroup( BU );
[ 4, 2 ]
gap> V := PcNormalizedUnitGroup( KG );
<pc group of size 128 with 7 generators>
gap> BV := BicyclicUnitGroup( V );
Group([ f5*f6, f5*f7 ])
gap> IdGroup( BV );
[ 4, 2 ]
gap> Image( NaturalBijectionToPcNormalizedUnitGroup( KG ), BU ) = BV;
true
]]>
</Example>
<!--
<ManSection>
<Oper Name="AugmentationIdealPowerFactorGroup"
Arg="KG n" />
<Returns>
PcGroup
</Returns>
<Description>
????????????????????????????????????????
</Description>
</ManSection>
<Example>
<![CDATA[
]]>
</Example>
-->
<ManSection>
<Attr Name="GroupBases"
Arg="KG"
Comm="for a p-modular group algebra" />
<Returns>
a list of lists of group rings elements
</Returns>
<Description>
The subgroup <M>B</M> of the normalized unit group of the
group algebra <M>KG</M> is called a <E>group basis</E>, if
the elements of <M>B</M> are linearly independent over the
field <M>K</M> and <M> KB=KG </M>.
If <A>KG</A> is a <M>p</M>-modular group algebra, then
<C>GroupBases</C> returns a list of representatives of
the conjugacy classes of the group bases of the group
algebra <A>KG</A> in its normalised unit group.
</Description>
</ManSection>
<Example>
<![CDATA[
gap> D8 := DihedralGroup( 8 );
<pc group of size 8 with 3 generators>
gap> K := GF(2);
GF(2)
gap> KD8 := GroupRing( GF( 2 ), D8 );
<algebra-with-one over GF(2), with 3 generators>
gap> gb := GroupBases( KD8 );;
gap> Length( gb );
32
gap> Length( gb[1] );
8
gap> gb[1][1];
(Z(2)^0)*<identity> of ...
gap> ForAll(gb, b -> IdGroup(Group(b))=[8,3]);
true
]]>
</Example>
</Section>
<!-- ######################################################### -->
<Section Label="LieAlgebra">
<Heading>The Lie algebra of a group algebra</Heading>
<ManSection>
<Meth Name="LieAlgebraByDomain"
Arg="A" />
<Description>
This method takes a group algebra as its argument,
and constructs its associated Lie algebra in which the product
is the bracket operation: <M>[a,b]=ab-ba</M>.
It is recommended that the user never calls this method.
The Lie algebra for an associative algebra should normally
be created using <C>LieAlgebra( A )</C>.
When <C>LieAlgebra</C> is first invoked, it constructs the
Lie algebra for <A>A</A> using <C>LieAlgebraByDomain</C>.
After that it stores this Lie algebra and simply returns it
if <C>LieAlgebra</C> is called again.
</Description>
</ManSection>
<Example>
<![CDATA[
gap> G := SymmetricGroup(3);; FG := GroupRing( GF( 2 ), G );
<algebra-with-one over GF(2), with 2 generators>
gap> L := LieAlgebra( FG );
#I LAGUNA package: Constructing Lie algebra ...
<Lie algebra over GF(2)>
]]>
</Example>
<ManSection>
<Filt Name="IsLieAlgebraByAssociativeAlgebra"
Arg="L"
Type="Category" />
<Description>
This category signifies that the Lie algebra <A>L</A> was
constructed as the Lie algebra associated with an associative
algebra (this piece of information cannot be obtained later).
</Description>
</ManSection>
<Example>
<![CDATA[
gap> KG := GroupRing( GF(3), DihedralGroup(16) );
<algebra-with-one over GF(3), with 4 generators>
gap> L := LieAlgebra ( KG );
#I LAGUNA package: Constructing Lie algebra ...
