1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
|
#
# Calculating a nilpotent quotient
# Nilpotency class: 11
# Size of exponents: 8 bytes
#
# Calculating the abelian quotient ...
# The abelian quotient has 2 generators
# with the following exponents: 0 0
#
# Calculating the class 2 quotient ...
## Sizes: 2 3
# Layer 2 of the lower central series has 1 generators
# with the following exponents: 0
#
# Calculating the class 3 quotient ...
## Sizes: 2 3 5
# Maximal entry: 0
# Layer 3 of the lower central series has 1 generators
# with the following exponents: 0
#
# Calculating the class 4 quotient ...
## Sizes: 2 3 4 7
# Maximal entry: 0
# Layer 4 of the lower central series has 1 generators
# with the following exponents: 0
#
# Calculating the class 5 quotient ...
## Sizes: 2 3 4 5 9
# Maximal entry: 0
# Layer 5 of the lower central series has 1 generators
# with the following exponents: 0
#
# Calculating the class 6 quotient ...
## Sizes: 2 3 4 5 6 11
# Maximal entry: 0
# Layer 6 of the lower central series has 1 generators
# with the following exponents: 2
#
# Calculating the class 7 quotient ...
## Sizes: 2 3 4 5 6 7 14
# Maximal entry: 0
# Layer 7 of the lower central series has 2 generators
# with the following exponents: 2 2
#
# Calculating the class 8 quotient ...
## Sizes: 2 3 4 5 6 7 9 20
# Maximal entry: 2
# Layer 8 of the lower central series has 2 generators
# with the following exponents: 2 2
#
# Calculating the class 9 quotient ...
## Sizes: 2 3 4 5 6 7 9 11 26
# Maximal entry: 4
# Layer 9 of the lower central series has 2 generators
# with the following exponents: 2 2
#
# Calculating the class 10 quotient ...
## Sizes: 2 3 4 5 6 7 9 11 13 32
# Maximal entry: 4
# Layer 10 of the lower central series has 1 generators
# with the following exponents: 2
#
# Calculating the class 11 quotient ...
## Sizes: 2 3 4 5 6 7 9 11 13 14 35
# Integer matrix is the identity.
# Maximal entry: 5
# The epimorphism :
# e1 |---> A
# e2 |---> B
# The nilpotent quotient :
<A,B,C,D,E,F,G,H,I,J,K,L,M,N
|
G^2 = H*I*J*K*L*M,
H^2 = K,
I^2 = J*M*N,
J^2 = M,
K^2 = L,
L^2,
M^2 = N,
N^2,
B^A =: B*C,
B^(A^-1) = B*C^-1,
C^A = C,
C^(A^-1) = C,
C^B =: C*D,
C^(B^-1) = C*D^-1*E*J,
D^A = D*F*K*L,
D^(A^-1) = D*F^-1*H*L,
D^B =: D*E,
D^(B^-1) = D*E^-1*I,
D^C = D*F*K*L,
D^(C^-1) = D*F^-1*H*L,
E^A =: E*F,
E^(A^-1) = E*F^-1*H*K,
E^B = E*I,
E^(B^-1) = E*I*J,
E^C = E*G*I*J*K*L*M,
E^(C^-1) = E*G*H*M*N,
E^D = E*I,
E^(D^-1) = E*I*J,
F^A = F*H*K*L,
F^(A^-1) = F*H*L,
F^B =: F*G,
F^(B^-1) = F*G*H*J*N,
F^C = F*H*K*L,
F^(C^-1) = F*H*L,
F^D = F*K*M,
F^(D^-1) = F*K*L*M*N,
F^E = F*M,
F^(E^-1) = F*M*N,
G^A =: G*H,
G^(A^-1) = G*H*K,
G^B =: G*I,
G^(B^-1) = G*I*J,
G^C = G*J*K*L*N,
G^(C^-1) = G*J*K*M*N,
G^D = G,
G^(D^-1) = G,
G^E = G,
G^(E^-1) = G,
H^A = H*L,
H^(A^-1) = H*L,
H^B =: H*J,
H^(B^-1) = H*J*M*N,
H^C = H*L,
H^(C^-1) = H*L,
H^D = H,
H^(D^-1) = H,
I^A =: I*K,
I^(A^-1) = I*K*L,
I^B = I,
I^(B^-1) = I,
I^C = I*M*N,
I^(C^-1) = I*M,
I^D = I,
I^(D^-1) = I,
J^A =: J*L,
J^(A^-1) = J*L,
J^B = J,
J^(B^-1) = J,
J^C = J*N,
J^(C^-1) = J*N,
K^A = K,
K^(A^-1) = K,
K^B =: K*M,
K^(B^-1) = K*M*N,
K^C = K,
K^(C^-1) = K,
L^A = L,
L^(A^-1) = L,
L^B =: L*N,
L^(B^-1) = L*N,
M^A = M,
M^(A^-1) = M,
M^B = M,
M^(B^-1) = M >
# Class : 10
# Nr of generators of each class : 2 1 1 1 1 1 2 2 2 1
# The definitions:
# C := [ B, A ]
# D := [ B, A, B ]
# E := [ B, A, B, B ]
# F := [ B, A, B, B, A ]
# G := [ B, A, B, B, A, B ]
# H := [ B, A, B, B, A, B, A ]
# I := [ B, A, B, B, A, B, B ]
# J := [ B, A, B, B, A, B, A, B ]
# K := [ B, A, B, B, A, B, B, A ]
# L := [ B, A, B, B, A, B, A, B, A ]
# M := [ B, A, B, B, A, B, B, A, B ]
# N := [ B, A, B, B, A, B, A, B, A, B ]
|