File: basic.gi

package info (click to toggle)
gap-polenta 1.3.11-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 1,040 kB
  • sloc: xml: 720; javascript: 155; makefile: 97
file content (253 lines) | stat: -rw-r--r-- 7,726 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
#############################################################################
##
#W basic.gi               POLENTA package                     Bjoern Assmann
##
## Methods for the calculation of
## constructive pc-sequences for polycyclic rational matrix groups
##
#Y 2003
##

#############################################################################
##
#F DetermineAdmissiblePrime(gensOfG)
##
## determines a prime number which does not divide  the denominators
## of the entries of the matrices in gensOfG and which does not divide the
## the entries of the inverses of the matrices in gensOfG
##
## input is a list of generators of a rational polycyclic matrix group
##
InstallGlobalFunction( DetermineAdmissiblePrime , function(gensOfG)
    local d,list1,list2,g,i,j,antiPrime,temp,temp2,p,found;
    d := Length( gensOfG[1] );
    list1:=[];
    list2:=[];

    # construct a list of all elements in gensOfG and their inverses
    for g in gensOfG do
        Add(list1,g);
        Add(list1,g^-1);
    od;

    # write denominators of all matrix entries in list
    for g in list1 do
        for i in [1..d] do
            for j in [1..d] do
                Add(list2,DenominatorRat(g[i][j]));
            od;
        od;
    od;
    antiPrime:=ConsideredPrimes(list2);

    # choose a small prime which is not in antiPrime
    found:=false;
    p:=3;
    while not found do
        if not p in antiPrime then
            return p;
        fi;
        p:=NextPrimeInt(p);
    od;
end );

#############################################################################
##
#F POL_NormalSubgroupGeneratorsOfK_p(pcgs,gensOfRealG)
##
## pcgs is a constructive pc-Sequence for I_p(G)
## (image of G under the p-congruence hom.).
## This function calculates  normal subgroup generators for K_p(G)
## (the kernel of the p-congruence hom.)
##
InstallGlobalFunction( POL_NormalSubgroupGeneratorsOfK_p ,
                       function( pcgs, gensOfRealG )
    local g, relations, rightSide, leftSide, preimages, revPreimages,
          preimage, genList, ftl, n, ro, i, j, exp, conj, f_i, f_j,
          r_i, pcSeq;

    n := Length(pcgs.gens);
    preimages := [];
    relations := [];

    # catch the trivial case
    if Length(pcgs.gens)=0 then
        return gensOfRealG;
    fi;

    # calcuclate all preimages of pcgs.gens
    for i in [1..n] do
        preimage := SubsWord( pcgs.wordGens[i], gensOfRealG );
        Add( preimages, preimage);
    od;

    # Attention: In pcgs.gens we have the pc-sequence in inverse order,
    # because we built up  the structure bottom up
    pcSeq := StructuralCopy(Reversed(pcgs.gens));
    revPreimages := StructuralCopy(Reversed(preimages));

    # calculate the relative orders
    ro := RelativeOrdersPcgs_finite( pcgs );

    # express the power relations in terms of gensOfRealG
    for i in [1..n] do
        f_i := pcSeq[i];
        r_i := ro[i];
        exp := ExponentvectorPcgs_finite( pcgs, f_i^r_i );
        leftSide := revPreimages[i]^r_i;
        rightSide := Exp2Groupelement(revPreimages,exp);
        Add(relations,leftSide*(rightSide^-1));
    od;

    # conjugation relations
    for i in [1..n] do
        for j in [1..(i-1)] do
            f_i := pcSeq[i];
            f_j := pcSeq[j];
            conj := (f_j^-1)*f_i*f_j;
            exp := ExponentvectorPcgs_finite( pcgs, conj);
            leftSide := (revPreimages[j]^-1)*revPreimages[i]*revPreimages[j];
            rightSide := Exp2Groupelement(revPreimages,exp);
            Add( relations, leftSide*(rightSide^-1));
        od;
    od;

    # Add  some other relations, because we changed the generating
    # set of the image under the p-congruence hom.
    for i in [1..Length(pcgs.gensOfG)] do
        exp := ExponentvectorPcgs_finite( pcgs, pcgs.gensOfG[i]);
        rightSide := Exp2Groupelement( revPreimages, exp);
        leftSide := gensOfRealG[i];
        Add( relations, leftSide*(rightSide^-1));
    od;
    return relations;
end );