<Lie algebra over GF(3)>
gap> IsLieAlgebraByAssociativeAlgebra( L );
true
]]>
</Example>
<ManSection>
<Attr Name="UnderlyingAssociativeAlgebra"
Arg="L" />
<Returns>
the underlying associative algebra of a Lie algebra
</Returns>
<Description>
If a Lie algebra <A>L</A> is constructed from an associative
algebra, then it remembers this underlying associative algebra as
one of its attributes.
</Description>
</ManSection>
<Example>
<![CDATA[
gap> KG := GroupRing( GF(2), DihedralGroup(16) );
<algebra-with-one over GF(2), with 4 generators>
gap> L := LieAlgebra ( KG );
#I LAGUNA package: Constructing Lie algebra ...
<Lie algebra over GF(2)>
gap> UnderlyingAssociativeAlgebra( L );
<algebra-with-one over GF(2), with 4 generators>
gap> last = KG;
true
]]>
</Example>
<ManSection>
<Attr Name="NaturalBijectionToLieAlgebra"
Arg="A" />
<Returns>
a mapping
</Returns>
<Description>
The natural linear bijection between the (isomorphic, but not
equal) underlying vector spaces of an associative algebra
<A>A</A> and its associated Lie algebra is stored as an
attribute of <A>A</A>. Note that this is a vector space
isomorphism between two algebras, but not an algebra
isomorphism.
</Description>
</ManSection>
<Example>
<![CDATA[
gap> F := GF( 2 ); G := SymmetricGroup( 3 ); FG := GroupRing( F, G );
GF(2)
Sym( [ 1 .. 3 ] )
<algebra-with-one over GF(2), with 2 generators>
gap> t := NaturalBijectionToLieAlgebra( FG );;
#I LAGUNA package: Constructing Lie algebra ...
gap> a := Random( FG );
(Z(2)^0)*()+(Z(2)^0)*(2,3)+(Z(2)^0)*(1,2)+(Z(2)^0)*(1,2,3)
gap> a * a; # product in the associative algebra
(Z(2)^0)*()+(Z(2)^0)*(2,3)+(Z(2)^0)*(1,2)+(Z(2)^0)*(1,2,3)
gap> b := a^t;
LieObject( (Z(2)^0)*()+(Z(2)^0)*(2,3)+(Z(2)^0)*(1,2)+(Z(2)^0)*(1,2,3) )
gap> b * b; # product in the Lie algebra (commutator) - must be zero!
LieObject( <zero> of ... )
]]>
</Example>
<ManSection>
<Attr Name="NaturalBijectionToAssociativeAlgebra"
Arg="L" />
<Description>
This is the inverse of the previous linear bijection,
stored as an attribute of the Lie algebra <A>L</A>.
</Description>
</ManSection>
<Example>
<![CDATA[
gap> G := SymmetricGroup(3); FG := GroupRing( GF( 2 ), G );
Sym( [ 1 .. 3 ] )
<algebra-with-one over GF(2), with 2 generators>
gap> L := LieAlgebra( FG );
#I LAGUNA package: Constructing Lie algebra ...
<Lie algebra over GF(2)>
gap> s := NaturalBijectionToAssociativeAlgebra( L );;
gap> InverseGeneralMapping( s ) = NaturalBijectionToLieAlgebra( FG );
true
]]>
</Example>
<ManSection>
<Prop Name="IsLieAlgebraOfGroupRing"
Arg="L" />
<Description>
If a Lie algebra <A>L</A> is constructed from an associative
algebra which happens to be in fact a group ring, it has
many nice properties that can be used for fast algorithms,
so this information is stored as a property.
</Description>
</ManSection>
<Example>
<![CDATA[
gap> F := GF( 2 ); G := SymmetricGroup( 3 ); FG := GroupRing( F, G );
GF(2)
Sym( [ 1 .. 3 ] )
<algebra-with-one over GF(2), with 2 generators>
gap> L := LieAlgebra( FG );
#I LAGUNA package: Constructing Lie algebra ...
