1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
|
#SIXFORMAT GapDocGAP
HELPBOOKINFOSIXTMP := rec(
encoding := "UTF-8",
bookname := "nq",
entries :=
[ [ "Title page", ".", [ 0, 0, 0 ], 1, 1, "title page", "X7D2C85EC87DD46E5" ],
[ "Copyright", ".-1", [ 0, 0, 1 ], 23, 2, "copyright", "X81488B807F2A1CF1" ]
, [ "Acknowledgements", ".-2", [ 0, 0, 2 ], 34, 2, "acknowledgements",
"X82A988D47DFAFCFA" ],
[ "Table of Contents", ".-3", [ 0, 0, 3 ], 62, 3, "table of contents",
"X8537FEB07AF2BEC8" ],
[ "\033[1X\033[33X\033[0;-2YIntroduction\033[133X\033[101X", "1",
[ 1, 0, 0 ], 1, 4, "introduction", "X7DFB63A97E67C0A1" ],
[ "\033[1X\033[33X\033[0;-2YGeneral remarks\033[133X\033[101X", "2",
[ 2, 0, 0 ], 1, 5, "general remarks", "X7A696C2A78E88D1A" ],
[
"\033[1X\033[33X\033[0;-2YCommutators and the Lower Central Series\033[133X\
\033[101X", "2.1", [ 2, 1, 0 ], 8, 5,
"commutators and the lower central series", "X7E33A61A831C0068" ],
[ "\033[1X\033[33X\033[0;-2YNilpotent groups\033[133X\033[101X", "2.2",
[ 2, 2, 0 ], 36, 5, "nilpotent groups", "X8463EF6A821FFB69" ],
[ "\033[1X\033[33X\033[0;-2YNilpotent presentations\033[133X\033[101X",
"2.3", [ 2, 3, 0 ], 63, 6, "nilpotent presentations",
"X8268F8197E6BD786" ],
[ "\033[1X\033[33X\033[0;-2YA sketch of the algorithm\033[133X\033[101X",
"2.4", [ 2, 4, 0 ], 128, 7, "a sketch of the algorithm",
"X7DAF9CC17F6B868D" ],
[ "\033[1X\033[33X\033[0;-2YIdentical Relations\033[133X\033[101X", "2.5",
[ 2, 5, 0 ], 177, 7, "identical relations", "X84EF796487BC1822" ],
[ "\033[1X\033[33X\033[0;-2YExpression Trees\033[133X\033[101X", "2.6",
[ 2, 6, 0 ], 232, 8, "expression trees", "X861A2C6385F6BCF5" ],
[
"\033[1X\033[33X\033[0;-2YA word about the implementation\033[133X\033[101X\
", "2.7", [ 2, 7, 0 ], 292, 9, "a word about the implementation",
"X7E27CA7F7E797520" ],
[
"\033[1X\033[33X\033[0;-2YThe input format of the standalone\033[133X\033[1\
01X", "2.8", [ 2, 8, 0 ], 353, 10, "the input format of the standalone",
"X79E150AA823439A8" ],
[ "\033[1X\033[33X\033[0;-2YThe Functions of the Package\033[133X\033[101X",
"3", [ 3, 0, 0 ], 1, 11, "the functions of the package",
"X82738C527E6AC670" ],
[
"\033[1X\033[33X\033[0;-2YNilpotent Quotients of Finitely Presented Groups\\
033[133X\033[101X", "3.1", [ 3, 1, 0 ], 4, 11,
"nilpotent quotients of finitely presented groups", "X7D147D4182F85244"
], [ "\033[1X\033[33X\033[0;-2YExpression Trees\033[133X\033[101X",
"3.2", [ 3, 2, 0 ], 295, 16, "expression trees", "X861A2C6385F6BCF5" ],
[ "\033[1X\033[33X\033[0;-2YAuxiliary Functions\033[133X\033[101X", "3.3",
[ 3, 3, 0 ], 348, 17, "auxiliary functions", "X866E18057EF83F65" ],
[ "\033[1X\033[33X\033[0;-2YGlobal Variables\033[133X\033[101X", "3.4",
[ 3, 4, 0 ], 453, 19, "global variables", "X7D9044767BEB1523" ],
[ "\033[1X\033[33X\033[0;-2YDiagnostic Output\033[133X\033[101X", "3.5",
[ 3, 5, 0 ], 502, 19, "diagnostic output", "X804DD7CE815D87C9" ],
[ "\033[1X\033[33X\033[0;-2YExamples\033[133X\033[101X", "4", [ 4, 0, 0 ],
1, 21, "examples", "X7A489A5D79DA9E5C" ],
[ "\033[1X\033[33X\033[0;-2YRight Engel elements\033[133X\033[101X", "4.1",
[ 4, 1, 0 ], 4, 21, "right engel elements", "X8638E6CE7B5955FB" ],
