File: subgroups.gd

package info (click to toggle)
gap-polenta 1.3.11-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 1,040 kB
  • sloc: xml: 720; javascript: 155; makefile: 97
file content (48 lines) | stat: -rw-r--r-- 1,527 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
#############################################################################
##
#W subgroups.gd            POLENTA package                     Bjoern Assmann
##
## Methods for the calculation of
## certain subgroups of matrix groups
##
#Y 2004
##

#############################################################################
##
#F POL_TriangNSGFI_NonAbelianPRMGroup( arg )
##
## arg[1] = G is an non-abelian  polycyclic rational matrix group
##
DeclareGlobalFunction( "POL_TriangNSGFI_NonAbelianPRMGroup" );

#############################################################################
##
#F POL_TriangNSGFI_PRMGroup( arg )
##
## arg[1] = G is a rational polycyclic rational matrix group
##
DeclareGlobalFunction( "POL_TriangNSGFI_PRMGroup" );

#############################################################################
##
#M TriangNormalSubgroupFiniteInd( G )
##
## G is a matrix group over the Rationals.
## Returned is triangularizable normal subgroup of finite index
##
#DeclareOperation( "TriangNormalSubgroupFiniteInd", [ IsMatrixGroup ] );

#############################################################################
##
#M SubgroupsUnipotentByAbelianByFinite( G )
##
## G is a matrix group over the Rationals.
## Returned is triangularizable normal subgroup K of finite index
## and an unipotent normal subgroup U of K such that K/U is abelian.
##
DeclareOperation( "SubgroupsUnipotentByAbelianByFinite" , [ IsMatrixGroup ] );

#############################################################################
##
#E