<Lie algebra over GF(2)>
gap> IsLieAlgebraOfGroupRing( L );
true
]]>
</Example>
<ManSection>
<Attr Name="UnderlyingGroup"
Label="of Lie algebra of a group ring"
Arg="L" />
<Returns>
the underlying group
</Returns>
<Description>
The underlying group of a Lie algebra <A>L</A> that is
constructed from a group ring is defined as the underlying
group of this group ring; see <Ref Attr="UnderlyingGroup"
Label="of a group ring" />.
</Description>
</ManSection>
<Example>
<![CDATA[
gap> F := GF( 2 ); G := SymmetricGroup( 3 ); FG := GroupRing( F, G );
GF(2)
Sym( [ 1 .. 3 ] )
<algebra-with-one over GF(2), with 2 generators>
gap> L := LieAlgebra( FG );
#I LAGUNA package: Constructing Lie algebra ...
<Lie algebra over GF(2)>
gap> UnderlyingGroup( L );
Sym( [ 1 .. 3 ] )
gap> LeftActingDomain( L );
GF(2)
]]>
</Example>
<ManSection>
<Oper Name="Embedding"
Label="from group to Lie algebra"
Arg="U L" />
<Returns>
a mapping, which is a composition of two mappings
</Returns>
<Description>
Let <M>FG</M> be a group ring, let <A>U</A> be a submagma
of <M>G</M>, and let <A>L</A> be the Lie algebra
associated with <M>FG</M>. Then <C>Embedding(<A>U</A>, <A>L</A> )</C>
returns the obvious mapping from <A>U</A> to <A>L</A>
(as the composition of the mappings
<C>Embedding( <A>U</A>, FG )</C> and
<C>NaturalBijectionToLieAlgebra( FG )</C>).
</Description>
</ManSection>
<Example>
<![CDATA[
gap> F := GF( 2 ); G := SymmetricGroup( 3 ); FG := GroupRing( F, G );
GF(2)
Sym( [ 1 .. 3 ] )
<algebra-with-one over GF(2), with 2 generators>
gap> L := LieAlgebra( FG );
#I LAGUNA package: Constructing Lie algebra ...
<Lie algebra over GF(2)>
gap> f := Embedding( G, L );;
gap> (1,2)^f + (1,3)^f;
LieObject( (Z(2)^0)*(1,2)+(Z(2)^0)*(1,3) )
]]>
</Example>
<ManSection>
<Meth Name="LieCentre"
Arg="L" />
<Returns>
a Lie algebra
</Returns>
<Description>
The centre of the Lie algebra associated with a group ring
corresponds to the centre of the underlying group ring,
and it can be calculated very fast by considering the
conjugacy classes of the group. This method returns the
centre of <A>L</A> using this idea.
</Description>
</ManSection>
<Example>
<![CDATA[
gap> G := SmallGroup( 256, 400 ); FG := GroupRing( GF( 2 ), G );
<pc group of size 256 with 8 generators>
<algebra-with-one over GF(2), with 8 generators>
gap> L := LieAlgebra( FG );
#I LAGUNA package: Constructing Lie algebra ...
<Lie algebra over GF(2)>
gap> C := LieCentre( L );
<Lie algebra of dimension 28 over GF(2)>
gap> D := LieDerivedSubalgebra( L );
#I LAGUNA package: Computing the Lie derived subalgebra ...
<Lie algebra of dimension 228 over GF(2)>
gap> c := Dimension( C ); d := Dimension( D ); l := Dimension( L );
28
228
256
gap> c + d = l; # This is always the case for Lie algebras of group algebras!
true
]]>
</Example>
<ManSection>
<Meth Name="LieDerivedSubalgebra"
Arg="L" />
<Returns>
a Lie algebra
</Returns>
<Description>
If <A>L</A> is the Lie algebra associated with a group ring,
then this method returns the Lie derived subalgebra of
<A>L</A>. This can be done very fast using the conjugacy classes
of the underlying group.
