1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
|
#############################################################################
##
#W subgroups.gi POLENTA package Bjoern Assmann
##
## Methods for the calculation of
## certain subgroups of matrix groups
##
#Y 2004
##
#############################################################################
##
POL_Group := function( subGens, G )
if Length( subGens ) = 0 then
return TrivialSubgroup( G );
else
return Group( subGens );
fi;
end;
#############################################################################
##
#F POL_TriangNSGFI_NonAbelianPRMGroup( arg )
##
##
##
## IN: arg[1] ..... G is an non-abelian polycyclic rational matrix group
## arg[2] ..... optional prime p
##
## OUT: Normal subgroup of finite index,
## actually the p-congruence subgroup
##
InstallGlobalFunction( POL_TriangNSGFI_NonAbelianPRMGroup , function( arg )
local p, d, gens_p,G, bound_derivedLength, pcgs_I_p, gens_K_p,
comSeries, gens_K_p_m, gens, gens_K_p_mutableCopy, pcgs,
gensOfBlockAction, pcgs_nue_K_p, pcgs_GU, gens_U_p, pcgs_U_p,
recordSeries, radSeries, isTriang, H;
# setup
G := arg[1];
gens := GeneratorsOfGroup( G );
d := Length(gens[1][1]);
# determine an admissible prime or take the wished one
if Length( arg ) = 2 then
p := arg[2];
else
p := DetermineAdmissiblePrime(gens);
fi;
Info( InfoPolenta, 1, "Chosen admissible prime: " , p );
Info( InfoPolenta, 1, " " );
# calculate the gens of the group phi_p(<gens>) where phi_p is
# natural homomorphism to GL(d,p)
gens_p := InducedByField( gens, GF(p) );
# determine an upper bound for the derived length of G
bound_derivedLength := d+2;
# finite part
Info( InfoPolenta, 1,"Determine a constructive polycyclic sequence\n",
" for the image under the p-congruence homomorphism ..." );
pcgs_I_p := CPCS_finite_word( gens_p, bound_derivedLength );
if pcgs_I_p = fail then return fail; fi;
Info(InfoPolenta,1,"finished.");
Info( InfoPolenta, 1, "Finite image has relative orders ",
RelativeOrdersPcgs_finite( pcgs_I_p ), "." );
Info( InfoPolenta, 1, " " );
# compute the normal the subgroup gens. for the kernel of phi_p
Info( InfoPolenta, 1,"Compute normal subgroup generators for the kernel\n",
" of the p-congruence homomorphism ...");
gens_K_p := POL_NormalSubgroupGeneratorsOfK_p( pcgs_I_p, gens );
gens_K_p := Filtered( gens_K_p, x -> not x = IdentityMat(d) );
Info( InfoPolenta, 1,"finished.");
Info( InfoPolenta, 2,"The normal subgroup generators are" );
Info( InfoPolenta, 2, gens_K_p );
Info( InfoPolenta, 1, " " );
# radical series
Info( InfoPolenta, 1, "Compute the radical series ...");
gens_K_p_mutableCopy := CopyMatrixList( gens_K_p );
recordSeries := POL_RadicalSeriesNormalGensFullData( gens,
gens_K_p_mutableCopy,
d );
if recordSeries=fail then return fail; fi;
radSeries := recordSeries.sers;
Info( InfoPolenta, 1,"finished.");
Info( InfoPolenta, 1, "The radical series has length ",
Length( radSeries ), "." );
Info( InfoPolenta, 2, "The radical series is" );
Info( InfoPolenta, 2, radSeries );
Info( InfoPolenta, 1, " " );
# test if G is unipotent by abelian
isTriang := POL_TestIsUnipotenByAbelianGroupByRadSeries( gens, radSeries );
if isTriang then
return G;
fi;
# compositions series
Info( InfoPolenta, 1, "Compute the composition series ...");
comSeries := POL_CompositionSeriesByRadicalSeries( gens_K_p_mutableCopy,
d,
recordSeries.sersFullData,
1 );
if comSeries=fail then return fail; fi;
Info( InfoPolenta, 1,"finished.");
Info( InfoPolenta, 1, "The composition series has length ",
Length( comSeries ), "." );
Info( InfoPolenta, 2, "The composition series is" );
Info( InfoPolenta, 2, comSeries );
Info( InfoPolenta, 1, " " );
# induce K_p to the factors of the composition series
gensOfBlockAction := POL_InducedActionToSeries(gens_K_p, comSeries);
# let nue be the homomorphism which induces the action of K_p to
# the factors of the series
Info( InfoPolenta, 1, "Compute a constructive polycyclic sequence\n",
" for the induced action of the kernel to the composition series ...");
pcgs_nue_K_p := CPCS_AbelianSSBlocks_ClosedUnderConj( gens_K_p,
gens, comSeries );
if pcgs_nue_K_p = fail then return fail; fi;
Info(InfoPolenta,1,"finished.");
# update generators of K_p
gens_K_p := pcgs_nue_K_p.gens_K_p;
pcgs_nue_K_p := pcgs_nue_K_p.pcgs_nue_K_p;
Info( InfoPolenta, 1, "This polycyclic sequence has relative orders ",
pcgs_nue_K_p.relOrders, "." );
Info( InfoPolenta, 1, " " );
return POL_Group( gens_K_p, G );
end );
#############################################################################
##
#F POL_TriangNSGFI_PRMGroup( arg )
##
## arg[1] = G is a rational polycyclic rational matrix group
##
InstallGlobalFunction( POL_TriangNSGFI_PRMGroup , function( arg )
local G;
G := arg[1];
if IsAbelian( G ) then
return G;
else
if IsBound( arg[2] ) then
return POL_TriangNSGFI_NonAbelianPRMGroup( arg[1], arg[2] );
else
return POL_TriangNSGFI_NonAbelianPRMGroup( G );
fi;
fi;
end );
