1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
|
#############################################################################
##
#W ispoly.gi POLENTA package Bjoern Assmann
##
## Methods for testing if a rational matrix group is polycyclic
##
#Y 2005
##
#############################################################################
##
#F POL_Logarithm( x )
##
## IN: x ..... unipotent matrix
##
## OUT: log(x)
##
POL_Logarithm := function( x )
local n,mat,matPow,log,i;
n := Length( x[1] );
mat := x - x^0;
matPow := mat;
log := mat;
for i in [2..n-1] do
matPow := matPow*mat;
log := log + (-1)^(i-1)*(i)^-1*matPow;
od;
return log;
end;
#############################################################################
##
#F POL_Exponential( v )
##
## IN: v ..... matrix which is conjugated to an
## upper or lower triangular matrix with 0's on the diagonal
##
## OUT: exp(x)
##
POL_Exponential := function( v )
local n,exp, vPow, fac, i;
n := Length( v[1] );
#exp := IdentityMat(n) + v;
exp := v^0 + v;
vPow := v;
#fac := 1;
fac := v[1][1]^0;
for i in [2..n-1] do
vPow := vPow*v;
fac := fac*i;
exp := exp + (fac^-1)*vPow;
od;
return exp;
end;
#############################################################################
##
#F POL_CloseMatrixSpaceUnderLieBracket( V )
##
## IN: V .... vector space < M_nxn( Q )
##
## OUT: smallest Lie algebra containing V
##
POL_CloseMatrixSpaceUnderLieBracket := function( V )
local basis,n,com,i,j,basis_ext, V_ext;
basis := Basis( V );
n := Length( basis );
for i in [1..n] do
for j in [i+1..n] do
com := basis[i]*basis[j]-basis[j]*basis[i];
if not com in V then
basis_ext := POL_CopyVectorList( basis );
Add( basis_ext, com );
V_ext := VectorSpace( Rationals, basis_ext, "basis" );
return POL_CloseMatrixSpaceUnderLieBracket( V_ext );
fi;
od;
od;
return V;
end;
#############################################################################
##
#F
##
## IN: unipo_gens ..... matrices that generate a unipotent matrix group
##
## OUT: The Lie algebra L( <unipo_gens> )
##
POL_LieAlgebra := function( unipo_gens )
local logs,V,V_ext;
# get logs
logs := List( unipo_gens, POL_Logarithm );
# compute Q-span
V := VectorSpace( Rationals, logs );
# close under Lie bracket
V_ext := POL_CloseMatrixSpaceUnderLieBracket( V );
return V_ext;
end;
#############################################################################
##
#F POL_CloseLieAlgebraUnderGrpAction( gensG, L )
##
## IN: gensG ... generators of rational matrix group G of degree n
## L ...... nilpotent Lie Algebra generated by matrices of degree n
##
## OUT: L^G, where G acts on L by l^g = log( exp(l)^g );
##
POL_CloseLieAlgebraUnderGrpAction := function( gensG, L )
local basis,b,g,exp,u,l,basis_ext,V_ext,L_ext;
basis := Basis( L );
for b in basis do
for g in gensG do
exp := POL_Exponential( b );
u := exp^g;
l := POL_Logarithm( u );
if not l in L then
basis_ext := POL_CopyVectorList( basis );
Add( basis_ext, l );
V_ext := VectorSpace( Rationals, basis_ext, "basis" );
L_ext := POL_CloseMatrixSpaceUnderLieBracket( V_ext );
return POL_CloseLieAlgebraUnderGrpAction( gensG, L_ext );
fi;
od;
od;
return L;
end;
#############################################################################
##
#F
##
## IN: L ......... Lie algebra
## g ......... group element
##
## OUT: Induced action of g on the Lie algebra, i.e. the linear mapping
## which maps l to log( exp(l)^g )
##
POL_InducedActionToLieAlgebra := function( g, L )
local basis,n,inducedAction,i,exp,u,log,coeff;
basis := Basis( L );
n := Length( basis );
inducedAction := [];
for i in [1..n] do
exp := POL_Exponential( basis[i] );
u := exp^g;
log := POL_Logarithm( u );
coeff := Coefficients( basis, log );
Add( inducedAction, coeff );
od;
return inducedAction;
end;
#############################################################################
##
#F POL_IsIntegerList( list )
##
##
POL_IsIntegerList := function( list )
local z;
for z in list do
if not z in Integers then
return false;
fi;
od;
return true;
end;
#############################################################################
##
#F POL_IsIntegralActionOnLieAlgebra( gens, L )