</Description>
</ManSection>
<Example>
<![CDATA[
gap> G := SmallGroup( 256, 400 ); FG := GroupRing( GF( 2 ), G );
<pc group of size 256 with 8 generators>
<algebra-with-one over GF(2), with 8 generators>
gap> L := LieAlgebra( FG );
#I LAGUNA package: Constructing Lie algebra ...
<Lie algebra over GF(2)>
gap> C := LieCentre( L );
<Lie algebra of dimension 28 over GF(2)>
gap> D := LieDerivedSubalgebra( L );
#I LAGUNA package: Computing the Lie derived subalgebra ...
<Lie algebra of dimension 228 over GF(2)>
gap> l := Dimension( L ); c := Dimension( C ); d := Dimension( D );
256
28
228
gap> c + d = l; # This is always the case for Lie algebras of group algebras!
true
]]>
</Example>
<ManSection>
<Meth Name="IsLieAbelian"
Arg="L" />
<Description>
The Lie algebra <A>L</A> of an associative algebra <M>A</M>
is Lie abelian, if and only if <M>A</M> is abelian, so this
method refers to <C>IsAbelian( A )</C>.
</Description>
</ManSection>
<Example>
<![CDATA[
gap> G := SymmetricGroup( 3 ); FG := GroupRing( GF( 2 ), G);
Sym( [ 1 .. 3 ] )
<algebra-with-one over GF(2), with 2 generators>
gap> L := LieAlgebra( FG );
#I LAGUNA package: Constructing Lie algebra ...
<Lie algebra over GF(2)>
gap> IsAbelian( G );
false
gap> IsAbelian( L ); # This command should not be used for Lie algebras!
true
gap> IsLieAbelian( L ); # Instead, IsLieAbelian is the correct command.
false
]]>
</Example>
<ManSection>
<Meth Name="IsLieSolvable"
Arg="L" />
<Description>
In <Cite Key="PPS73" /> Passi, Passman, and Sehgal have
classified all groups <M>G</M> such that the Lie algebra associated
with the group ring is solvable.
This method uses their classification, making it
considerably faster than the more elementary method
which just calculates Lie commutators.
</Description>
</ManSection>
<Example>
<![CDATA[
gap> G := SmallGroup( 256, 400 ); FG := GroupRing( GF( 2 ), G );
<pc group of size 256 with 8 generators>
<algebra-with-one over GF(2), with 8 generators>
gap> L := LieAlgebra( FG );
#I LAGUNA package: Constructing Lie algebra ...
<Lie algebra over GF(2)>
gap> IsLieSolvable( L ); # This is very fast.
#I LAGUNA package: Checking Lie solvability ...
true
gap> List( LieDerivedSeries( L ), Dimension ); # This is very slow.
#I LAGUNA package: Computing the Lie derived subalgebra ...
[ 256, 228, 189, 71, 0 ]
]]>
</Example>
<ManSection>
<Meth Name="IsLieNilpotent"
Arg="L" />
<Description>
In <Cite Key="PPS73" /> Passi, Passman, and Sehgal have classified
all groups <M>G</M> such that the Lie algebra associated
with the group ring is Lie nilpotent. This method
uses their classification, making it considerably faster
than the more elementary method which just calculates
Lie commutators.
</Description>
</ManSection>
<Example>
<![CDATA[
gap> G := SmallGroup( 256, 400 ); FG := GroupRing( GF( 2 ), G );
<pc group of size 256 with 8 generators>
<algebra-with-one over GF(2), with 8 generators>
gap> L := LieAlgebra( FG );
#I LAGUNA package: Constructing Lie algebra ...
<Lie algebra over GF(2)>
gap> IsLieNilpotent( L ); # This is very fast.
#I LAGUNA package: Checking Lie nilpotency ...
true
gap> List( LieLowerCentralSeries( L ), Dimension ); # This is very slow.
#I LAGUNA package: Computing the Lie derived subalgebra ...