#############################################################################
##
#F Exp2Groupelement(list,exp)
##
InstallGlobalFunction( Exp2Groupelement, function(list,exp)
    local g,i;
    g:=list[1]^0;
    for i in [1..Length(list)] do
        g:=g*list[i]^exp[i];
    od;
    return g;
end );

#############################################################################
##
#F CopyMatrixList(list)
##
InstallGlobalFunction( CopyMatrixList, function(list)
    local i,j,k,list2;
    list2:=[];
    for i in [1..Length(list)] do
        Add(list2,[]);
        for j in [1..Length(list[i])] do
            Add(list2[i],[]);
            for k in [1..Length(list[i][j])] do
                Add(list2[i][j],[]);
                list2[i][j][k]:= list[i][j][k];
            od;
        od;
    od;
    return list2;
end );


#############################################################################
##
#F POL_CopyVectorList(list)
##
InstallGlobalFunction( POL_CopyVectorList, function(list)
    local i,j,k,list2;
    list2:=[];
    for i in [1..Length(list)] do
        Add(list2,[]);
        for j in [1..Length(list[i])] do
            Add(list2[i],[]);
                list2[i][j]:= list[i][j];
        od;
    od;
    return list2;
end );

#############################################################################
##
#F POL_NormalSubgroupGeneratorsU_p( pcgs_GU, gens, gens_K_p )
##
## pcgs_GU  is a constructive pc-Sequence for G/U,
## this function calculates normal subgroup generators for U_p(G)
##
InstallGlobalFunction( POL_NormalSubgroupGeneratorsU_p ,
                       function( pcgs_GU, gens, gens_K_p )
    local relations,rightSide,leftSide,preimages,revPreimages,
          preimage,genList,ftl,n,ro,i,j,exp,conj,f_i,f_j,r_i,pcs, g, k;

    # setup
    pcs := pcgs_GU.pcs;
    n:=Length(pcs);
    preimages:=[];
    relations:=[];
    k := Length( pcgs_GU.pcgs_I_p.gens );

    # catch the trivial case (G/U trivial)
    if Length(pcgs_GU.pcs)=0 then
       return gens;
    fi;

    # catch the trivial case (U_p = 1)
    if Length(pcgs_GU.radicalSeries)=2 then
       return [];
    fi;

    # calculate the relative orders
    #ro:= RelativeOrdersPcgs( pcgs );
    ro := RelativeOrders_CPCS_FactorGU_p( pcgs_GU );

    # the elements stored in gens_K_p where found by evaluating
    # the pcp-relations of G/I_p. So we don't have to calculate them
    # again.
    for g in gens_K_p do
        exp := ExponentVector_CPCS_FactorGU_p( pcgs_GU, g );
        leftSide := g;
        rightSide := Exp2Groupelement( pcs, exp );
        Add( relations, leftSide*(rightSide^-1) );
    od;

    # Express the power relations in terms of gens
    for i in [ (k+1)..n ] do
        f_i:=pcs[i];
        r_i:=ro[i];
        # we have to exclude the case r_i=0 because this means that
        # the order is equal to infinity
        if not r_i=0 then
            exp:=ExponentVector_CPCS_FactorGU_p(pcgs_GU,f_i^r_i);
            leftSide:=f_i^r_i;
            rightSide:=Exp2Groupelement(pcs,exp);
            Add( relations, leftSide*(rightSide^-1) );
        fi;
    od;

    # conjugation relations
    for i in [ (k+1)..n ] do
        for j in [1..(i-1)] do
            f_i := pcs[i];
            f_j := pcs[j];
            conj := (f_j^-1)*f_i*f_j;
            exp := ExponentVector_CPCS_FactorGU_p( pcgs_GU, conj );
            leftSide := (pcs[j]^-1)*pcs[i]*pcs[j];
            rightSide := Exp2Groupelement(pcs,exp);
            Add( relations, leftSide*(rightSide^-1) );
        od;
    od;
    relations := Filtered( relations,x -> not x=x^0 );
    if Length( relations ) = 0 then relations[1] := gens[1]^0; fi;
    return relations;
end );

#############################################################################
##
#E