File: chap3_mj.html

package info (click to toggle)
gap-nq 2.5.11-2
  • links: PTS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,060 kB
  • sloc: ansic: 4,435; xml: 1,598; sh: 1,259; makefile: 254; javascript: 155
file content (534 lines) | stat: -rw-r--r-- 39,638 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
         "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<script type="text/javascript"
  src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>
<title>GAP (nq) - Chapter 3: The Functions of the Package</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap3"  onload="jscontent()">


<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0_mj.html">Top</a>  <a href="chap1_mj.html">1</a>  <a href="chap2_mj.html">2</a>  <a href="chap3_mj.html">3</a>  <a href="chap4_mj.html">4</a>  <a href="chap5_mj.html">5</a>  <a href="chapA_mj.html">A</a>  <a href="chapBib_mj.html">Bib</a>  <a href="chapInd_mj.html">Ind</a>  </div>

<div class="chlinkprevnexttop">&nbsp;<a href="chap0_mj.html">[Top of Book]</a>&nbsp;  <a href="chap0_mj.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap2_mj.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap4_mj.html">[Next Chapter]</a>&nbsp;  </div>

<p id="mathjaxlink" class="pcenter"><a href="chap3.html">[MathJax off]</a></p>
<p><a id="X82738C527E6AC670" name="X82738C527E6AC670"></a></p>
<div class="ChapSects"><a href="chap3_mj.html#X82738C527E6AC670">3 <span class="Heading">The Functions of the Package</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap3_mj.html#X7D147D4182F85244">3.1 <span class="Heading">Nilpotent Quotients of Finitely Presented Groups</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap3_mj.html#X8216791583DE512C">3.1-1 NilpotentQuotient</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap3_mj.html#X7ACCB6267C187AB0">3.1-2 NilpotentEngelQuotient</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap3_mj.html#X8758F663782AE655">3.1-3 NqEpimorphismNilpotentQuotient</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap3_mj.html#X827C2D4F78C982FC">3.1-4 LowerCentralFactors</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap3_mj.html#X861A2C6385F6BCF5">3.2 <span class="Heading">Expression Trees</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap3_mj.html#X7CC7CDDD876BB8EB">3.2-1 ExpressionTrees</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap3_mj.html#X879956307B67A136">3.2-2 EvaluateExpTree</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap3_mj.html#X866E18057EF83F65">3.3 <span class="Heading">Auxiliary Functions</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap3_mj.html#X855407657CB86F40">3.3-1 NqReadOutput</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap3_mj.html#X8443537679BC81D5">3.3-2 NqStringFpGroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap3_mj.html#X82684F4D79A786F5">3.3-3 NqStringExpTrees</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap3_mj.html#X7A28800579A2BB35">3.3-4 NqElementaryDivisors</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap3_mj.html#X7D9044767BEB1523">3.4 <span class="Heading">Global Variables</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap3_mj.html#X87691A167A83FAF6">3.4-1 NqRuntime</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap3_mj.html#X7DFBFD1580BF024A">3.4-2 NqDefaultOptions</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap3_mj.html#X83D1AFCB7EFF4380">3.4-3 NqGlobalVariables</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap3_mj.html#X804DD7CE815D87C9">3.5 <span class="Heading">Diagnostic Output</span></a>
</span>
</div>
</div>

<h3>3 <span class="Heading">The Functions of the Package</span></h3>

<p><a id="X7D147D4182F85244" name="X7D147D4182F85244"></a></p>

<h4>3.1 <span class="Heading">Nilpotent Quotients of Finitely Presented Groups</span></h4>

<p><a id="X8216791583DE512C" name="X8216791583DE512C"></a></p>

<h5>3.1-1 NilpotentQuotient</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; NilpotentQuotient</code>( [<var class="Arg">output-file</var>, ]<var class="Arg">fp-group</var>[, <var class="Arg">id-gens</var>][, <var class="Arg">c</var>] )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; NilpotentQuotient</code>( [<var class="Arg">output-file</var>, ]<var class="Arg">input-file</var>[, <var class="Arg">c</var>] )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>The parameter <code class="file">fp-group</code> is either a finitely presented group or a record specifying a presentation by expression trees (see section <a href="chap2_mj.html#X861A2C6385F6BCF5"><span class="RefLink">2.6</span></a>). The parameter <code class="file">input-file</code> is a string specifying the name of a file containing a finite presentation in the input format (cf. section <a href="chap2_mj.html#X79E150AA823439A8"><span class="RefLink">2.8</span></a>) of the ANU NQ. Such a file can be prepared by a text editor or with the help of the function <code class="func">NqStringFpGroup</code> (<a href="chap3_mj.html#X8443537679BC81D5"><span class="RefLink">3.3-2</span></a>).</p>

