1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
|
#############################################################################
##
#W solvalble.gi POLENTA package Bjoern Assmann
##
## Methods for testing if a matrix group
## is solvable or polycyclic
##
#Y 2003
##
#############################################################################
##
#F POL_IsSolvableRationalMatGroup_infinite( G )
##
POL_IsSolvableRationalMatGroup_infinite := function( G )
local p, d, gens_p, bound_derivedLength, pcgs_I_p, gens_K_p,
homSeries, gens_K_p_m, gens, gens_K_p_mutableCopy, pcgs,
gensOfBlockAction, pcgs_nue_K_p, pcgs_GU, gens_U_p, pcgs_U_p;
# handle trivial case
if IsAbelian( G ) then
return true;
fi;
# setup
gens := GeneratorsOfGroup( G );
d := Length(gens[1][1]);
# determine an admissible prime
p := DetermineAdmissiblePrime(gens);
Info( InfoPolenta, 1, "Chosen admissible prime: " , p );
Info( InfoPolenta, 1, " " );
# calculate the gens of the group phi_p(<gens>) where phi_p is
# natural homomorphism to GL(d,p)
gens_p := InducedByField( gens, GF(p) );
# determine an upper bound for the derived length of G
bound_derivedLength := d+2;
# finite part
Info( InfoPolenta, 1,"Determine a constructive polycyclic sequence\n",
" for the image under the p-congruence homomorphism ..." );
pcgs_I_p := CPCS_finite_word( gens_p, bound_derivedLength );
if pcgs_I_p = fail then return false; fi;
Info( InfoPolenta, 1, "Finite image has relative orders ",
RelativeOrdersPcgs_finite( pcgs_I_p ), "." );
Info( InfoPolenta, 1, " " );
# compute the normal the subgroup gens. for the kernel of phi_p
Info( InfoPolenta, 1,"Compute normal subgroup generators for the kernel\n",
" of the p-congruence homomorphism ...");
gens_K_p := POL_NormalSubgroupGeneratorsOfK_p( pcgs_I_p, gens );
gens_K_p := Filtered( gens_K_p, x -> not x = IdentityMat(d) );
Info( InfoPolenta, 1,"finished.");
Info( InfoPolenta, 2,"The normal subgroup generators are" );
Info( InfoPolenta, 2, gens_K_p );
Info( InfoPolenta, 1, " " );
# homogeneous series
Info( InfoPolenta, 1, "Compute the homogeneous series ... ");
gens_K_p_mutableCopy := CopyMatrixList( gens_K_p );
homSeries := POL_HomogeneousSeriesNormalGens( gens,
gens_K_p_mutableCopy,
d );
if homSeries = fail then
return false;
else
Info( InfoPolenta, 1,"finished.");
Info( InfoPolenta, 1, "The homogeneous series has length ",
Length( homSeries ), "." );
Info( InfoPolenta, 2, "The homogeneous series is" );
Info( InfoPolenta, 2, homSeries );
Info( InfoPolenta, 1, " " );
return true;
fi;
end;
#############################################################################
##
#F POL_IsSolvableFiniteMatGroup( G )
##
POL_IsSolvableFiniteMatGroup := function( G )
local gens, d, CPCS, bound_derivedLength;
# handle trivial case
if IsAbelian( G ) then
return true;
fi;
# calculate a constructive pc-sequence
gens := GeneratorsOfGroup( G );
d := Length(gens[1][1]);
# determine an upper bound for the derived length of G
bound_derivedLength := d+2;
Info( InfoPolenta, 1,"Determine a constructive polycyclic sequence\n",
" for the finite input group ..." );
CPCS := CPCS_finite_word( gens, bound_derivedLength );
if CPCS = fail then
return false;
else
Info(InfoPolenta,1,"finished.");
return true;
fi;
end;
#############################################################################
##
#M IsSolvableGroup( G )
##
## G is a matrix group over the rationals.
##
##
InstallMethod( IsSolvableGroup, "for rational matrix groups (Polenta)", true,
[ IsRationalMatrixGroup ], 0,
POL_IsSolvableRationalMatGroup_infinite );
## Enforce rationality check for cyclotomic matrix groups
RedispatchOnCondition( IsSolvableGroup, true,
[ IsCyclotomicMatrixGroup ], [ IsRationalMatrixGroup ],
RankFilter(IsCyclotomicMatrixGroup) );
#############################################################################
##
#M IsSolvableGroup( G )
##
## G is a matrix group over a finite field.
##
InstallMethod( IsSolvableGroup, "for matrix groups over a finte field (Polenta)",
true, [ IsFFEMatrixGroup ], 0,
POL_IsSolvableFiniteMatGroup );
#############################################################################
##
#F POL_IsPolycyclicRationalMatGroup( G )
##
POL_IsPolycyclicRationalMatGroup := function( G )
local test;
if not IsFinitelyGeneratedGroup( G ) then
return false;
fi;
if IsAbelian( G ) then
return true;
fi;
test := CPCS_NonAbelianPRMGroup( G, 0, "testIsPoly" );
if test=false or test=fail then
return false;
else
return true;
fi;
end;
#############################################################################
##
#M IsPolycyclicGroup( G )
