File: G2.out

package info (click to toggle)
gap-nq 2.5.11-2
  • links: PTS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,060 kB
  • sloc: ansic: 4,435; xml: 1,598; sh: 1,259; makefile: 254; javascript: 155
file content (178 lines) | stat: -rw-r--r-- 5,250 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
#
#    Calculating a nilpotent quotient
#    Nilpotency class: 11
#    Size of exponents: 8 bytes
#
#    Calculating the abelian quotient ...
#    The abelian quotient has 2 generators
#        with the following exponents: 0 0
#
#    Calculating the class 2 quotient ...
##  Sizes:  2  3
#    Layer 2 of the lower central series has 1 generators
#          with the following exponents: 0
#
#    Calculating the class 3 quotient ...
##  Sizes:  2  3  5
#    Maximal entry: 0
#    Layer 3 of the lower central series has 1 generators
#          with the following exponents: 0
#
#    Calculating the class 4 quotient ...
##  Sizes:  2  3  4  7
#    Maximal entry: 0
#    Layer 4 of the lower central series has 1 generators
#          with the following exponents: 0
#
#    Calculating the class 5 quotient ...
##  Sizes:  2  3  4  5  9
#    Maximal entry: 0
#    Layer 5 of the lower central series has 1 generators
#          with the following exponents: 0
#
#    Calculating the class 6 quotient ...
##  Sizes:  2  3  4  5  6  11
#    Maximal entry: 0
#    Layer 6 of the lower central series has 1 generators
#          with the following exponents: 2
#
#    Calculating the class 7 quotient ...
##  Sizes:  2  3  4  5  6  7  14
#    Maximal entry: 0
#    Layer 7 of the lower central series has 2 generators
#          with the following exponents: 2 2
#
#    Calculating the class 8 quotient ...
##  Sizes:  2  3  4  5  6  7  9  20
#    Maximal entry: 2
#    Layer 8 of the lower central series has 2 generators
#          with the following exponents: 2 2
#
#    Calculating the class 9 quotient ...
##  Sizes:  2  3  4  5  6  7  9  11  26
#    Maximal entry: 4
#    Layer 9 of the lower central series has 2 generators
#          with the following exponents: 2 2
#
#    Calculating the class 10 quotient ...
##  Sizes:  2  3  4  5  6  7  9  11  13  32
#    Maximal entry: 4
#    Layer 10 of the lower central series has 1 generators
#          with the following exponents: 2
#
#    Calculating the class 11 quotient ...
##  Sizes:  2  3  4  5  6  7  9  11  13  14  35
#    Integer matrix is the identity.
#    Maximal entry: 5


#    The epimorphism :
#    e1 |---> A
#    e2 |---> B


#    The nilpotent quotient :
    <A,B,C,D,E,F,G,H,I,J,K,L,M,N
      |
        G^2 = H*I*J*K*L*M,
        H^2 = K,
        I^2 = J*M*N,
        J^2 = M,
        K^2 = L,
        L^2,
        M^2 = N,
        N^2,
        B^A           =: B*C,
        B^(A^-1)      =  B*C^-1,
        C^A           =  C,
        C^(A^-1)      =  C,
        C^B           =: C*D,
        C^(B^-1)      =  C*D^-1*E*J,
        D^A           =  D*F*K*L,
        D^(A^-1)      =  D*F^-1*H*L,
        D^B           =: D*E,
        D^(B^-1)      =  D*E^-1*I,
        D^C           =  D*F*K*L,
        D^(C^-1)      =  D*F^-1*H*L,
        E^A           =: E*F,
        E^(A^-1)      =  E*F^-1*H*K,
        E^B           =  E*I,
        E^(B^-1)      =  E*I*J,
        E^C           =  E*G*I*J*K*L*M,
        E^(C^-1)      =  E*G*H*M*N,
        E^D           =  E*I,
        E^(D^-1)      =  E*I*J,
        F^A           =  F*H*K*L,
        F^(A^-1)      =  F*H*L,
        F^B           =: F*G,
        F^(B^-1)      =  F*G*H*J*N,
        F^C           =  F*H*K*L,
        F^(C^-1)      =  F*H*L,
        F^D           =  F*K*M,
        F^(D^-1)      =  F*K*L*M*N,
        F^E           =  F*M,
        F^(E^-1)      =  F*M*N,
        G^A           =: G*H,
        G^(A^-1)      =  G*H*K,
        G^B           =: G*I,
        G^(B^-1)      =  G*I*J,
        G^C           =  G*J*K*L*N,
        G^(C^-1)      =  G*J*K*M*N,
        G^D           =  G,
        G^(D^-1)      =  G,
        G^E           =  G,
        G^(E^-1)      =  G,
        H^A           =  H*L,
        H^(A^-1)      =  H*L,
        H^B           =: H*J,
        H^(B^-1)      =  H*J*M*N,
        H^C           =  H*L,
        H^(C^-1)      =  H*L,
        H^D           =  H,
        H^(D^-1)      =  H,
        I^A           =: I*K,
        I^(A^-1)      =  I*K*L,
        I^B           =  I,
        I^(B^-1)      =  I,
        I^C           =  I*M*N,
        I^(C^-1)      =  I*M,
        I^D           =  I,
        I^(D^-1)      =  I,
        J^A           =: J*L,
        J^(A^-1)      =  J*L,
        J^B           =  J,
        J^(B^-1)      =  J,
        J^C           =  J*N,
        J^(C^-1)      =  J*N,
        K^A           =  K,
        K^(A^-1)      =  K,
        K^B           =: K*M,
        K^(B^-1)      =  K*M*N,
        K^C           =  K,
        K^(C^-1)      =  K,
        L^A           =  L,
        L^(A^-1)      =  L,
        L^B           =: L*N,
        L^(B^-1)      =  L*N,
        M^A           =  M,
        M^(A^-1)      =  M,
        M^B           =  M,
        M^(B^-1)      =  M >

#    Class : 10
#    Nr of generators of each class : 2 1 1 1 1 1 2 2 2 1


#    The definitions:
#    C := [ B, A ]
#    D := [ B, A, B ]
#    E := [ B, A, B, B ]
#    F := [ B, A, B, B, A ]
#    G := [ B, A, B, B, A, B ]
#    H := [ B, A, B, B, A, B, A ]
#    I := [ B, A, B, B, A, B, B ]
#    J := [ B, A, B, B, A, B, A, B ]
#    K := [ B, A, B, B, A, B, B, A ]
#    L := [ B, A, B, B, A, B, A, B, A ]
#    M := [ B, A, B, B, A, B, B, A, B ]
#    N := [ B, A, B, B, A, B, A, B, A, B ]