1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
|
#############################################################################
##
#W basic.gi POLENTA package Bjoern Assmann
##
## Methods for the calculation of
## constructive pc-sequences for polycyclic rational matrix groups
##
#Y 2003
##
#############################################################################
##
#F DetermineAdmissiblePrime(gensOfG)
##
## determines a prime number which does not divide the denominators
## of the entries of the matrices in gensOfG and which does not divide the
## the entries of the inverses of the matrices in gensOfG
##
## input is a list of generators of a rational polycyclic matrix group
##
InstallGlobalFunction( DetermineAdmissiblePrime , function(gensOfG)
local d,list1,list2,g,i,j,antiPrime,temp,temp2,p,found;
d := Length( gensOfG[1] );
list1:=[];
list2:=[];
# construct a list of all elements in gensOfG and their inverses
for g in gensOfG do
Add(list1,g);
Add(list1,g^-1);
od;
# write denominators of all matrix entries in list
for g in list1 do
for i in [1..d] do
for j in [1..d] do
Add(list2,DenominatorRat(g[i][j]));
od;
od;
od;
antiPrime:=ConsideredPrimes(list2);
# choose a small prime which is not in antiPrime
found:=false;
p:=3;
while not found do
if not p in antiPrime then
return p;
fi;
p:=NextPrimeInt(p);
od;
end );
#############################################################################
##
#F POL_NormalSubgroupGeneratorsOfK_p(pcgs,gensOfRealG)
##
## pcgs is a constructive pc-Sequence for I_p(G)
## (image of G under the p-congruence hom.).
## This function calculates normal subgroup generators for K_p(G)
## (the kernel of the p-congruence hom.)
##
InstallGlobalFunction( POL_NormalSubgroupGeneratorsOfK_p ,
function( pcgs, gensOfRealG )
local g, relations, rightSide, leftSide, preimages, revPreimages,
preimage, genList, ftl, n, ro, i, j, exp, conj, f_i, f_j,
r_i, pcSeq;
n := Length(pcgs.gens);
preimages := [];
relations := [];
# catch the trivial case
if Length(pcgs.gens)=0 then
return gensOfRealG;
fi;
# calcuclate all preimages of pcgs.gens
for i in [1..n] do
preimage := SubsWord( pcgs.wordGens[i], gensOfRealG );
Add( preimages, preimage);
od;
# Attention: In pcgs.gens we have the pc-sequence in inverse order,
# because we built up the structure bottom up
pcSeq := StructuralCopy(Reversed(pcgs.gens));
revPreimages := StructuralCopy(Reversed(preimages));
# calculate the relative orders
ro := RelativeOrdersPcgs_finite( pcgs );
# express the power relations in terms of gensOfRealG
for i in [1..n] do
f_i := pcSeq[i];
r_i := ro[i];
exp := ExponentvectorPcgs_finite( pcgs, f_i^r_i );
leftSide := revPreimages[i]^r_i;
rightSide := Exp2Groupelement(revPreimages,exp);
Add(relations,leftSide*(rightSide^-1));
od;
# conjugation relations
for i in [1..n] do
for j in [1..(i-1)] do
f_i := pcSeq[i];
f_j := pcSeq[j];
conj := (f_j^-1)*f_i*f_j;
exp := ExponentvectorPcgs_finite( pcgs, conj);
leftSide := (revPreimages[j]^-1)*revPreimages[i]*revPreimages[j];
rightSide := Exp2Groupelement(revPreimages,exp);
Add( relations, leftSide*(rightSide^-1));
od;
od;