<p>Let <span class="SimpleMath">\(G\)</span> be the group defined by <code class="file">fp-group</code> or the group defined in <code class="file">input-file</code>. The function computes a nilpotent presentation for <span class="SimpleMath">\(G/\gamma_{c+1}(G)\)</span> if the optional parameter <code class="file">c</code> is specified. If <code class="file">c</code> is not given, then the function attempts to compute the largest nilpotent quotient of <span class="SimpleMath">\(G\)</span> and it will terminate only if <span class="SimpleMath">\(G\)</span> has a largest nilpotent quotient. See section <a href="chap3_mj.html#X804DD7CE815D87C9"><span class="RefLink">3.5</span></a> for a possibility to follow the progress of the computation.</p>

<p>The optional argument <code class="file">id-gens</code> is a list of generators of the free group underlying the finitely presented group <code class="file">fp-group</code>. The generators in this list are treated as identical generators. Consequently, all relations of the <code class="file">fp-group</code> involving these generators are treated as identical relations for these generators.</p>

<p>In addition to the arguments explained above, the function accepts the following options as shown in the first example below:</p>


<ul>
<li><p><code class="keyw">group</code> This option can be used instead of the parameter <code class="file">fp-group</code>.</p>

</li>
<li><p><code class="keyw">input\_string</code> This option can be used to specify a finitely presented group by a string in the input format of the standalone program.</p>

</li>
<li><p><code class="keyw">input\_file</code> This option specifies a file with input for the standalone program.</p>

</li>
<li><p><code class="keyw">output\_file</code> This option specifies a file for the output of the standalone.</p>

</li>
<li><p><code class="keyw">idgens</code> This options specifies a list of identical generators.</p>

</li>
<li><p><code class="keyw">class</code> This option specifies the nilpotency class up to which the nilpotent quotient will be computed.</p>

</li>
</ul>
<p>The following example computes the class-5 quotient of the free group on two generators.</p>


<div class="example"><pre>

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">F := FreeGroup( 2 );</span>
&lt;free group on the generators [ f1, f2 ]&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">## Equivalent to:  NilpotentQuotient( : group := F, class := 5 );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">##                 NilpotentQuotient( F : class := 5 );          </span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">H := NilpotentQuotient( F, 5 );</span>
Pcp-group with orders [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">lcs := LowerCentralSeries( H );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for i in [1..5] do Print( lcs[i] / lcs[i+1], "\n" ); od;</span>
Pcp-group with orders [ 0, 0 ]
Pcp-group with orders [ 0 ]
Pcp-group with orders [ 0, 0 ]
Pcp-group with orders [ 0, 0, 0 ]
Pcp-group with orders [ 0, 0, 0, 0, 0, 0 ]

</pre></div>

<p>Note that the lower central series in the example is part of the data returned by the standalone program. Therefore, the execution of the function LowerCentralSeries takes no time.</p>

<p>The next example computes the class-4 quotient of the infinite dihedral group. The group is soluble but not nilpotent. The first factor of its lower central series is a Klein four group and all the other factors are cyclic or order <span class="SimpleMath">\(2\)</span>.</p>


<div class="example"><pre>

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">F := FreeGroup( 2 );</span>
&lt;free group on the generators [ f1, f2 ]&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G := F / [F.1^2, F.2^2];</span>
&lt;fp group on the generators [ f1, f2 ]&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">H := NilpotentQuotient( G, 4 ); </span>
Pcp-group with orders [ 2, 2, 2, 2, 2 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">lcs := LowerCentralSeries( H );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for i in [1..Length(lcs)-1] do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      Print( AbelianInvariants(lcs[i] / lcs[i+1]), "\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">od;</span>
[ 2, 2 ]
[ 2 ]
[ 2 ]
[ 2 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput"></span>

