File: solvable.gi

package info (click to toggle)
gap-polenta 1.3.11-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 1,040 kB
  • sloc: xml: 720; javascript: 155; makefile: 97
file content (314 lines) | stat: -rw-r--r-- 10,694 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
#############################################################################
##
#W solvalble.gi           POLENTA package                     Bjoern Assmann
##
## Methods for testing if a matrix group
## is solvable or polycyclic
##
#Y 2003
##

#############################################################################
##
#F POL_IsSolvableRationalMatGroup_infinite( G )
##
POL_IsSolvableRationalMatGroup_infinite := function( G )
    local  p, d, gens_p, bound_derivedLength, pcgs_I_p, gens_K_p,
           homSeries, gens_K_p_m, gens, gens_K_p_mutableCopy, pcgs,
           gensOfBlockAction, pcgs_nue_K_p, pcgs_GU, gens_U_p,  pcgs_U_p;

    # handle trivial case
    if IsAbelian( G ) then
        return true;
    fi;

    # setup
    gens := GeneratorsOfGroup( G );
    d := Length(gens[1][1]);

    # determine an admissible prime
    p := DetermineAdmissiblePrime(gens);
    Info( InfoPolenta, 1, "Chosen admissible prime: " , p );
    Info( InfoPolenta, 1, "  " );


    # calculate the gens of the group phi_p(<gens>) where phi_p is
    # natural homomorphism to GL(d,p)
    gens_p := InducedByField( gens, GF(p) );

    # determine an upper bound for the derived length of G
    bound_derivedLength := d+2;

    # finite part
    Info( InfoPolenta, 1,"Determine a constructive polycyclic sequence\n",
          "    for the image under the p-congruence homomorphism ..." );
    pcgs_I_p := CPCS_finite_word( gens_p, bound_derivedLength );
    if pcgs_I_p = fail then return false; fi;
    Info( InfoPolenta, 1, "Finite image has relative orders ",
                           RelativeOrdersPcgs_finite( pcgs_I_p ), "." );
    Info( InfoPolenta, 1, " " );


    # compute the normal the subgroup gens. for the kernel of phi_p
    Info( InfoPolenta, 1,"Compute normal subgroup generators for the kernel\n",
          "    of the p-congruence homomorphism ...");
    gens_K_p := POL_NormalSubgroupGeneratorsOfK_p( pcgs_I_p, gens );
    gens_K_p := Filtered( gens_K_p, x -> not x = IdentityMat(d) );
    Info( InfoPolenta, 1,"finished.");
    Info( InfoPolenta, 2,"The normal subgroup generators are" );
    Info( InfoPolenta, 2, gens_K_p );
    Info( InfoPolenta, 1, "  " );


    # homogeneous series
    Info( InfoPolenta, 1, "Compute the homogeneous series ... ");
    gens_K_p_mutableCopy := CopyMatrixList( gens_K_p );
    homSeries := POL_HomogeneousSeriesNormalGens( gens,
                                                  gens_K_p_mutableCopy,
                                                  d );
    if homSeries = fail then
        return false;
    else
        Info( InfoPolenta, 1,"finished.");
        Info( InfoPolenta, 1, "The homogeneous series has length ",
                          Length( homSeries ), "." );
        Info( InfoPolenta, 2, "The homogeneous series is" );
        Info( InfoPolenta, 2, homSeries );
        Info( InfoPolenta, 1, " " );
        return true;
    fi;

end;

#############################################################################
##
#F POL_IsSolvableFiniteMatGroup( G )
##
POL_IsSolvableFiniteMatGroup := function( G )
    local gens, d, CPCS, bound_derivedLength;

    # handle trivial case
    if IsAbelian( G ) then
        return true;
    fi;

    # calculate a constructive pc-sequence
    gens := GeneratorsOfGroup( G );
    d := Length(gens[1][1]);
    # determine an upper bound for the derived length of G
    bound_derivedLength := d+2;