[ 256, 228, 222, 210, 191, 167, 138, 107, 76, 54, 29, 15, 6, 0 ]
]]>
</Example>
<ManSection>
<Prop Name="IsLieMetabelian"
Arg="L" />
<Description>
In <Cite Key="LR86" /> Levin and Rosenberger have classified
all groups <M>G</M> such that the Lie algebra associated with
the group ring is Lie metabelian. This method uses
their classification, making it considerably faster than
the more elementary method which just calculates Lie
commutators.
</Description>
</ManSection>
<Example>
<![CDATA[
gap> G := SmallGroup( 256, 400 ); FG := GroupRing( GF( 2 ), G );
<pc group of size 256 with 8 generators>
<algebra-with-one over GF(2), with 8 generators>
gap> L := LieAlgebra( FG );
#I LAGUNA package: Constructing Lie algebra ...
<Lie algebra over GF(2)>
gap> IsLieMetabelian( L );
false
]]>
</Example>
<ManSection>
<Prop Name="IsLieCentreByMetabelian"
Arg="L" />
<Description>
In <Cite Key="Ross" /> the third author of this package
classified all groups <M>G</M> such that the Lie algebra associated
with the group ring is Lie
centre-by-metabelian.
This method uses the classification, making it
considerably faster than the more elementary method
which just calculates Lie commutators.
</Description>
</ManSection>
<Example>
<![CDATA[
gap> G := SymmetricGroup( 3 ); FG := GroupRing( GF( 2 ), G );
Sym( [ 1 .. 3 ] )
<algebra-with-one over GF(2), with 2 generators>
gap> L := LieAlgebra( FG );
#I LAGUNA package: Constructing Lie algebra ...
<Lie algebra over GF(2)>
gap> IsLieMetabelian( L );
false
gap> IsLieCentreByMetabelian( L );
true
]]>
</Example>
<ManSection>
<Meth Name="CanonicalBasis"
Arg="L" />
<Returns>
basis of a Lie algebra
</Returns>
<Description>
The canonical basis of a group algebra <M>FG</M> is formed
by the elements of <M>G</M>. Here <A>L</A> is the
Lie algebra associated with <M>FG</M>, and
the method returns the images of the elements of <M>G</M> in
<A>L</A>.
</Description>
</ManSection>
<Example>
<![CDATA[
gap> G := SymmetricGroup( 3 ); FG := GroupRing( GF( 2 ), G );
Sym( [ 1 .. 3 ] )
<algebra-with-one over GF(2), with 2 generators>
gap> L := LieAlgebra( FG );
#I LAGUNA package: Constructing Lie algebra ...
<Lie algebra over GF(2)>
gap> B := CanonicalBasis( L );
CanonicalBasis( <Lie algebra of dimension 6 over GF(2)> )
gap> Elements( B );
[ LieObject( (Z(2)^0)*() ), LieObject( (Z(2)^0)*(2,3) ),
LieObject( (Z(2)^0)*(1,2) ), LieObject( (Z(2)^0)*(1,2,3) ),
LieObject( (Z(2)^0)*(1,3,2) ), LieObject( (Z(2)^0)*(1,3) ) ]
]]>
</Example>
<ManSection>
<Prop Name="IsBasisOfLieAlgebraOfGroupRing"
Arg="B" />
<Description>
A basis <A>B</A> has this property if the preimages of the basis
vectors in the group algebra form a group. It can be verified if a
basis has this property. This is
important for the speed of the calculation of the structure
constants table; see <Ref Meth="StructureConstantsTable" />.
</Description>
</ManSection>
<Example>
<![CDATA[
gap> G := SymmetricGroup( 3 ); FG := GroupRing( GF( 2 ), G );
Sym( [ 1 .. 3 ] )
<algebra-with-one over GF(2), with 2 generators>
gap> L := LieAlgebra( FG );
#I LAGUNA package: Constructing Lie algebra ...