[ "\033[1X\033[33X\033[0;-2YInstallation of the Package\033[133X\033[101X",
"5", [ 5, 0, 0 ], 1, 23, "installation of the package",
"X79E1ED167D631DCC" ],
[ "\033[1X\033[33X\033[0;-2YConfiguring for compilation\033[133X\033[101X",
"5.1", [ 5, 1, 0 ], 6, 23, "configuring for compilation",
"X783433687E4C822A" ],
[ "\033[1X\033[33X\033[0;-2YCompiling the nq binary\033[133X\033[101X",
"5.2", [ 5, 2, 0 ], 49, 24, "compiling the nq binary",
"X83FF596582258A74" ],
[ "\033[1X\033[33X\033[0;-2YTesting\033[133X\033[101X", "5.3", [ 5, 3, 0 ],
67, 24, "testing", "X7DE7E7187BE24368" ],
[ "\033[1X\033[33X\033[0;-2YFeedback\033[133X\033[101X", "5.4",
[ 5, 4, 0 ], 81, 24, "feedback", "X80D704CC7EBFDF7A" ],
[ "\033[1X\033[33X\033[0;-2YThe nq command line interface\033[133X\033[101X"
, "a", [ "A", 0, 0 ], 1, 25, "the nq command line interface",
"X78A212947932A6D3" ],
[ "\033[1X\033[33X\033[0;-2YHow to use the ANU NQ\033[133X\033[101X",
"a.1", [ "A", 1, 0 ], 4, 25, "how to use the anu nq",
"X7B495102781E821B" ],
[
"\033[1X\033[33X\033[0;-2YThe input format for presentations\033[133X\033[1\
01X", "a.2", [ "A", 2, 0 ], 143, 27, "the input format for presentations",
"X791091ED814A9B87" ],
[ "\033[1X\033[33X\033[0;-2YAn example\033[133X\033[101X", "a.3",
[ "A", 3, 0 ], 173, 27, "an example", "X7B5623E3821CC0D0" ],
[
"\033[1X\033[33X\033[0;-2YSome remarks about the algorithm\033[133X\033[101\
X", "a.4", [ "A", 4, 0 ], 250, 29, "some remarks about the algorithm",
"X829490077E75F283" ],
[ "Bibliography", "bib", [ "Bib", 0, 0 ], 1, 30, "bibliography",
"X7A6F98FD85F02BFE" ],
[ "References", "bib", [ "Bib", 0, 0 ], 1, 30, "references",
"X7A6F98FD85F02BFE" ],
[ "Index", "ind", [ "Ind", 0, 0 ], 1, 31, "index", "X83A0356F839C696F" ],
[ "License", ".-1", [ 0, 0, 1 ], 23, 2, "license", "X81488B807F2A1CF1" ],
[ "\033[5Xnq\033[105X", ".-3", [ 0, 0, 3 ], 62, 3, "nq",
"X8537FEB07AF2BEC8" ],
[ "commutator", "2.1", [ 2, 1, 0 ], 8, 5, "commutator", "X7E33A61A831C0068"
],
[ "left-normed commutator", "2.1", [ 2, 1, 0 ], 8, 5,
"left-normed commutator", "X7E33A61A831C0068" ],
[ "lower central series", "2.1", [ 2, 1, 0 ], 8, 5, "lower central series",
"X7E33A61A831C0068" ],
[ "nilpotent", "2.2", [ 2, 2, 0 ], 36, 5, "nilpotent", "X8463EF6A821FFB69" ]
, [ "nilpotency class", "2.2", [ 2, 2, 0 ], 36, 5, "nilpotency class",
"X8463EF6A821FFB69" ],
[ "class", "2.2", [ 2, 2, 0 ], 36, 5, "class", "X8463EF6A821FFB69" ],
[ "polycyclic", "2.2", [ 2, 2, 0 ], 36, 5, "polycyclic",
"X8463EF6A821FFB69" ],
[ "polycyclic generating sequence", "2.2", [ 2, 2, 0 ], 36, 5,
"polycyclic generating sequence", "X8463EF6A821FFB69" ],
[ "polycyclic presentation", "2.3", [ 2, 3, 0 ], 63, 6,
"polycyclic presentation", "X8268F8197E6BD786" ],
[ "power relation", "2.3", [ 2, 3, 0 ], 63, 6, "power relation",
"X8268F8197E6BD786" ],
[ "commutator relation", "2.3", [ 2, 3, 0 ], 63, 6, "commutator relation",
"X8268F8197E6BD786" ],
[ "nilpotent presentation", "2.3", [ 2, 3, 0 ], 63, 6,
"nilpotent presentation", "X8268F8197E6BD786" ],
[ "consistent", "2.3", [ 2, 3, 0 ], 63, 6, "consistent",
"X8268F8197E6BD786" ],
[ "identical relation", "2.5", [ 2, 5, 0 ], 177, 7, "identical relation",
"X84EF796487BC1822" ],
