File: new.g

package info (click to toggle)
gap-openmath 11.5.0%2Bds-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 632 kB
  • sloc: xml: 460; makefile: 10
file content (191 lines) | stat: -rw-r--r-- 5,297 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
###########################################################################
##
#W    new.g               OpenMath Package                 Marco Costantini
#W                                                      Alexander Konovalov
##
#Y  Copyright (C) 1999, 2000, 2001, 2006
#Y  School Math and Comp. Sci., University of St.  Andrews, Scotland
#Y  Copyright (C) 2004, 2005, 2006 Marco Costantini
##
##  This file contains updates to the record OMsymRecord, according to 
##  the current OpenMath CDs (for converting from OpenMath to GAP).
##


#######################################################################
## 
## Conversion from OpenMath to GAP, to be moved into gap.g after tests
##

OMsymRecord_new := rec(

calculus1 := rec(
	partialdiff :=
      	# the code is correct, but the problem is to match variables 
      	# during OpenMath encoding/decoding - check handling of polyd1.DMP
      	function(x)
      	local ind, f, i;
      	ind := x[1];
      	f := x[2];
      	for i in ind do
        	Print( "Derivative of ", f, " by ", i, " = \c" );
        	f := Derivative( f, i );
        	Print( f, "\n" );
        	if IsZero(f) then
          		return f;
        	fi;
      	od;
      	return f;
      	end
),

complex1 := rec(
	argument := fail,
	complex_cartesian := x -> OMgapId([OMgap2ARGS(x), x[1]+E(4)*x[2]])[2],
	complex_polar := fail,
    conjugate := x -> OMgapId([OMgap1ARGS(x), x -> ComplexConjugate( x[1] )])[2], # check this!!!
    imaginary := x -> OMgapId([OMgap1ARGS(x), x -> (x[1] - ComplexConjugate( x[1] )) / 2]* -1/2 *E(4))[2], # check this!!!
    real := x -> OMgapId([OMgap1ARGS(x), x -> (x[1] + ComplexConjugate( x[1] )) / 2])[2] # check this!!!
),

linalg1 := rec(
	determinant := x -> DeterminantMat(x[1]),
    matrix_selector := x -> x[3][x[1]][x[2]],
    outerproduct := x -> TransposedMat([x[1]])*[x[2]],    
    scalarproduct := x -> x[1]*x[2],
    transpose := x -> TransposedMat(x[1]),
    vector_selector := x -> x[2][x[1]],
    vectorproduct := 
    	function( x )
		local z1, z2, z3;
		z1 := x[1][2]*x[2][3] - x[1][3]*x[2][2];
		z2 := x[1][3]*x[2][1] - x[1][1]*x[2][3];
		z3 := x[1][1]*x[2][2] - x[1][2]*x[2][1];
		return [ z1, z2, z3 ];
    	end 	
),

linalg2 := rec(
    matrix := OMgapMatrix,
	matrixrow := OMgapMatrixRow,
    vector := OMgapMatrixRow
),

linalg3 := rec(
	matrix := fail, 
	matrixcolumn := fail, 
	vector := fail
),

linalg4 := rec(
	characteristic_eqn :=fail, 
	columncount :=fail, 
	eigenvalue :=fail, 
	eigenvector :=fail, 
	rank :=fail, 
	rowcount :=fail, 
	size := fail
),

linalg5 := rec(
	("anti-Hermitian") :=fail, 
	banded :=fail, 
	constant :=fail, 
	diagonal_matrix :=fail, 
	Hermitian :=fail, 
	identity :=fail, 
	("lower-Hessenberg") :=fail, 
	("lower-triangular") :=fail, 
	scalar :=fail, 
	("skew-symmetric") :=fail, 
	symmetric :=fail, 
	tridiagonal :=fail, 
	("upper-Hessenberg") :=fail, 
	("upper-triangular") :=fail, 
	zero := fail
),

linalg6 := rec(
	matrix_tensor := fail, 
	vector_tensor := fail
),	

linalg7 := rec(
	list_to_matrix := fail, 
	list_to_vector := fail
),

minmax1 := rec(
	min := x -> Minimum(x[1]),
    max := x-> Maximum(x[1])
),

relation3 := rec( # TO BE TESTED 
    class := fail, 
    classes := fail,
    equivalence_closure := x -> TransitiveClosureBinaryRelation( 
                                  SymmetricClosureBinaryRelation(
                                    ReflexiveClosureBinaryRelation( x[1] ) ) ),   
    is_equivalence := x -> IsEquivalenceRelation( x[1] ),
    is_reflexive := x -> IsReflexiveBinaryRelation( x[1] ),
	is_relation := fail,
    is_symmetric := x -> IsSymmetricBinaryRelation( x[1] ),
    is_transitive := x -> IsTransitiveBinaryRelation( x[1] ),
    reflexive_closure := x -> ReflexiveClosureBinaryRelation( x[1] ),
    symmetric_closure := x -> SymmetricClosureBinaryRelation( x[1] ),
    transitive_closure := x -> TransitiveClosureBinaryRelation( x[1] )
),

relation4 := rec(
	eqs := fail
),

);

OM_append_new := function (  )
    local cd, name;
    MakeReadWriteGlobal( "OMsymRecord" );
    for cd in RecNames( OMsymRecord_new )  do
    	if IsBound( OMsymRecord.(cd) ) then
    		for name in RecNames( OMsymRecord_new.(cd) ) do
    	    	OMsymRecord.(cd).(name) := OMsymRecord_new.(cd).(name);
    	  	od;
    	else
    	  	OMsymRecord.(cd) := OMsymRecord_new.(cd);     
    	fi;
    od;	   
    MakeReadOnlyGlobal( "OMsymRecord" );
end;

OM_append_new();

Unbind( OM_append_new );

OMsymRecord_private := rec();

OM_append_private := function (  )
    local cd, name;
    if IsExistingFile( Concatenation( GAPInfo.PackagesInfo.("openmath")[1].InstallationPath,"/private/private.g") ) then
		Read( Concatenation( GAPInfo.PackagesInfo.("openmath")[1].InstallationPath,"/private/private.g") );
    fi;
    MakeReadWriteGlobal( "OMsymRecord" );
    for cd in RecNames( OMsymRecord_private )  do
    	if IsBound( OMsymRecord.(cd) ) then
    		for name in RecNames( OMsymRecord_private.(cd) ) do
    	    	OMsymRecord.(cd).(name) := OMsymRecord_private.(cd).(name);
    	  	od;
    	else
    	  	OMsymRecord.(cd) := OMsymRecord_private.(cd);     
    	fi;
    od;	   
    MakeReadOnlyGlobal( "OMsymRecord" );
end;

OM_append_private();

Unbind( OM_append_private );


#############################################################################
#E