File: init.g

package info (click to toggle)
gap-openmath 11.5.3%2Bds-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 628 kB
  • sloc: xml: 464; makefile: 10
file content (110 lines) | stat: -rw-r--r-- 3,560 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
#############################################################################
##
#W    init.g               OpenMath Package            Andrew Solomon
#W                                                     Marco Costantini
##
#Y    Copyright (C) 1999, 2000, 2001, 2006
#Y    School Math and Comp. Sci., University of St.  Andrews, Scotland
#Y    Copyright (C) 2004, 2005, 2006 Marco Costantini
##
##    init.g file
##

#############################################################################
#
# Reading configuration file
#
ReadPackage("openmath", "config.g");

#############################################################################
#
# Reading *.gd files
#
ReadPackage("openmath", "/gap/parse.gd");
ReadPackage("openmath", "/gap/xmltree.gd");
ReadPackage("openmath", "/gap/omget.gd");
ReadPackage("openmath", "/gap/omput.gd");
ReadPackage("openmath", "/gap/testing.gd");

#############################################################################
##
## Reading *.g files organised into modules
##
#############################################################################
## Module 1: conversion from OpenMath to Gap
#################################################################
## Module 1.1 
## This module contains the semantic mappings from parsed openmath
## symbols to GAP objects and provides the function OMsymLookup

ReadPackage("openmath", "/gap/gap.g");


#################################################################
## Module 1.2.b
## This module converts the OpenMath XML into a tree and parses it;
## requires the function OMsymLookup (and the function 
## ParseTreeXMLString from package GapDoc) and provides 
## the function OMgetObjectXMLTree

if IsBound( ParseTreeXMLString )  then
    ReadPackage("openmath", "/gap/xmltree.g");
fi;


#################################################################
## Module 1.3
## This module gets exactly one OpenMath object from <input stream>;
## provides the function PipeOpenMathObject

ReadPackage("openmath", "/gap/pipeobj.g");


#############################################################################
##
## Binary OpenMath --> GAP
##
ReadPackage("openmath", "/gap/const.g");
ReadPackage("openmath", "/gap/binread.g");


#################################################################
## Module 1.4
## This module converts one OpenMath object to a Gap object; requires
## PipeOpenMathObject and one of the functions OMpipeObject or
## OMgetObjectXMLTree and provides OMGetObject

ReadPackage("openmath", "/gap/omget.g");

# file containing updates
ReadPackage("openmath", "/gap/new.g");

#############################################################################
## Module 2: conversion from Gap to OpenMath
## (Modules 1 and 2 are independent)

#################################################################
## Module 2.1 
## This module is concerned with outputting OpenMath; 
## It provides OMPutObject and OMPrint in "/gap/omput.gi"


#################################################################
## Module 2.2
## This module is concerned with viewing Hasse diagrams;
## requires the variables defined in gap/omput.gd

ReadPackage("openmath", "/hasse/config.g");
ReadPackage("openmath", "/hasse/hasse.g");


#############################################################################
## Module 3: testing
## Provides the function OMTest for testing OMGetObject.OMPutObject = id
## requires OMGetObject and OMPutObject

ReadPackage("openmath", "/gap/testing.g");


#############################################################################
#E