    Info( InfoPolenta, 1,"Determine a constructive polycyclic sequence\n",
          "    for the finite input group ..." );
    CPCS := CPCS_finite_word( gens, bound_derivedLength );

    if CPCS = fail then
        return false;
    else
        Info(InfoPolenta,1,"finished.");
        return true;
    fi;
end;

#############################################################################
##
#M IsSolvableGroup( G )
##
## G is a matrix group over the rationals.
##
##
InstallMethod( IsSolvableGroup, "for rational matrix groups (Polenta)", true,
               [ IsRationalMatrixGroup ], 0,
               POL_IsSolvableRationalMatGroup_infinite );

## Enforce rationality check for cyclotomic matrix groups
RedispatchOnCondition( IsSolvableGroup, true,
    [ IsCyclotomicMatrixGroup ], [ IsRationalMatrixGroup ],
    RankFilter(IsCyclotomicMatrixGroup) );

#############################################################################
##
#M IsSolvableGroup( G )
##
## G is a matrix group over a finite field.
##
InstallMethod( IsSolvableGroup, "for matrix groups over a finte field (Polenta)",
               true, [ IsFFEMatrixGroup ], 0,
               POL_IsSolvableFiniteMatGroup );

#############################################################################
##
#F POL_IsPolycyclicRationalMatGroup( G )
##
POL_IsPolycyclicRationalMatGroup := function( G )
     local  test;
     if not IsFinitelyGeneratedGroup( G ) then
         return false;
     fi;

     if IsAbelian( G ) then
         return true;
     fi;
     test := CPCS_NonAbelianPRMGroup( G, 0, "testIsPoly" );
     if test=false or test=fail then
        return false;
     else
        return true;
     fi;
end;

#############################################################################
##
#M IsPolycyclicGroup( G )
##
## G is a finitely generated subgroup of GL(n,Z), hence G is polycycylic
## if and only if G is solvable and finitely generated.
##
InstallMethod( IsPolycyclicGroup, "for integer matrix groups (Polenta)", true,
               [ IsIntegerMatrixGroup ], 0,
function( G )
    return IsFinitelyGeneratedGroup( G ) and IsSolvableGroup( G );
end );

#############################################################################
##
#M IsPolycyclicGroup( G )
##
## G is a matrix group over the rationals
##
InstallMethod( IsPolycyclicGroup, "for rational matrix groups (Polenta)", true,
               [ IsRationalMatrixGroup ], 0,
function( G )
    if IsIntegerMatrixGroup(G) then
        return IsFinitelyGeneratedGroup( G ) and IsSolvableGroup( G );
    fi;
    return POL_IsPolycyclicRationalMatGroup( G );
end );

## Enforce rationality check for cyclotomic matrix groups
RedispatchOnCondition( IsPolycyclicGroup, true,
    [ IsCyclotomicMatrixGroup ], [ IsRationalMatrixGroup ],
    RankFilter(IsCyclotomicMatrixGroup) );

#############################################################################
##
#M IsPolycyclicGroup( G )
##
## G is a matrix group over a finite field
##
InstallMethod( IsPolycyclicGroup,
               "for matrix groups over a finite field (Polenta)", true,
               [ IsFFEMatrixGroup ], 0,
function( G )
    local F;
     if not IsFinitelyGeneratedGroup( G ) then
         return false;
     fi;
    if IsAbelian( G ) then
        return true;
    fi;
    return IsSolvableGroup( G );
end );

#############################################################################
##
#M IsPolycyclicMatGroup( G )
##
## G is a matrix group, test whether it is polycyclic.
##
## TODO: Mark this as deprecated and eventually remove it; code using it
## should be changed to use IsPolycyclicGroup.
##
InstallMethod( IsPolycyclicMatGroup, [ IsMatrixGroup ], IsPolycyclicGroup);