# this code has to be reviewed. In the current form we can only assure,
# that it returns normal subgroup generators for K_p.
#############################################################################
##
#M TriangNormalSubgroupFiniteInd( G )
##
## G is a matrix group over the Rationals.
## Returned is triangularizable normal subgroup of finite index
##
##
#InstallMethod( TriangNormalSubgroupFiniteInd, "for polycyclic matrix groups",
# true, [ IsMatrixGroup ], 0,
#function( G )
# local test;
# test := POL_IsMatGroupOverFiniteField( G );
# if IsBool( test ) then
# TryNextMethod();
# elif test = 0 then
# return POL_TriangNSGFI_PRMGroup(G );
# else
# TryNextMethod();
# fi;
#end) ;
#
#InstallOtherMethod( TriangNormalSubgroupFiniteInd,
# "for polycyclic matrix groups", true,
# [ IsMatrixGroup, IsInt], 0,
#function( G, p )
# local test;
# test := POL_IsMatGroupOverFiniteField( G );
# if IsBool( test ) then
# TryNextMethod();
# elif test = 0 then
# if not IsPrime(p) then
# Print( "Second argument must be a prime number.\n" );
# return fail;
# fi;
# return POL_TriangNSGFI_PRMGroup(G );
# else
# TryNextMethod();
# fi;
#
#end );
#############################################################################
##
#M SubgroupsUnipotentByAbelianByFinite( G )
##
## G is a matrix group over the Rationals.
## Returned is triangularizable normal subgroup K of finite index
## and an unipotent normal subgroup U of K such that K/U is abelian.
##
InstallMethod( SubgroupsUnipotentByAbelianByFinite,
"for polycyclic matrix groups (Polenta)",
true, [ IsMatrixGroup ], 0,
function( G )
local cpcs, U_p, K_p;
if not IsRationalMatrixGroup( G ) then
TryNextMethod( );
fi;
cpcs := CPCS_PRMGroup( G );
if cpcs = fail then return fail; fi;
if IsAbelian( G ) then
U_p := cpcs.pcgs_U_p.pcs;
return rec( T := G , U := POL_Group( U_p, G ));
else
U_p := cpcs.pcgs_U_p.pcs;
# check if G is triangularizable
if Length( cpcs.pcgs_GU.pcgs_I_p.gens ) = 0 then
#G triangularizable
return rec( T := G, U := POL_Group( U_p, G ));
else
#G not triangularizable
K_p := cpcs.pcgs_GU.preImgsNue;
K_p := Concatenation( K_p, U_p );
return rec( T := POL_Group( K_p, G ), U := POL_Group( U_p, G ));
fi;
fi;
end );
InstallOtherMethod( SubgroupsUnipotentByAbelianByFinite ,
"for polycyclic matrix groups (Polenta)", true,
[ IsMatrixGroup, IsInt], 0,
function( G,p )
local cpcs, U_p, K_p;
if not IsRationalMatrixGroup( G ) then
TryNextMethod( );
fi;
cpcs := CPCS_PRMGroup( G,p );
if cpcs = fail then return fail; fi;
if IsAbelian( G ) then
U_p := cpcs.pcgs_U_p.pcs;
return rec( T := G , U := POL_Group( U_p, G ));
else
U_p := cpcs.pcgs_U_p.pcs;
# check if G is triangularizable
if Length( cpcs.pcgs_GU.pcgs_I_p.gens ) = 0 then
#G triangularizable
return rec( T := G, U := POL_Group( U_p, G ));
else
#G not triangularizable
K_p := cpcs.pcgs_GU.preImgsNue;
K_p := Concatenation( K_p, U_p );
return rec( T := POL_Group( K_p, G ), U := POL_Group( U_p, G ));
fi;
fi;
end );
#############################################################################
##
#E
|