[ "law", "2.5", [ 2, 5, 0 ], 177, 7, "law", "X84EF796487BC1822" ],
[ "identical generator", "2.5", [ 2, 5, 0 ], 177, 7, "identical generator",
"X84EF796487BC1822" ],
[ "right Engel element", "2.5", [ 2, 5, 0 ], 177, 7, "right engel element",
"X84EF796487BC1822" ],
[ "left Engel element", "2.5", [ 2, 5, 0 ], 177, 7, "left engel element",
"X84EF796487BC1822" ],
[ "expression trees", "2.6", [ 2, 6, 0 ], 232, 8, "expression trees",
"X861A2C6385F6BCF5" ],
[ "Nilpotent Quotient Package", "3.", [ 3, 0, 0 ], 1, 11,
"nilpotent quotient package", "X82738C527E6AC670" ],
[ "\033[2XNilpotentQuotient\033[102X", "3.1-1", [ 3, 1, 1 ], 7, 11,
"nilpotentquotient", "X8216791583DE512C" ],
[ "\033[2XNilpotentQuotient\033[102X for input from a file", "3.1-1",
[ 3, 1, 1 ], 7, 11, "nilpotentquotient for input from a file",
"X8216791583DE512C" ],
[ "options", "3.1-1", [ 3, 1, 1 ], 7, 11, "options", "X8216791583DE512C" ],
[ "options group", "3.1-1", [ 3, 1, 1 ], 7, 11, "options group",
"X8216791583DE512C" ],
[ "options input\\_string", "3.1-1", [ 3, 1, 1 ], 7, 11,
"options input_string", "X8216791583DE512C" ],
[ "options input\\_file", "3.1-1", [ 3, 1, 1 ], 7, 11, "options input_file",
"X8216791583DE512C" ],
[ "options output\\_file", "3.1-1", [ 3, 1, 1 ], 7, 11,
"options output_file", "X8216791583DE512C" ],
[ "options idgens", "3.1-1", [ 3, 1, 1 ], 7, 11, "options idgens",
"X8216791583DE512C" ],
[ "options class", "3.1-1", [ 3, 1, 1 ], 7, 11, "options class",
"X8216791583DE512C" ],
[ "\033[2XNilpotentEngelQuotient\033[102X", "3.1-2", [ 3, 1, 2 ], 165, 13,
"nilpotentengelquotient", "X7ACCB6267C187AB0" ],
[ "\033[2XNilpotentEngelQuotient\033[102X for input from a file", "3.1-2",
[ 3, 1, 2 ], 165, 13, "nilpotentengelquotient for input from a file",
"X7ACCB6267C187AB0" ],
[ "\033[2XNqEpimorphismNilpotentQuotient\033[102X", "3.1-3", [ 3, 1, 3 ],
222, 14, "nqepimorphismnilpotentquotient", "X8758F663782AE655" ],
[ "\033[2XLowerCentralFactors\033[102X", "3.1-4", [ 3, 1, 4 ], 281, 15,
"lowercentralfactors", "X827C2D4F78C982FC" ],
[ "\033[2XExpressionTrees\033[102X", "3.2-1", [ 3, 2, 1 ], 298, 16,
"expressiontrees", "X7CC7CDDD876BB8EB" ],
[ "\033[2XExpressionTrees\033[102X for a list of names", "3.2-1",
[ 3, 2, 1 ], 298, 16, "expressiontrees for a list of names",
"X7CC7CDDD876BB8EB" ],
[ "\033[2XEvaluateExpTree\033[102X", "3.2-2", [ 3, 2, 2 ], 324, 16,
"evaluateexptree", "X879956307B67A136" ],
[ "\033[2XNqReadOutput\033[102X", "3.3-1", [ 3, 3, 1 ], 351, 17,
"nqreadoutput", "X855407657CB86F40" ],
[ "\033[2XNqStringFpGroup\033[102X", "3.3-2", [ 3, 3, 2 ], 359, 17,
"nqstringfpgroup", "X8443537679BC81D5" ],
[ "\033[2XNqStringExpTrees\033[102X", "3.3-3", [ 3, 3, 3 ], 402, 18,
"nqstringexptrees", "X82684F4D79A786F5" ],
[ "\033[2XNqElementaryDivisors\033[102X", "3.3-4", [ 3, 3, 4 ], 442, 18,
"nqelementarydivisors", "X7A28800579A2BB35" ],
[ "\033[2XNqRuntime\033[102X", "3.4-1", [ 3, 4, 1 ], 456, 19, "nqruntime",
"X87691A167A83FAF6" ],
[ "\033[2XNqDefaultOptions\033[102X", "3.4-2", [ 3, 4, 2 ], 472, 19,
"nqdefaultoptions", "X7DFBFD1580BF024A" ],
[ "\033[2XNqGlobalVariables\033[102X", "3.4-3", [ 3, 4, 3 ], 492, 19,
"nqglobalvariables", "X83D1AFCB7EFF4380" ] ]
);
|