#############################################################################
##
#F POL_IsTriangularizableRationalMatGroup_infinite( G )
##
POL_IsTriangularizableRationalMatGroup_infinite := function( G )
  local   p, d, gens_p, bound_derivedLength, pcgs_I_p, gens_K_p,
            gens_K_p_m, gens, gens_K_p_mutableCopy, pcgs,
            gensOfBlockAction, pcgs_nue_K_p, pcgs_GU, gens_U_p, pcgs_U_p,
            radSeries, comSeries, recordSeries, isTriang;
    if IsAbelian( G ) then
        return true;
    fi;
    # setup
    gens := GeneratorsOfGroup( G );
    d := Length(gens[1][1]);

    # determine an admissible prime or take the wished one
    #if Length( arg ) = 2 then
    #   p := arg[2];
    #else
        p := DetermineAdmissiblePrime(gens);
    #fi;
    Info( InfoPolenta, 1, "Chosen admissible prime: " , p );
    Info( InfoPolenta, 1, "  " );

    # calculate the gens of the group phi_p(<gens>) where phi_p is
    # natural homomorphism to GL(d,p)
    gens_p := InducedByField( gens, GF(p) );

    # determine an upper bound for the derived length of G
    bound_derivedLength := d+2;

    # finite part
    Info( InfoPolenta, 1,"Determine a constructive polycyclic sequence\n",
          "    for the image under the p-congruence homomorphism ..." );
    pcgs_I_p := CPCS_finite_word( gens_p, bound_derivedLength );
    if pcgs_I_p = fail then return false; fi;
    Info(InfoPolenta,1,"finished.");
    Info( InfoPolenta, 1, "Finite image has relative orders ",
                           RelativeOrdersPcgs_finite( pcgs_I_p ), "." );
    Info( InfoPolenta, 1, " " );

    # compute the normal the subgroup gens. for the kernel of phi_p
    Info( InfoPolenta, 1,"Compute normal subgroup generators for the kernel\n",
          "    of the p-congruence homomorphism ...");
    gens_K_p := POL_NormalSubgroupGeneratorsOfK_p( pcgs_I_p, gens );
    gens_K_p := Filtered( gens_K_p, x -> not x = IdentityMat(d) );
    Info( InfoPolenta, 1,"finished.");
    Info( InfoPolenta, 2,"The normal subgroup generators are" );
    Info( InfoPolenta, 2, gens_K_p );
    Info( InfoPolenta, 1, "  " );

    # radical series
    Info( InfoPolenta, 1, "Compute the radical series ...");
    gens_K_p_mutableCopy := CopyMatrixList( gens_K_p );
    recordSeries := POL_RadicalSeriesNormalGensFullData( gens,
                                                      gens_K_p_mutableCopy,
                                                      d );
    if recordSeries=fail then return false; fi;
    radSeries := recordSeries.sers;
    Info( InfoPolenta, 1,"finished.");
    Info( InfoPolenta, 1, "The radical series has length ",
                          Length( radSeries ), "." );
    Info( InfoPolenta, 2, "The radical series is" );
    Info( InfoPolenta, 2, radSeries );
    Info( InfoPolenta, 1, " " );

    # test if G is unipotent by abelian
    isTriang := POL_TestIsUnipotenByAbelianGroupByRadSeries( gens, radSeries );

    return isTriang;

end;

#############################################################################
##
#M IsTriangularizableMatGroup( G )
##
##
InstallMethod( IsTriangularizableMatGroup, "for matrix groups over Q (Polenta)", true,
               [ IsRationalMatrixGroup ], 0,
               POL_IsTriangularizableRationalMatGroup_infinite );

## Enforce rationality check for cyclotomic matrix groups
RedispatchOnCondition( IsTriangularizableMatGroup, true,
    [ IsCyclotomicMatrixGroup ], [ IsRationalMatrixGroup ],
    RankFilter(IsCyclotomicMatrixGroup) );

#############################################################################
##
#E