</pre></div>

<p>In the following example identical generators are used in order to express the fact that the group is nilpotent of class <span class="SimpleMath">\(3\)</span>. A group is nilpotent of class <span class="SimpleMath">\(3\)</span> if it satisfies the identical relation <span class="SimpleMath">\([x_1,x_2,x_3,x_4]=1\)</span> (cf. Section <a href="chap2_mj.html#X84EF796487BC1822"><span class="RefLink">2.5</span></a>). The result is the free nilpotent group of class <span class="SimpleMath">\(3\)</span> on two generators.</p>


<div class="example"><pre>

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">F := FreeGroup( "a", "b", "w", "x", "y", "z" );</span>
&lt;free group on the generators [ a, b, w, x, y, z ]&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G := F / [ LeftNormedComm( [F.3,F.4,F.5,F.6] ) ];</span>
&lt;fp group of size infinity on the generators [ a, b, w, x, y, z ]&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">## The following is equivalent to: </span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">##   NilpotentQuotient( G : idgens := [F.3,F.4,F.5,F.6] );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">H := NilpotentQuotient( G, [F.3,F.4,F.5,F.6] );</span>
Pcp-group with orders [ 0, 0, 0, 0, 0 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NilpotencyClassOfGroup(H);</span>
3
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LowerCentralSeries(H);</span>
[ Pcp-group with orders [ 0, 0, 0, 0, 0 ], Pcp-group with orders [ 0, 0, 0 ], 
  Pcp-group with orders [ 0, 0 ], Pcp-group with orders [  ] ]

</pre></div>

<p>The following example uses expression trees in order to specify the third Engel law for the free group on <span class="SimpleMath">\(3\)</span> generators.</p>


<div class="example"><pre>

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">et := ExpressionTrees( 5 );                            </span>
[ x1, x2, x3, x4, x5 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">comm := LeftNormedComm( [et[1], et[2], et[2], et[2]] );</span>
Comm( x1, x2, x2, x2 )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G := rec( generators := et, relations := [comm] );</span>
rec( generators := [ x1, x2, x3, x4, x5 ], 
  relations := [ Comm( x1, x2, x2, x2 ) ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">H := NilpotentQuotient( G : idgens := [et[1],et[2]] );</span>
Pcp-group with orders [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 4, 2, 2, 
  0, 6, 6, 0, 0, 2, 10, 10, 10 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">TorsionSubgroup( H );</span>
Pcp-group with orders [ 2, 2, 2, 2, 2, 2, 2, 10, 10, 10 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">lcs := LowerCentralSeries( H );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NilpotencyClassOfGroup( H );</span>
5
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for i in [1..5] do Print( lcs[i] / lcs[i+1], "\n" ); od;</span>
Pcp-group with orders [ 0, 0, 0 ]
Pcp-group with orders [ 0, 0, 0 ]
Pcp-group with orders [ 0, 0, 0, 0, 0, 0, 0, 0 ]
Pcp-group with orders [ 2, 4, 2, 2, 0, 6, 6, 0, 0, 2 ]
Pcp-group with orders [ 10, 10, 10 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for i in [1..5] do Print( AbelianInvariants(lcs[i]/lcs[i+1]), "\n" ); od;</span>
[ 0, 0, 0 ]
[ 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0, 0, 0 ]
[ 2, 2, 2, 2, 2, 2, 2, 0, 0, 0 ]
[ 10, 10, 10 ]

</pre></div>

<p>The example above also shows that the relative orders of an abelian polycyclic group need not be the abelian invariants (elementary divisors) of the group. Each zero corresponds to a generator of infinite order. The number of zeroes is always correct.</p>

<p><a id="X7ACCB6267C187AB0" name="X7ACCB6267C187AB0"></a></p>

<h5>3.1-2 NilpotentEngelQuotient</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; NilpotentEngelQuotient</code>( [<var class="Arg">output-file</var>, ]<var class="Arg">fp-group</var>, <var class="Arg">n</var>[, <var class="Arg">id-gens</var>][, <var class="Arg">c</var>] )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; NilpotentEngelQuotient</code>( [<var class="Arg">output-file</var>, ]<var class="Arg">input-file</var>, <var class="Arg">n</var>[, <var class="Arg">c</var>] )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>This function is a special version of <code class="func">NilpotentQuotient</code> (<a href="chap3_mj.html#X8216791583DE512C"><span class="RefLink">3.1-1</span></a>) which enforces the <span class="SimpleMath">\(n\)</span>-th Engel identity on the nilpotent quotients of the group specified by <code class="file">fp-group</code> or by <code class="file">input-file</code>. It accepts the same options as <code class="file">NilpotentQuotient</code>.</p>