<Lie algebra over GF(2)>
gap> B := CanonicalBasis( L );
CanonicalBasis( <Lie algebra of dimension 6 over GF(2)> )
gap> IsBasisOfLieAlgebraOfGroupRing( B );
true
]]>
</Example>
<ManSection>
<Meth Name="StructureConstantsTable"
Arg="B" />
<Description>
A very fast implementation for calculating the structure
constants table for the Lie algebra <C>L</C> associated
with a group ring with respect to its canonical basis
<A>B</A> using its special structure;
see <Ref Meth="CanonicalBasis" />.
</Description>
</ManSection>
<Example>
<![CDATA[
gap> G := CyclicGroup( 2 ); FG := GroupRing( GF( 2 ), G );
<pc group of size 2 with 1 generators>
<algebra-with-one over GF(2), with 1 generators>
gap> L := LieAlgebra( FG );
#I LAGUNA package: Constructing Lie algebra ...
<Lie algebra over GF(2)>
gap> B := CanonicalBasis( L );
CanonicalBasis( <Lie algebra of dimension 2 over GF(2)> )
gap> StructureConstantsTable( B );
#I LAGUNA package: Computing the structure constants table ...
[ [ [ [ ], [ ] ], [ [ ], [ ] ] ], [ [ [ ], [ ] ], [ [ ], [ ] ] ], -1,
0*Z(2) ]
]]>
</Example>
<ManSection>
<Attr Name="LieUpperNilpotencyIndex"
Arg="KG" />
<Description>
<Index>upper Lie power series</Index>
In a modular group algebra <M>KG</M> the <E>upper
Lie power series</E> is defined as follows:
<M>KG^{(1)}=KG</M>, <M>KG^{(n+1)}</M> is the associative
ideal, generated by <M>[KG^{(n)},KG]</M>.
The upper Lie nilpotency index <M>t^L(G)</M> of the group
algebra <M>KG</M> is defined to be the
smallest number <M>n</M> such that <M>KG^{(n)}=0</M>.
It can be calculated very fast using Lie dimension
subgroups <Cite Key="Shalev91" />, that is, using only
information about the underlying group; see
<Ref Attr="LieDimensionSubgroups" />. This is why it is
stored as an attribute of the group algebra <A>KG</A>
rather than that of its associated Lie algebra.
</Description>
</ManSection>
<Example>
<![CDATA[
gap> KG := GroupRing( GF( 2 ), DihedralGroup( 16 ) );
<algebra-with-one over GF(2), with 4 generators>
gap> LieUpperNilpotencyIndex( KG );
5
]]>
</Example>
<ManSection>
<Attr Name="LieLowerNilpotencyIndex"
Arg="KG" />
<Description>
<Index>lower Lie power series</Index>
In a modular group algebra <M>KG</M> the <E>lower
Lie power series</E> is defined as follows:
<M>KG^{[n]}</M> is the associative
ideal, generated by all (left-normed) Lie-products
<M>[x_1, x_2, \dots, x_n]</M>, <M> x_i \in KG </M>.
The lower Lie nilpotency index <M>t_L(G)</M> of the group
algebra <M>KG</M> is defined to be the
minimal smallest <M>n</M> such that <M>KG^{[n]}=0</M>.
In <Cite Key="Du" /> the Jennings' conjecture was proved,
which means that the nilpotency class of the normalized
unit group of the modular group algebra <M>KG</M> is
equal to <M>t_L(G)-1</M>.
<P/>
This allows to express lower Lie nilpotency index via the
nilpotency class of the normalized unit group, and with its
polycyclic presentation, provided by &LAGUNA;, this will be
faster than elementary calculations with Lie commutators.
As the previous attribute, this index is also stored as an
attribute of the group algebra <A>KG</A>.
