File: subgroups.gi

package info (click to toggle)
gap-polenta 1.3.11-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 1,040 kB
  • sloc: xml: 720; javascript: 155; makefile: 97
file content (271 lines) | stat: -rw-r--r-- 9,504 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
#############################################################################
##
#W subgroups.gi            POLENTA package                     Bjoern Assmann
##
## Methods for the calculation of
## certain subgroups of matrix groups
##
#Y 2004
##

#############################################################################
##
POL_Group := function( subGens, G )
    if Length( subGens ) = 0 then
        return TrivialSubgroup( G );
    else
        return Group( subGens );
    fi;
end;

#############################################################################
##
#F POL_TriangNSGFI_NonAbelianPRMGroup( arg )
##
##
##
## IN: arg[1] ..... G is an non-abelian  polycyclic rational matrix group
##     arg[2] ..... optional prime p
##
## OUT: Normal subgroup of finite index,
##      actually the p-congruence subgroup
##
InstallGlobalFunction( POL_TriangNSGFI_NonAbelianPRMGroup , function( arg )
    local   p, d, gens_p,G, bound_derivedLength, pcgs_I_p, gens_K_p,
            comSeries, gens_K_p_m, gens, gens_K_p_mutableCopy, pcgs,
            gensOfBlockAction, pcgs_nue_K_p, pcgs_GU, gens_U_p, pcgs_U_p,
            recordSeries, radSeries, isTriang, H;
    # setup
    G := arg[1];
    gens := GeneratorsOfGroup( G );
    d := Length(gens[1][1]);

    # determine an admissible prime or take the wished one
    if Length( arg ) = 2 then
        p := arg[2];
    else
        p := DetermineAdmissiblePrime(gens);
    fi;
    Info( InfoPolenta, 1, "Chosen admissible prime: " , p );
    Info( InfoPolenta, 1, "  " );

    # calculate the gens of the group phi_p(<gens>) where phi_p is
    # natural homomorphism to GL(d,p)
    gens_p := InducedByField( gens, GF(p) );

    # determine an upper bound for the derived length of G
    bound_derivedLength := d+2;

    # finite part
    Info( InfoPolenta, 1,"Determine a constructive polycyclic sequence\n",
          "    for the image under the p-congruence homomorphism ..." );
    pcgs_I_p := CPCS_finite_word( gens_p, bound_derivedLength );
    if pcgs_I_p = fail then return fail; fi;
    Info(InfoPolenta,1,"finished.");
    Info( InfoPolenta, 1, "Finite image has relative orders ",
                           RelativeOrdersPcgs_finite( pcgs_I_p ), "." );
    Info( InfoPolenta, 1, " " );

    # compute the normal the subgroup gens. for the kernel of phi_p
    Info( InfoPolenta, 1,"Compute normal subgroup generators for the kernel\n",
          "    of the p-congruence homomorphism ...");
    gens_K_p := POL_NormalSubgroupGeneratorsOfK_p( pcgs_I_p, gens );
    gens_K_p := Filtered( gens_K_p, x -> not x = IdentityMat(d) );
    Info( InfoPolenta, 1,"finished.");

       Info( InfoPolenta, 2,"The normal subgroup generators are" );
    Info( InfoPolenta, 2, gens_K_p );
    Info( InfoPolenta, 1, "  " );

    # radical series
    Info( InfoPolenta, 1, "Compute the radical series ...");
    gens_K_p_mutableCopy := CopyMatrixList( gens_K_p );
    recordSeries := POL_RadicalSeriesNormalGensFullData( gens,
                                                         gens_K_p_mutableCopy,
                                                         d );

    if recordSeries=fail then return fail; fi;
    radSeries := recordSeries.sers;
    Info( InfoPolenta, 1,"finished.");
    Info( InfoPolenta, 1, "The radical series has length ",
                          Length( radSeries ), "." );
    Info( InfoPolenta, 2, "The radical series is" );
    Info( InfoPolenta, 2, radSeries );
    Info( InfoPolenta, 1, " " );

    # test if G is unipotent by abelian
    isTriang := POL_TestIsUnipotenByAbelianGroupByRadSeries( gens, radSeries );
    if isTriang then
        return G;
    fi;

    # compositions series
    Info( InfoPolenta, 1, "Compute the composition series ...");
    comSeries := POL_CompositionSeriesByRadicalSeries( gens_K_p_mutableCopy,
                                                       d,
                                                   recordSeries.sersFullData,
                                                       1  );
    if comSeries=fail then return fail; fi;
    Info( InfoPolenta, 1,"finished.");
    Info( InfoPolenta, 1, "The composition series has length ",
                          Length( comSeries ), "." );
    Info( InfoPolenta, 2, "The composition series is" );
    Info( InfoPolenta, 2, comSeries );
    Info( InfoPolenta, 1, " " );

    # induce K_p to the factors of the composition series
    gensOfBlockAction := POL_InducedActionToSeries(gens_K_p, comSeries);

    # let nue be the homomorphism which induces the action of K_p to
    # the factors of the series
    Info( InfoPolenta, 1, "Compute a constructive polycyclic sequence\n",
     "    for the induced action of the kernel to the composition series ...");
    pcgs_nue_K_p := CPCS_AbelianSSBlocks_ClosedUnderConj( gens_K_p,
                                                       gens, comSeries );
    if pcgs_nue_K_p = fail then return fail; fi;
    Info(InfoPolenta,1,"finished.");