<p>The Engel condition can also be enforced by using identical generators and the Engel law and <code class="func">NilpotentQuotient</code> (<a href="chap3_mj.html#X8216791583DE512C"><span class="RefLink">3.1-1</span></a>). See the examples there.</p>

<p>The following example computes the relatively free fifth Engel group on two generators, determines its (normal) torsion subgroup and computes the corresponding quotient group. The quotient modulo the torsion subgroup is torsion-free. Therefore, there is a nilpotent presentation without power relations. The example computes a nilpotent presentation for the torsion free factor group through the upper central series. The factors of the upper central series in a torsion free group are torsion free. In this way one obtains a set of generators of infinite order and the resulting nilpotent presentation has no power relations.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G := NilpotentEngelQuotient( FreeGroup(2), 5 );</span>
Pcp-group with orders [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 10, 
  0, 0, 30, 0, 3, 3, 10, 2, 0, 6, 0, 0, 30, 2, 0, 9, 3, 5, 2, 6, 2, 10, 5, 5, 
  2, 0, 3, 3, 3, 3, 3, 5, 5, 3, 3 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NilpotencyClassOfGroup(G);</span>
9
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">T := TorsionSubgroup( G );</span>
Pcp-group with orders [ 3, 3, 2, 2, 3, 3, 2, 9, 3, 5, 2, 3, 2, 10, 5, 2, 3, 
  3, 3, 3, 3, 5, 5, 3, 3 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsAbelian( T );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AbelianInvariants( T );</span>
[ 3, 3, 3, 3, 3, 3, 3, 3, 30, 30, 30, 180, 180 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">H := G / T;</span>
Pcp-group with orders [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 10, 
  0, 0, 30, 0, 5, 0, 2, 0, 0, 10, 0, 2, 5, 0 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">H := PcpGroupBySeries( UpperCentralSeries(H), "snf" );</span>
Pcp-group with orders [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
  0, 0, 0, 0, 0 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ucs := UpperCentralSeries( H );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for i in [1..NilpotencyClassOfGroup(H)] do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">	Print( ucs[i]/ucs[i+1], "\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">od;</span>
Pcp-group with orders [ 0, 0 ]
Pcp-group with orders [ 0 ]
Pcp-group with orders [ 0, 0 ]
Pcp-group with orders [ 0, 0, 0 ]
Pcp-group with orders [ 0, 0, 0, 0, 0, 0 ]
Pcp-group with orders [ 0, 0, 0, 0 ]
Pcp-group with orders [ 0, 0 ]
Pcp-group with orders [ 0, 0, 0 ]
</pre></div>

<p><a id="X8758F663782AE655" name="X8758F663782AE655"></a></p>

<h5>3.1-3 NqEpimorphismNilpotentQuotient</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; NqEpimorphismNilpotentQuotient</code>( [<var class="Arg">output-file</var>, ]<var class="Arg">fp-group</var>[, <var class="Arg">id-gens</var>][, <var class="Arg">c</var>] )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>This function computes an epimorphism from the group <span class="SimpleMath">\(G\)</span> given by the finite presentation <code class="file">fp-group</code> onto <span class="SimpleMath">\(G/\gamma_{c+1}(G).\)</span> If <code class="file">c</code> is not given, then the largest nilpotent quotient of <span class="SimpleMath">\(G\)</span> is computed and an epimorphism from <span class="SimpleMath">\(G\)</span> onto the largest nilpotent quotient of <span class="SimpleMath">\(G\)</span>. If <span class="SimpleMath">\(G\)</span> does not have a largest nilpotent quotient, the function will not terminate if <span class="SimpleMath">\(c\)</span> is not given.</p>

