1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
|
#############################################################################
##
#W present.gi POLENTA package Bjoern Assmann
##
## Methods for the calculation of
## pcp-presentations for matrix groups
##
#Y 2003
##
#############################################################################
##
#F POL_Exp2genList(exp);
##
POL_Exp2GenList:= function(exp)
local n, genList,i;
n:=Length(exp);
genList:=[];
for i in [1..n] do
if exp[i] <> 0 then
Append(genList,[i,exp[i]]);
fi;
od;
return genList;
end;
#############################################################################
##
#F POL_SetPcPresentation_infinite(pcgs)
##
## pcgs is a constructive pc-Sequence,calculated by CPCS_PRMGroup
## this function calculates a PcPresentation for the group described
## by pcgs
##
POL_SetPcPresentation_infinite:= function(pcgs)
local genList,ftl,n,ro,i,j,exp,conj,f_i,f_j,r_i,pcsInv;
# Setup
n:=Length(pcgs.pcs);
ftl:=FromTheLeftCollector(n);
#pcSeq:=StructuralCopy((pcgs.gens));
pcsInv:=[];
for i in [1..n] do
pcsInv[i]:=pcgs.pcs[i]^-1;
od;
# the relative orders
ro:= pcgs.rels;
for i in [1..n] do
if ro[i]<>0 then
SetRelativeOrder(ftl,i,ro[i]);
fi;
od;
Info( InfoPolenta, 1, "Compute power relations ..." );
# Set power relations
for i in [1..n] do
if ro[i]<>0 then
f_i:=pcgs.pcs[i];
r_i:=ro[i];
exp:=ExponentVector_CPCS_PRMGroup( f_i^r_i,pcgs );
if InfoLevel( InfoPolenta ) >= 2 then Print( "." ); fi;
genList := POL_Exp2GenList(exp);
SetPower(ftl,i,genList);
fi;
od;
if InfoLevel( InfoPolenta ) >= 2 then Print( "\n" ); fi;
Info( InfoPolenta, 1, "... finished." );
Info( InfoPolenta, 1, "Compute conjugation relations ..." );
# Set the conjugation relations
for i in [1..n] do
for j in [1..(i-1)] do
# conjugation with g_j
f_i:=pcgs.pcs[i];
f_j:=pcgs.pcs[j];
conj:=(pcsInv[j])*f_i*f_j;
Assert(1, conj=f_i^f_j );
exp:=ExponentVector_CPCS_PRMGroup( conj,pcgs);
Assert(1, conj=Product(List([1..n],i->pcgs.pcs[i]^exp[i])) );
if InfoLevel( InfoPolenta ) >= 2 then Print( "." ); fi;
genList:=POL_Exp2GenList(exp);
SetConjugate(ftl,i,j,genList);
# conjugation with g_j^-1 if g_j has infinite order
if ro[i] = 0 then
conj:= f_j* f_i *(pcsInv[j]);
Assert(1, conj=f_i^(f_j^-1) );
exp:=ExponentVector_CPCS_PRMGroup( conj,pcgs);
Assert(1, conj=Product(List([1..n],i->pcgs.pcs[i]^exp[i])) );
if InfoLevel( InfoPolenta ) >= 2 then Print( "." ); fi;
genList:=POL_Exp2GenList(exp);
SetConjugate(ftl,i,-j,genList);
fi;
od;
od;
if InfoLevel( InfoPolenta ) >= 2 then Print( "\n" ); fi;
Info( InfoPolenta, 1, "... finished." );
Info( InfoPolenta, 1, "Update polycyclic collector ... " );
UpdatePolycyclicCollector(ftl);
Info( InfoPolenta, 1, "... finished." );
return ftl;
end;
# remark: some of the information (i.e. parts of the exponents vectors)
# which we need in the last algorithm,
# arise naturally in the computation of the normal subgroup
# generators. It could be transferred from there.
#############################################################################
##
#F POL_PcpGroupByMatGroup_infinite( arg )
##
## arg[1]=G is a subgroup of GL(d, Q ). The algorithm returns a PcpGroup if G
## is polycyclic.
##
POL_PcpGroupByMatGroup_infinite := function( arg )
local CPCS, pcp, K,G,p;
G := arg[1];
if Length(arg)=2 then
p := arg[2];
CPCS := CPCS_PRMGroup( G, p );
else
CPCS := CPCS_PRMGroup( G );
fi;
if CPCS = fail then return fail; fi;
Info( InfoPolenta, 1, " " );
Info( InfoPolenta, 1,"Compute the relations of the polycyclic\n",
" presentation of the group ..." );
pcp := POL_SetPcPresentation_infinite( CPCS );
Info( InfoPolenta, 1,"finished." );
Info( InfoPolenta, 1, " " );
Info( InfoPolenta, 1,"Construct the polycyclic presented group ..." );
if AssertionLevel() = 0 then
K := PcpGroupByCollectorNC( pcp );
else
K := PcpGroupByCollector( pcp );
fi;
Info( InfoPolenta, 1,"finished.");
Info( InfoPolenta, 1, " " );
return K;
end;
#############################################################################
##
#F POL_SetPcPresentation_finite(pcgs)