    # update generators of K_p
    gens_K_p := pcgs_nue_K_p.gens_K_p;
    pcgs_nue_K_p := pcgs_nue_K_p.pcgs_nue_K_p;
    Info( InfoPolenta, 1, "This polycyclic sequence has relative orders ",
                           pcgs_nue_K_p.relOrders, "."  );
    Info( InfoPolenta, 1, " " );

    return POL_Group( gens_K_p, G );

end );

#############################################################################
##
#F POL_TriangNSGFI_PRMGroup( arg )
##
## arg[1] = G is a rational polycyclic rational matrix group
##
InstallGlobalFunction( POL_TriangNSGFI_PRMGroup , function( arg )
    local G;
    G := arg[1];
    if IsAbelian( G ) then
        return  G;
    else
        if IsBound( arg[2] ) then
             return POL_TriangNSGFI_NonAbelianPRMGroup( arg[1], arg[2] );
        else
             return POL_TriangNSGFI_NonAbelianPRMGroup( G );
        fi;
    fi;
end );


# this code has to be reviewed. In the current form we can only assure,
# that it returns normal subgroup generators for K_p.
#############################################################################
##
#M TriangNormalSubgroupFiniteInd( G )
##
## G is a matrix group over the Rationals.
## Returned is triangularizable normal subgroup of finite index
##
##
#InstallMethod( TriangNormalSubgroupFiniteInd, "for polycyclic matrix groups",
#                true, [ IsMatrixGroup ], 0,
#function( G )
#        local test;
#        test := POL_IsMatGroupOverFiniteField( G );
#        if IsBool( test ) then
#            TryNextMethod();
#        elif test = 0 then
#            return  POL_TriangNSGFI_PRMGroup(G );
#        else
#            TryNextMethod();
#        fi;
#end) ;
#
#InstallOtherMethod( TriangNormalSubgroupFiniteInd,
#               "for polycyclic matrix groups", true,
#               [ IsMatrixGroup, IsInt], 0,
#function( G, p )
#        local test;
#        test := POL_IsMatGroupOverFiniteField( G );
#        if IsBool( test ) then
#            TryNextMethod();
#        elif test = 0 then
#            if not IsPrime(p) then
#                Print( "Second argument must be a prime number.\n" );
#                return fail;
#            fi;
#            return POL_TriangNSGFI_PRMGroup(G );
#         else
#            TryNextMethod();
#         fi;
#
#end );

#############################################################################
##
#M SubgroupsUnipotentByAbelianByFinite( G )
##
## G is a matrix group over the Rationals.
## Returned is triangularizable normal subgroup K of finite index
## and an unipotent normal subgroup U of K such that K/U is abelian.
##
InstallMethod( SubgroupsUnipotentByAbelianByFinite,
               "for polycyclic matrix groups (Polenta)",
                true, [ IsMatrixGroup ], 0,
function( G )
    local cpcs, U_p, K_p;
    if not IsRationalMatrixGroup( G ) then
       TryNextMethod( );
    fi;
    cpcs := CPCS_PRMGroup( G );
    if cpcs = fail then return fail; fi;
    if IsAbelian( G ) then
        U_p := cpcs.pcgs_U_p.pcs;
        return rec( T := G , U := POL_Group( U_p, G ));
    else
        U_p := cpcs.pcgs_U_p.pcs;
        # check if G is triangularizable
        if Length( cpcs.pcgs_GU.pcgs_I_p.gens ) = 0 then
            #G triangularizable
            return rec( T := G, U := POL_Group( U_p, G ));
        else
            #G not triangularizable
            K_p := cpcs.pcgs_GU.preImgsNue;
            K_p := Concatenation( K_p, U_p );
            return rec( T := POL_Group( K_p, G ), U := POL_Group( U_p, G ));
        fi;
    fi;
end );

InstallOtherMethod( SubgroupsUnipotentByAbelianByFinite ,
               "for polycyclic matrix groups (Polenta)", true,
               [ IsMatrixGroup, IsInt], 0,
function( G,p )
    local cpcs, U_p, K_p;
    if not IsRationalMatrixGroup( G ) then
       TryNextMethod( );
    fi;
    cpcs := CPCS_PRMGroup( G,p );
    if cpcs = fail then return fail; fi;
    if IsAbelian( G ) then
        U_p := cpcs.pcgs_U_p.pcs;
        return rec( T := G , U := POL_Group( U_p, G ));
    else
        U_p := cpcs.pcgs_U_p.pcs;
        # check if G is triangularizable
        if Length( cpcs.pcgs_GU.pcgs_I_p.gens ) = 0 then
            #G triangularizable
            return rec( T := G, U := POL_Group( U_p, G ));
        else
            #G not triangularizable
            K_p := cpcs.pcgs_GU.preImgsNue;
            K_p := Concatenation( K_p, U_p );
            return rec( T := POL_Group( K_p, G ), U := POL_Group( U_p, G ));
        fi;
    fi;
end );


#############################################################################
##
#E