<p>The optional argument <code class="file">id-gens</code> is a list of generators of the free group underlying the finitely presented group <code class="file">fp-group</code>. The generators in this list are treated as identical generators. Consequently, all relations of the <code class="file">fp-group</code> involving these generators are treated as identical relations for these generators.</p>

<p>If identical generators are specified, then the epimorphism returned maps the group generated by the `non-identical' generators onto the nilpotent factor group. See the last example below.</p>

<p>The function understands the same options as the function <code class="func">NilpotentQuotient</code> (<a href="chap3_mj.html#X8216791583DE512C"><span class="RefLink">3.1-1</span></a>).</p>


<div class="example"><pre>

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">F := FreeGroup(3);                              </span>
&lt;free group on the generators [ f1, f2, f3 ]&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">phi := NqEpimorphismNilpotentQuotient( F, 5 );</span>
[ f1, f2, f3 ] -&gt; [ g1, g2, g3 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Image( phi, LeftNormedComm( [F.3, F.2, F.1] ) );</span>
g12
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">F := FreeGroup( "a", "b" ); </span>
&lt;free group on the generators [ a, b ]&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G := F / [ F.1^2, F.2^2 ];     </span>
&lt;fp group on the generators [ a, b ]&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">phi := NqEpimorphismNilpotentQuotient( G, 4 );   </span>
[ a, b ] -&gt; [ g1, g2 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Image( phi, Comm(G.1,G.2) ); </span>
g3*g4
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">F := FreeGroup( "a", "b", "u", "v", "x" );</span>
&lt;free group on the generators [ a, b, u, v, x ]&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">a := F.1;; b := F.2;; u := F.3;; v := F.4;; x := F.5;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G := F / [ x^5, LeftNormedComm( [u,v,v,v] ) ];</span>
&lt;fp group of size infinity on the generators [ a, b, u, v, x ]&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">phi := NqEpimorphismNilpotentQuotient( G : idgens:=[u,v,x], class:=5 );</span>
[ a, b ] -&gt; [ g1, g2 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">U := Source(phi);                            </span>
Group([ a, b ])
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ImageElm( phi, LeftNormedComm( [U.1*U.2, U.2^-1,U.2^-1,U.2^-1,] ) );</span>
id

</pre></div>

<p>Note that the last epimorphism is a map from the group generated by <span class="SimpleMath">\(a\)</span> and <span class="SimpleMath">\(b\)</span> onto the nilpotent quotient. The identical generators are used only to formulate the identical relator. They are not generators of the group <span class="SimpleMath">\(G\)</span>. Also note that the left-normed commutator above is mapped to the identity as <span class="SimpleMath">\(G\)</span> satisfies the specified identical law.</p>

<p><a id="X827C2D4F78C982FC" name="X827C2D4F78C982FC"></a></p>

<h5>3.1-4 LowerCentralFactors</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; LowerCentralFactors</code>( <var class="Arg">...</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>This function accepts the same arguments and options as <code class="func">NilpotentQuotient</code> (<a href="chap3_mj.html#X8216791583DE512C"><span class="RefLink">3.1-1</span></a>) and returns a list containing the abelian invariants of the central factors in the lower central series of the specified group.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LowerCentralFactors( FreeGroup(2), 6 );</span>
[ [ 0, 0 ], [ 0 ], [ 0, 0 ], [ 0, 0, 0 ], [ 0, 0, 0, 0, 0, 0 ], 
  [ 0, 0, 0, 0, 0, 0, 0, 0, 0 ] ]
</pre></div>

<p><a id="X861A2C6385F6BCF5" name="X861A2C6385F6BCF5"></a></p>

<h4>3.2 <span class="Heading">Expression Trees</span></h4>

<p><a id="X7CC7CDDD876BB8EB" name="X7CC7CDDD876BB8EB"></a></p>

<h5>3.2-1 ExpressionTrees</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ExpressionTrees</code>( <var class="Arg">m</var>[, <var class="Arg">prefix</var>] )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ExpressionTrees</code>( <var class="Arg">str1</var>, <var class="Arg">str2</var>, <var class="Arg">str3</var>, <var class="Arg">...</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>The argument <code class="file">m</code> must be a positive integer. The function returns a list with <code class="file">m</code> expression tree symbols named x1, x2,... The optional parameter <code class="file">prefix</code> must be a string and is used instead of <code class="file">x</code> if present.</p>