##
## pcgs is a constructive pc-sequence of a finite group, calculated
## by CPCS_finite.
## this function calculates a PcPresentation for the group described
## by pcgs
##
POL_SetPcPresentation_finite:= function(pcgs)
local genList,ftl,n,ro,i,j,exp,conj,f_i,f_j,r_i,pcsInv, pcs;
# setup
n := Length(pcgs.gens);
ftl := FromTheLeftCollector(n);
# Attention: In pcgs.gens we have the pc-sequence in inverse order
# because we built up the structure bottom up
pcs := StructuralCopy(Reversed(pcgs.gens));
pcsInv:=[];
for i in [1..n] do
pcsInv[i]:=pcs[i]^-1;
od;
# calculate the relative orders
ro := RelativeOrdersPcgs_finite( pcgs );
# set relative orders
for i in [1..n] do
SetRelativeOrder(ftl,i,ro[i]);
od;
# Set power relations
for i in [1..n] do
if ro[i]<>0 then
f_i:=pcs[i];
r_i:=ro[i];
exp:= ExponentvectorPcgs_finite( pcgs, f_i^r_i );
genList := POL_Exp2GenList(exp);
SetPower(ftl,i,genList);
fi;
od;
# Set the conjugation relations
for i in [1..n] do
for j in [1..(i-1)] do
f_i:=pcs[i];
f_j:=pcs[j];
conj:=(pcsInv[j])*f_i*f_j;
exp:=ExponentvectorPcgs_finite( pcgs, conj );
genList:=POL_Exp2GenList(exp);
SetConjugate(ftl,i,j,genList);
od;
od;
UpdatePolycyclicCollector(ftl);
return ftl;
end;
#############################################################################
##
#F POL_PcpGroupByMatGroup_finite( G )
##
## G is a subgroup of GL(d, Q ). The algorithm returns a PcpGroup if G
## is polycyclic.
##
POL_PcpGroupByMatGroup_finite := function( G )
local CPCS, pcp, K, gens, d, bound_derivedLength;
Info( InfoPolenta, 1,"Determine a constructive polycyclic sequence\n",
" for the input group ...");
# setup
gens := GeneratorsOfGroup( G );
d := Length(gens[1][1]);
# determine an upper bound for the derived length of G
bound_derivedLength := d+2;
CPCS := CPCS_finite_word( gens, bound_derivedLength );
if CPCS = fail then return fail; fi;
Info( InfoPolenta, 1, "finished." );
Info( InfoPolenta, 1, " " );
Info( InfoPolenta, 1,"Compute the relations of the polycyclic\n",
" presentation of the group ..." );
pcp := POL_SetPcPresentation_finite( CPCS );
Info( InfoPolenta, 1,"finished." );
Info( InfoPolenta, 1, " " );
Info( InfoPolenta, 1,"Construct the polycyclic presented group ..." );
K := PcpGroupByCollector( pcp );
Info( InfoPolenta, 1,"finished.");
Info( InfoPolenta, 1, " " );
return K;
end;
#############################################################################
##
#M PcpGroupByMatGroup( G )
##
## G is a matrix group over the Rationals or a finite field.
## Returned is PcpGroup ( polycyclically presented group)
## which is isomorphic to G.
##
InstallMethod( PcpGroupByMatGroup,
"for matrix groups over a finite field (Polenta)", true,
[ IsFFEMatrixGroup ], 0,
POL_PcpGroupByMatGroup_finite );
InstallMethod( PcpGroupByMatGroup,
"for rational matrix groups (Polenta)", true,
[ IsRationalMatrixGroup ], 0,
POL_PcpGroupByMatGroup_infinite );
## Enforce rationality check for cyclotomic matrix groups
RedispatchOnCondition( PcpGroupByMatGroup, true,
[ IsCyclotomicMatrixGroup ], [ IsRationalMatrixGroup ],
RankFilter(IsCyclotomicMatrixGroup) );
InstallOtherMethod( PcpGroupByMatGroup, "for polycyclic matrix groups (Polenta)", true,
[ IsCyclotomicMatrixGroup, IsInt ], 0,
function( G, p )
if not IsPrime(p) then
Print( "Second argument must be a prime number.\n" );
return fail;
fi;
if IsRationalMatrixGroup(G) then
return POL_PcpGroupByMatGroup_infinite( G, p );
fi;
TryNextMethod();
end );
#############################################################################
##
#E
|