</Description>
</ManSection>
<Example>
<![CDATA[
gap> KG := GroupRing( GF( 2 ), DihedralGroup( 16 ) );
<algebra-with-one over GF(2), with 4 generators>
gap> LieLowerNilpotencyIndex( KG );
5
]]>
</Example>
<ManSection>
<Attr Name="LieDerivedLength"
Arg="L" />
<Description>
<Index>Lie derived series</Index>
<Index>Lie derived length</Index>
Let <M>L</M> be a Lie algebra. The <E>Lie derived series</E>
of <M>L</M> is defined as follows:
<M>\delta^{[0]}(L) = L</M> and
<M>\delta^{[n]}(L) = [\delta^{[n-1]}(L),
\delta^{[n-1]}(L)]</M>.
<M>L</M> is called Lie solvable if there exists an integer
<M>m</M> such that <M> \delta^{[m]}(L) = 0 </M>. In this
case the integer <M>m</M> is called the <E>Lie derived length</E>
of <M>L</M>, and it is returned by this function.
</Description>
</ManSection>
<Example>
<![CDATA[
gap> KG := GroupRing( GF ( 2 ), DihedralGroup( 16 ) );;
gap> L := LieAlgebra( KG );
#I LAGUNA package: Constructing Lie algebra ...
<Lie algebra over GF(2)>
gap> LieDerivedLength( L );
#I LAGUNA package: Computing the Lie derived subalgebra ...
3
]]>
</Example>
</Section>
<!-- ######################################################### -->
<Section Label="Other">
<Heading>Other commands</Heading>
<ManSection>
<Attr Name="SubgroupsOfIndexTwo"
Arg="G"
Comm="for a group" />
<Description>
Returns a list of subgroups of <M>G</M> with index two.
Such subgroups are important for the investigation of
the Lie structure of the group algebra <M>KG</M> in the case
of characteristic 2.
</Description>
</ManSection>
<Example>
<![CDATA[
gap> SubgroupsOfIndexTwo( DihedralGroup( 16 ) );
[ Group([ f3, f4, f1 ]), Group([ f3, f4, f2 ]), Group([ f3, f4, f1*f2 ]) ]
]]>
</Example>
<ManSection>
<Meth Name="DihedralDepth"
Arg="U"
Comm="for a finite 2-group" />
<Description>
For a finite 2-group <A>U</A>, the function returns its
<E>dihedral depth</E>, which is defined to be the maximal
number <M>d</M> such that <A>U</A> contains a subgroup
isomorphic to the dihedral
group of order <M>2^{d+1}</M>.
</Description>
</ManSection>
<Example>
<![CDATA[
gap> KD8 := GroupRing( GF(2), DihedralGroup( 8 ) );
<algebra-with-one over GF(2), with 3 generators>
gap> UD8 := PcNormalizedUnitGroup( KD8 );
<pc group of size 128 with 7 generators>
gap> DihedralDepth( UD8 );
2
]]>
</Example>
<ManSection>
<Meth Name="DimensionBasis"
Arg="G"
Comm="for a finite p-group" />
<Returns>
record with two components: `dimensionBasis'
(list of group elements) and `weights' (list of weights)
</Returns>
<Description>
For a finite <M>p</M>-group <A>G</A>, returns its
Jennings basis as it was described in Section
<Ref Label="TheoryThird" />.