<p>Alternatively, the function can be executed with a list of strings <code class="file">str1</code>, <code class="file">str2</code>, .... It returns a list of symbols with these strings as names.</p>

<p>The following operations are defined for expression trees: multiplication, inversion, exponentiation, forming commutators, forming conjugates.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t := ExpressionTrees( 3 );                      </span>
[ x1, x2, x3 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tree := Comm( t[1], t[2] )^3/LeftNormedComm( [t[1],t[2],t[3],t[1]] );</span>
Comm( x1, x2 )^3/Comm( x1, x2, x3, x1 )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t := ExpressionTrees( "a", "b", "x" );</span>
[ a, b, x ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tree := Comm( t[1], t[2] )^3/LeftNormedComm( [t[1],t[2],t[3],t[1]] );</span>
Comm( a, b )^3/Comm( a, b, x, a )
</pre></div>

<p><a id="X879956307B67A136" name="X879956307B67A136"></a></p>

<h5>3.2-2 EvaluateExpTree</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; EvaluateExpTree</code>( <var class="Arg">tree</var>, <var class="Arg">symbols</var>, <var class="Arg">values</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>The argument <code class="file">tree</code> is an expression tree followed by the list of those symbols <code class="file">symbols</code> from which the expression tree is built up. The argument <code class="file">values</code> is a list containing a constant for each symbol. The function substitutes each value for the corresponding symbol and computes the resulting value for <code class="file">tree</code>.</p>


<div class="example"><pre>

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">F := FreeGroup( 3 );                               </span>
&lt;free group on the generators [ f1, f2, f3 ]&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t := ExpressionTrees( "a", "b", "x" );</span>
[ a, b, x ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tree := Comm( t[1], t[2] )^3/LeftNormedComm( [t[1],t[2],t[3],t[1]] );</span>
Comm( a, b )^3/Comm( a, b, x, a )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">EvaluateExpTree( tree, t, GeneratorsOfGroup(F) );</span>
f1^-1*f2^-1*f1*f2*f1^-1*f2^-1*f1*f2*f1^-1*f2^-1*f1*f2*f1^-1*f3^-1*f2^-1*f1^
-1*f2*f1*f3*f1^-1*f2^-1*f1*f2*f1*f2^-1*f1^-1*f2*f1*f3^-1*f1^-1*f2^-1*f1*f2*f3

</pre></div>

<p><a id="X866E18057EF83F65" name="X866E18057EF83F65"></a></p>

<h4>3.3 <span class="Heading">Auxiliary Functions</span></h4>

<p><a id="X855407657CB86F40" name="X855407657CB86F40"></a></p>

<h5>3.3-1 NqReadOutput</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; NqReadOutput</code>( <var class="Arg">stream</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>The only argument <code class="file">stream</code> is an output stream of the ANU NQ. The function reads the stream and returns a record that has a component for each global variable used in the output of the ANU NQ, see <code class="func">NqGlobalVariables</code> (<a href="chap3_mj.html#X83D1AFCB7EFF4380"><span class="RefLink">3.4-3</span></a>).</p>

<p><a id="X8443537679BC81D5" name="X8443537679BC81D5"></a></p>

<h5>3.3-2 NqStringFpGroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; NqStringFpGroup</code>( <var class="Arg">fp-group</var>[, <var class="Arg">idgens</var>] )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>The function takes a finitely presented group <code class="file">fp-group</code> and returns a string in the input format of the ANU NQ. If the list <code class="file">idgens</code> is present, then it must contain generators of the free group underlying the finitely presented group <code class="func">FreeGroupOfFpGroup</code> (<a href="../../../doc/ref/chap47_mj.html#X85CF3931849FB441"><span class="RefLink">Reference: FreeGroupOfFpGroup</span></a>). The generators in <code class="file">idgens</code> are treated as identical generators.</p>