##
## G is a finitely generated subgroup of GL(n,Z), hence G is polycycylic
## if and only if G is solvable and finitely generated.
##
InstallMethod( IsPolycyclicGroup, "for integer matrix groups (Polenta)", true,
[ IsIntegerMatrixGroup ], 0,
function( G )
return IsFinitelyGeneratedGroup( G ) and IsSolvableGroup( G );
end );
#############################################################################
##
#M IsPolycyclicGroup( G )
##
## G is a matrix group over the rationals
##
InstallMethod( IsPolycyclicGroup, "for rational matrix groups (Polenta)", true,
[ IsRationalMatrixGroup ], 0,
function( G )
if IsIntegerMatrixGroup(G) then
return IsFinitelyGeneratedGroup( G ) and IsSolvableGroup( G );
fi;
return POL_IsPolycyclicRationalMatGroup( G );
end );
## Enforce rationality check for cyclotomic matrix groups
RedispatchOnCondition( IsPolycyclicGroup, true,
[ IsCyclotomicMatrixGroup ], [ IsRationalMatrixGroup ],
RankFilter(IsCyclotomicMatrixGroup) );
#############################################################################
##
#M IsPolycyclicGroup( G )
##
## G is a matrix group over a finite field
##
InstallMethod( IsPolycyclicGroup,
"for matrix groups over a finite field (Polenta)", true,
[ IsFFEMatrixGroup ], 0,
function( G )
local F;
if not IsFinitelyGeneratedGroup( G ) then
return false;
fi;
if IsAbelian( G ) then
return true;
fi;
return IsSolvableGroup( G );
end );
#############################################################################
##
#M IsPolycyclicMatGroup( G )
##
## G is a matrix group, test whether it is polycyclic.
##
## TODO: Mark this as deprecated and eventually remove it; code using it
## should be changed to use IsPolycyclicGroup.
##
InstallMethod( IsPolycyclicMatGroup, [ IsMatrixGroup ], IsPolycyclicGroup);
#############################################################################
##
#F POL_IsTriangularizableRationalMatGroup_infinite( G )
##
POL_IsTriangularizableRationalMatGroup_infinite := function( G )
local p, d, gens_p, bound_derivedLength, pcgs_I_p, gens_K_p,
gens_K_p_m, gens, gens_K_p_mutableCopy, pcgs,
gensOfBlockAction, pcgs_nue_K_p, pcgs_GU, gens_U_p, pcgs_U_p,
radSeries, comSeries, recordSeries, isTriang;
if IsAbelian( G ) then
return true;
fi;
# setup
gens := GeneratorsOfGroup( G );
d := Length(gens[1][1]);
# determine an admissible prime or take the wished one
#if Length( arg ) = 2 then
# p := arg[2];
#else
p := DetermineAdmissiblePrime(gens);
#fi;
Info( InfoPolenta, 1, "Chosen admissible prime: " , p );
Info( InfoPolenta, 1, " " );
# calculate the gens of the group phi_p(<gens>) where phi_p is
# natural homomorphism to GL(d,p)
gens_p := InducedByField( gens, GF(p) );
# determine an upper bound for the derived length of G
bound_derivedLength := d+2;
# finite part
Info( InfoPolenta, 1,"Determine a constructive polycyclic sequence\n",
" for the image under the p-congruence homomorphism ..." );
pcgs_I_p := CPCS_finite_word( gens_p, bound_derivedLength );
if pcgs_I_p = fail then return false; fi;
Info(InfoPolenta,1,"finished.");
Info( InfoPolenta, 1, "Finite image has relative orders ",
RelativeOrdersPcgs_finite( pcgs_I_p ), "." );
Info( InfoPolenta, 1, " " );
# compute the normal the subgroup gens. for the kernel of phi_p
Info( InfoPolenta, 1,"Compute normal subgroup generators for the kernel\n",
" of the p-congruence homomorphism ...");
gens_K_p := POL_NormalSubgroupGeneratorsOfK_p( pcgs_I_p, gens );
gens_K_p := Filtered( gens_K_p, x -> not x = IdentityMat(d) );
Info( InfoPolenta, 1,"finished.");
Info( InfoPolenta, 2,"The normal subgroup generators are" );
Info( InfoPolenta, 2, gens_K_p );
Info( InfoPolenta, 1, " " );
# radical series
Info( InfoPolenta, 1, "Compute the radical series ...");
gens_K_p_mutableCopy := CopyMatrixList( gens_K_p );
recordSeries := POL_RadicalSeriesNormalGensFullData( gens,
gens_K_p_mutableCopy,
d );
if recordSeries=fail then return false; fi;
radSeries := recordSeries.sers;
Info( InfoPolenta, 1,"finished.");
Info( InfoPolenta, 1, "The radical series has length ",
Length( radSeries ), "." );
Info( InfoPolenta, 2, "The radical series is" );
Info( InfoPolenta, 2, radSeries );
Info( InfoPolenta, 1, " " );
# test if G is unipotent by abelian
isTriang := POL_TestIsUnipotenByAbelianGroupByRadSeries( gens, radSeries );
return isTriang;
end;
#############################################################################
##
#M IsTriangularizableMatGroup( G )
##
##
InstallMethod( IsTriangularizableMatGroup, "for matrix groups over Q (Polenta)", true,
[ IsRationalMatrixGroup ], 0,
POL_IsTriangularizableRationalMatGroup_infinite );
## Enforce rationality check for cyclotomic matrix groups
RedispatchOnCondition( IsTriangularizableMatGroup, true,
[ IsCyclotomicMatrixGroup ], [ IsRationalMatrixGroup ],
RankFilter(IsCyclotomicMatrixGroup) );
#############################################################################
##
#E
|