</Description>
</ManSection>
<Example>
<![CDATA[
gap> G := DihedralGroup( 16 );
<pc group of size 16 with 4 generators>
gap> DimensionBasis( G );
rec( dimensionBasis := [ f1, f2, f3, f4 ], weights := [ 1, 1, 2, 4 ] )
]]>
</Example>
<ManSection>
<Attr Name="LieDimensionSubgroups"
Arg="G"
Comm="for a finite p-group" />
<Returns>
list of subgroups
</Returns>
<Description>
For a finite <M>p</M>-group <A>G</A>, returns the series
of its Lie dimension subgroups. The <M>m</M>-th Lie dimension
subgroup <M> D_{(m)} </M> is the intersection of the group
<M>G</M> and <M> 1+KG^{(m)} </M>, where
<M>KG^{(m)}</M> is the <M>m</M>-th term of the
upper Lie power series of <M>KG</M>;
see <Ref Attr="LieUpperNilpotencyIndex" />
</Description>
</ManSection>
<Example>
<![CDATA[
gap> G := DihedralGroup( 16 );
<pc group of size 16 with 4 generators>
gap> LieDimensionSubgroups( G );
[ <pc group of size 16 with 4 generators>, Group([ f3, f4 ]), Group([ f4 ]),
Group([ <identity> of ... ]) ]
]]>
</Example>
<ManSection>
<Attr Name="LieUpperCodimensionSeries"
Label="for group ring"
Arg="KG"
Comm="for a modular group algebra of a finite p-group" />
<Attr Name="LieUpperCodimensionSeries"
Label="for group"
Arg="G"
Comm="for a finite p-group" />
<Returns>
list of subgroups
</Returns>
<Description>
A notion of upper Lie codimension subgroups was introduced in
<Cite Key="CS"/>. For a finite <M>p</M>-group <A>G</A>,
<M>C_i</M> is the set of all elements <M>g</M> in <A>G</A>,
such that the Lie commutator <M>[ g, g_1, ..., g_i ]</M> of the
length <M>i+1</M> is equal to zero for all <M>g_1, ..., g_i</M>
from <A>G</A>, and <M> C_0 = {1} </M>.
By Du's theorem (see <Cite Key="Du"/>), <M>C_i</M> coincides
with the intersection of <M>G</M> and the i-th term of the upper
central series
<M>{1}=Z_0 < Z_1 < Z_2 < ... < Z_n = V(KG)</M>
of the normalized unit group <M>V(KG)</M>.
This fact is used in &LAGUNA; to speed up computation of this
series. Since <M>V(KG)</M> is involved in computation, for the
first time the argiment should be the group ring <A>KG</A>, but
later you can also apply it to the group <A>G</A> itself.
</Description>
</ManSection>
<Example>
<![CDATA[
gap> G := DihedralGroup(16);
<pc group of size 16 with 4 generators>
gap> KG := GroupRing( GF(2), G );
<algebra-with-one over GF(2), with 4 generators>
gap> LieUpperCodimensionSeries( KG );
[ Group([ f1, f2, f3, f4 ]), Group([ f3, f4, f3*f4 ]), Group([ f4 ]),
Group([ f4 ]), Group([ ]) ]
gap> LieUpperCodimensionSeries( G );
[ Group([ f1, f2, f3, f4 ]), Group([ f3, f4, f3*f4 ]), Group([ f4 ]),
Group([ f4 ]), Group([ ]) ]
]]>
</Example>
<ManSection>
<InfoClass Name="LAGInfo"
Comm="Info class for LAGUNA algorithms" />
<Description>
<C>LAGInfo</C> is a special Info class for &LAGUNA; algorithms.
It has 5 levels: 0, 1 (default), 2, 3 and 4. To change info
level to <C>k</C>, use command <C>SetInfoLevel(LAGInfo, k)</C>.
</Description>
</ManSection>
<Example>
<![CDATA[
gap> SetInfoLevel( LAGInfo, 2 );
gap> KD8 := GroupRing( GF( 2 ), DihedralGroup( 8 ) );
<algebra-with-one over GF(2), with 3 generators>
gap> UD8 := PcNormalizedUnitGroup( KD8 );
#I LAGInfo: Computing the pc normalized unit group ...
#I LAGInfo: Calculating weighted basis ...
#I LAGInfo: Calculating dimension basis ...
#I LAGInfo: dimension basis finished !
#I LAGInfo: Weighted basis finished !
#I LAGInfo: Computing the augmentation ideal filtration...
#I LAGInfo: Filtration finished !
#I LAGInfo: finished, converting to PcGroup
<pc group of size 128 with 7 generators>
]]>
</Example>
</Section>
</Chapter>
|