<div class="example"><pre>

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">F := FreeGroup(2);</span>
&lt;free group on the generators [ f1, f2 ]&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G := F / [F.1^2, F.2^2, (F.1*F.2)^4];</span>
&lt;fp group on the generators [ f1, f2 ]&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NqStringFpGroup( G );</span>
"&lt; x1, x2 |\n    x1^2,\n    x2^2,\n    x1*x2*x1*x2*x1*x2*x1*x2\n&gt;\n"
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Print( last );</span>
&lt; x1, x2 |
    x1^2,
    x2^2,
    x1*x2*x1*x2*x1*x2*x1*x2
&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PrintTo( "dihedral", last );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">## The following is equivalent to: </span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">##     NilpotentQuotient( : input_file := "dihedral" );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NilpotentQuotient( "dihedral" );</span>
Pcp-group with orders [ 2, 2, 2 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Exec( "rm dihedral" );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">F := FreeGroup(3);</span>
&lt;free group on the generators [ f1, f2, f3 ]&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">H := F / [ LeftNormedComm( [F.2,F.1,F.1] ),                               </span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">              LeftNormedComm( [F.2,F.1,F.2] ), F.3^7 ];</span>
&lt;fp group on the generators [ f1, f2, f3 ]&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">str := NqStringFpGroup( H, [F.3] );                                  </span>
"&lt; x1, x2; x3 |\n    x1^-1*x2^-1*x1*x2*x1^-1*x2^-1*x1^-1*x2*x1^2,\n    x1^-1*x\
2^-1*x1*x2^-1*x1^-1*x2*x1*x2,\n    x3^7\n&gt;\n"
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NilpotentQuotient( : input_string := str );</span>
Pcp-group with orders [ 7, 7, 7 ]

</pre></div>

<p><a id="X82684F4D79A786F5" name="X82684F4D79A786F5"></a></p>

<h5>3.3-3 NqStringExpTrees</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; NqStringExpTrees</code>( <var class="Arg">fp-group</var>[, <var class="Arg">idgens</var>] )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>The function takes a finitely presented group <code class="file">fp-group</code> given in terms of expression trees and returns a string in the input format of the ANU NQ. If the list <code class="file">idgens</code> is present, then it must contain a sublist of the generators of the presentation. The generators in <code class="file">idgens</code> are treated as identical generators.</p>


<div class="example"><pre>

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">x := ExpressionTrees( 2 );</span>
[ x1, x2 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">rels := [x[1]^2, x[2]^2, (x[1]*x[2])^5]; </span>
[ x1^2, x2^2, (x1*x2)^5 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NqStringExpTrees( rec( generators := x, relations := rels ) );</span>
"&lt; x1, x2 |\n    x1^2,\n    x2^2,\n    (x1*x2)^5\n&gt;\n"
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Print( last );         </span>
&lt; x1, x2 |
    x1^2,
    x2^2,
    (x1*x2)^5
&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">x := ExpressionTrees( 3 );</span>
[ x1, x2, x3 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">rels := [LeftNormedComm( [x[2],x[1],x[1]] ),                              </span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">            LeftNormedComm( [x[2],x[1],x[2]] ), x[3]^7 ];</span>
[ Comm( x2, x1, x1 ), Comm( x2, x1, x2 ), x3^7 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NqStringExpTrees( rec( generators := x, relations := rels ) );</span>
"&lt; x1, x2, x3 |\n    [ x2, x1, x1 ],\n    [ x2, x1, x2 ],\n    x3^7\n&gt;\n"
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Print( last );</span>
&lt; x1, x2, x3 |
    [ x2, x1, x1 ],
    [ x2, x1, x2 ],
    x3^7
&gt;

</pre></div>

<p><a id="X7A28800579A2BB35" name="X7A28800579A2BB35"></a></p>

<h5>3.3-4 NqElementaryDivisors</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; NqElementaryDivisors</code>( <var class="Arg">int-mat</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>The function <code class="func">ElementaryDivisorsMat</code> (<a href="../../../doc/ref/chap24_mj.html#X7AC4D74F81908109"><span class="RefLink">Reference: ElementaryDivisorsMat</span></a>) only returns the non-zero elementary divisors of an integer matrix. This function computes the elementary divisors of <code class="file">int-mat</code> and adds the appropriate number of zeroes in order to make it easier to recognize the isomorphism type of the abelian group presented by the integer matrix. At the same time ones are stripped from the list of elementary divisors.</p>