##
## IN: gens ....... list of matrices
## L ........... Lie algebra on which gens acts
## via l^g = Log( Exp(l)^g )
##
## OUT: returns true if for all g in gens, the minimal polynomial of
## the induced action of g,g^-1 to L is integral.
## false otherwise.
##
POL_IsIntegralActionOnLieAlgebra := function( gens, L )
local g,ind,pol,coeffs,constTerm,bool;
Info( InfoPolenta, 3, "Testing whether action on Lie alg. is integral" );
for g in gens do
Info( InfoPolenta, 3, "Generator that will be induced:" );
Info( InfoPolenta, 3, g );
ind := POL_InducedActionToLieAlgebra( g, L );
Info( InfoPolenta, 3, "Induced action to Lie algebra:" );
Info(InfoPolenta, 3, ind );
if not Trace( ind ) in Integers then
Info( InfoPolenta, 3, "Trace not integral\n" );
return false;
fi;
pol := CharacteristicPolynomial( Rationals, Rationals, ind );
# pol := MinimalPolynomial( Rationals, ind );
Info( InfoPolenta, 3, "Characteristic polynomial:" );
Info(InfoPolenta, 3, pol );
coeffs := CoefficientsOfLaurentPolynomial( pol );
# test if pol_g in Z[x]
if not POL_IsIntegerList( coeffs[1] ) then
return false;
fi;
# test if pol_g^-1 in Z[X]
constTerm := Value( pol, 0 );
bool := (constTerm = 1 ) or ( constTerm = -1);
if not bool then
return false;
fi;
od;
return true;
end;
#############################################################################
##
#F POL_IsIntegralActionOnLieAlgebra_Beals( gens, L )
##
## IN: gens ....... list of matrices
## L ........... Lie algebra on which gens acts
## via l^g = Log( Exp(l)^g )
##
## OUT: returns true if for all g in gens, the minimal polynomial of
## the induced action of g,g^-1 to L is integral.
## false otherwise.
##
POL_IsIntegralActionOnLieAlgebra_Beals := function( gens, L )
local gens_ind, G_ind, lat;
gens_ind := List( gens, x-> POL_InducedActionToLieAlgebra( x, L ));
G_ind := GroupByGenerators( gens_ind );
lat := InvariantLattice( G_ind );
if lat = fail then
return false;
else
return true;
fi;
end;
#############################################################################
##
#F
##
## IN: gensU_p ...... normal subgroup generators for U_p
## gensG ........ the generators of the parent group G
## gensGU ...... representatives of pc sequence of GU
##
POL_IsFinitelgeneratedU_p := function( gensU_p, gensG, gensGU )
local L,L_ext,isIntegral,gensU_p_mod,i,method;
# catch trivial case G/U = 1
if Length( gensGU ) = 0 then
return true;
fi;
# catch trivial case U_p = 1
gensU_p_mod := [];
for i in [1..Length( gensU_p )] do
if not gensU_p[i]=gensU_p[i]^0 then
Add( gensU_p_mod,gensU_p[i] );
fi;
od;
if Length( gensU_p_mod ) = 0 then
return true;
fi;
# get Lie algebra corresponding to <gensU_p>
L := POL_LieAlgebra( gensU_p_mod );
Info( InfoPolenta, 3, "Dimension L: ", Dimension( L ) );
# close it under action of G
L_ext := POL_CloseLieAlgebraUnderGrpAction( gensG, L );
Info( InfoPolenta, 3, "Dimension L_ext: ", Dimension( L_ext ) );
Info( InfoPolenta, 3, "Basis of L_ext: ", Basis( L ) );
# test whether the action of gensGU on the Lie algebra is integral
method := "beals";
if method = "char" then
isIntegral := POL_IsIntegralActionOnLieAlgebra_Beals( gensG, L_ext );
else
isIntegral := POL_IsIntegralActionOnLieAlgebra( gensGU, L_ext );
fi;
return isIntegral;
end;
#############################################################################
##
#E
|