# Add some other relations, because we changed the generating
# set of the image under the p-congruence hom.
for i in [1..Length(pcgs.gensOfG)] do
exp := ExponentvectorPcgs_finite( pcgs, pcgs.gensOfG[i]);
rightSide := Exp2Groupelement( revPreimages, exp);
leftSide := gensOfRealG[i];
Add( relations, leftSide*(rightSide^-1));
od;
return relations;
end );
#############################################################################
##
#F Exp2Groupelement(list,exp)
##
InstallGlobalFunction( Exp2Groupelement, function(list,exp)
local g,i;
g:=list[1]^0;
for i in [1..Length(list)] do
g:=g*list[i]^exp[i];
od;
return g;
end );
#############################################################################
##
#F CopyMatrixList(list)
##
InstallGlobalFunction( CopyMatrixList, function(list)
local i,j,k,list2;
list2:=[];
for i in [1..Length(list)] do
Add(list2,[]);
for j in [1..Length(list[i])] do
Add(list2[i],[]);
for k in [1..Length(list[i][j])] do
Add(list2[i][j],[]);
list2[i][j][k]:= list[i][j][k];
od;
od;
od;
return list2;
end );
#############################################################################
##
#F POL_CopyVectorList(list)
##
InstallGlobalFunction( POL_CopyVectorList, function(list)
local i,j,k,list2;
list2:=[];
for i in [1..Length(list)] do
Add(list2,[]);
for j in [1..Length(list[i])] do
Add(list2[i],[]);
list2[i][j]:= list[i][j];
od;
od;
return list2;
end );
#############################################################################
##
#F POL_NormalSubgroupGeneratorsU_p( pcgs_GU, gens, gens_K_p )
##
## pcgs_GU is a constructive pc-Sequence for G/U,
## this function calculates normal subgroup generators for U_p(G)
##
InstallGlobalFunction( POL_NormalSubgroupGeneratorsU_p ,
function( pcgs_GU, gens, gens_K_p )
local relations,rightSide,leftSide,preimages,revPreimages,
preimage,genList,ftl,n,ro,i,j,exp,conj,f_i,f_j,r_i,pcs, g, k;
# setup
pcs := pcgs_GU.pcs;
n:=Length(pcs);
preimages:=[];
relations:=[];
k := Length( pcgs_GU.pcgs_I_p.gens );
# catch the trivial case (G/U trivial)
if Length(pcgs_GU.pcs)=0 then
return gens;
fi;
# catch the trivial case (U_p = 1)
if Length(pcgs_GU.radicalSeries)=2 then
return [];
fi;
# calculate the relative orders
#ro:= RelativeOrdersPcgs( pcgs );
ro := RelativeOrders_CPCS_FactorGU_p( pcgs_GU );
# the elements stored in gens_K_p where found by evaluating
# the pcp-relations of G/I_p. So we don't have to calculate them
# again.
for g in gens_K_p do
exp := ExponentVector_CPCS_FactorGU_p( pcgs_GU, g );
leftSide := g;
rightSide := Exp2Groupelement( pcs, exp );
Add( relations, leftSide*(rightSide^-1) );
od;
# Express the power relations in terms of gens
for i in [ (k+1)..n ] do
f_i:=pcs[i];
r_i:=ro[i];
# we have to exclude the case r_i=0 because this means that
# the order is equal to infinity
if not r_i=0 then
exp:=ExponentVector_CPCS_FactorGU_p(pcgs_GU,f_i^r_i);
leftSide:=f_i^r_i;
rightSide:=Exp2Groupelement(pcs,exp);
Add( relations, leftSide*(rightSide^-1) );
fi;
od;
# conjugation relations
for i in [ (k+1)..n ] do
for j in [1..(i-1)] do
f_i := pcs[i];
f_j := pcs[j];
conj := (f_j^-1)*f_i*f_j;
exp := ExponentVector_CPCS_FactorGU_p( pcgs_GU, conj );
leftSide := (pcs[j]^-1)*pcs[i]*pcs[j];
rightSide := Exp2Groupelement(pcs,exp);
Add( relations, leftSide*(rightSide^-1) );
od;
od;
relations := Filtered( relations,x -> not x=x^0 );
if Length( relations ) = 0 then relations[1] := gens[1]^0; fi;
return relations;
end );
#############################################################################
##
#E
|