<p><a id="X7D9044767BEB1523" name="X7D9044767BEB1523"></a></p>

<h4>3.4 <span class="Heading">Global Variables</span></h4>

<p><a id="X87691A167A83FAF6" name="X87691A167A83FAF6"></a></p>

<h5>3.4-1 NqRuntime</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; NqRuntime</code></td><td class="tdright">(&nbsp;global variable&nbsp;)</td></tr></table></div>
<p>This variable contains the number of milliseconds of runtime of the last call of ANU NQ.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NilpotentEngelQuotient( FreeGroup(2), 5 );</span>
Pcp-group with orders [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 10, 
  0, 0, 30, 0, 3, 3, 10, 2, 0, 6, 0, 0, 30, 2, 0, 9, 3, 5, 2, 6, 2, 10, 5, 5, 
  2, 0, 3, 3, 3, 3, 3, 5, 5, 3, 3 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NqRuntime;</span>
18200
</pre></div>

<p><a id="X7DFBFD1580BF024A" name="X7DFBFD1580BF024A"></a></p>

<h5>3.4-2 NqDefaultOptions</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; NqDefaultOptions</code></td><td class="tdright">(&nbsp;global variable&nbsp;)</td></tr></table></div>
<p>This variable contains a list of strings which are the standard command line options passed to the ANU NQ in each call. Modifying this variable can be used to pass additional options to the ANU NQ.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NqDefaultOptions;</span>
[ "-g", "-p", "-C", "-s" ]
</pre></div>

<p>The option <var class="Arg">-g</var> causes the ANU NQ to produce output in <strong class="pkg">GAP</strong>-format. The option <var class="Arg">-p</var> prevents the ANU NQ from listing the pc-presentation of the nilpotent quotient at the end of the calculation. The option <var class="Arg">-C</var> invokes the combinatorial collector. The option <var class="Arg">-s</var> is effective only in conjunction with options for computing with Engel identities and instructs the ANU NQ to use only semigroup words in the generators as instances of an Engel law.</p>

<p><a id="X83D1AFCB7EFF4380" name="X83D1AFCB7EFF4380"></a></p>

<h5>3.4-3 NqGlobalVariables</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; NqGlobalVariables</code></td><td class="tdright">(&nbsp;global variable&nbsp;)</td></tr></table></div>
<p>This variable contains a list of strings with the names of the global variables that are used in the output stream of the ANU NQ. While the output stream is read, these global variables are assigned new values. To avoid overwriting these variables in case they contain values, their contents is saved before reading the output stream and restored afterwards.</p>

<p><a id="X804DD7CE815D87C9" name="X804DD7CE815D87C9"></a></p>

<h4>3.5 <span class="Heading">Diagnostic Output</span></h4>

<p>While the standalone program is running it can be asked to display progress information. This is done by setting the info class <code class="code">InfoNQ</code> to <span class="SimpleMath">\(1\)</span> via the function <code class="func">SetInfoLevel</code> (<a href="../../../doc/ref/chap7_mj.html#X7B2ADC37783104B9"><span class="RefLink">Reference: InfoLevel</span></a>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NilpotentQuotient(FreeGroup(2),5);</span>
Pcp-group with orders [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SetInfoLevel( InfoNQ, 1 );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NilpotentQuotient(FreeGroup(2),5);</span>
#I  Class 1: 2 generators with relative orders  0 0
#I  Class 2: 1 generators with relative orders: 0
#I  Class 3: 2 generators with relative orders: 0 0
#I  Class 4: 3 generators with relative orders: 0 0 0
#I  Class 5: 6 generators with relative orders: 0 0 0 0 0 0
Pcp-group with orders [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SetInfoLevel( InfoNQ, 0 );</span>
</pre></div>


<div class="chlinkprevnextbot">&nbsp;<a href="chap0_mj.html">[Top of Book]</a>&nbsp;  <a href="chap0_mj.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap2_mj.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap4_mj.html">[Next Chapter]</a>&nbsp;  </div>


<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0_mj.html">Top</a>  <a href="chap1_mj.html">1</a>  <a href="chap2_mj.html">2</a>  <a href="chap3_mj.html">3</a>  <a href="chap4_mj.html">4</a>  <a href="chap5_mj.html">5</a>  <a href="chapA_mj.html">A</a>  <a href="chapBib_mj.html">Bib</a>  <a href="chapInd_mj.html">Ind</a>  </div>

<hr />
<p class="foot">generated by <a href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>