File: chap5.html

package info (click to toggle)
gap-polycyclic 2.11-3
  • links: PTS
  • area: main
  • in suites: stretch
  • size: 2,936 kB
  • ctags: 512
  • sloc: xml: 3,000; makefile: 118; sh: 2
file content (617 lines) | stat: -rw-r--r-- 48,429 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
         "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>GAP (polycyclic) - Chapter 5: Basic methods and functions for pcp-groups</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap5"  onload="jscontent()">


<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a>  <a href="chapA.html">A</a>  <a href="chapBib.html">Bib</a>  <a href="chapInd.html">Ind</a>  </div>

<div class="chlinkprevnexttop">&nbsp;<a href="chap0.html">[Top of Book]</a>&nbsp;  <a href="chap0.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap4.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap6.html">[Next Chapter]</a>&nbsp;  </div>

<p id="mathjaxlink" class="pcenter"><a href="chap5_mj.html">[MathJax on]</a></p>
<p><a id="X7B9B85AE7C9B13EE" name="X7B9B85AE7C9B13EE"></a></p>
<div class="ChapSects"><a href="chap5.html#X7B9B85AE7C9B13EE">5 <span class="Heading">Basic methods and functions for pcp-groups</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap5.html#X821360107E355B88">5.1 <span class="Heading">Elementary methods for pcp-groups</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5.html#X806A4814806A4814">5.1-1 \=</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5.html#X858ADA3B7A684421">5.1-2 Size</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5.html#X79730D657AB219DB">5.1-3 Random</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5.html#X83A0356F839C696F">5.1-4 Index</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5.html#X87BDB89B7AAFE8AD">5.1-5 \in</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5.html#X79B130FC7906FB4C">5.1-6 Elements</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5.html#X7D13FC1F8576FFD8">5.1-7 ClosureGroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5.html#X7BDEA0A98720D1BB">5.1-8 NormalClosure</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5.html#X839B42AE7A1DD544">5.1-9 HirschLength</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5.html#X7A9A3D5578CE33A0">5.1-10 CommutatorSubgroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5.html#X796DA805853FAC90">5.1-11 PRump</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5.html#X814DBABC878D5232">5.1-12 SmallGeneratingSet</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap5.html#X80E88168866D54F3">5.2 <span class="Heading">Elementary properties of pcp-groups</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5.html#X7839D8927E778334">5.2-1 IsSubgroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5.html#X838186F9836F678C">5.2-2 IsNormal</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5.html#X87D062608719F2CD">5.2-3 IsNilpotentGroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5.html#X7C12AA7479A6C103">5.2-4 IsAbelian</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5.html#X813C952F80E775D4">5.2-5 IsElementaryAbelian</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5.html#X84FFC668832F9ED6">5.2-6 IsFreeAbelian</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap5.html#X85A7E26C7E14AFBA">5.3 <span class="Heading">Subgroups of pcp-groups</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5.html#X833011AD7DFD2C50">5.3-1 Igs</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5.html#X8364E0C5841B650A">5.3-2 Ngs</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5.html#X83E969F083F072C1">5.3-3 Cgs</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5.html#X83B92A2679EAB1EB">5.3-4 SubgroupByIgs</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5.html#X78107DE78728B26B">5.3-5 AddToIgs</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap5.html#X803D62BC86EF07D0">5.4 <span class="Heading">Polycyclic presentation sequences for subfactors</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5.html#X7DD931697DD93169">5.4-1 Pcp</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5.html#X821FF77086E38B3A">5.4-2 GeneratorsOfPcp</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5.html#X8297BBCD79642BE6">5.4-3 \[\]</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5.html#X780769238600AFD1">5.4-4 Length</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5.html#X7ABCA7F2790E1673">5.4-5 RelativeOrdersOfPcp</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5.html#X7D16C299825887AA">5.4-6 DenominatorOfPcp</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5.html#X803AED1A84FCBEE8">5.4-7 NumeratorOfPcp</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5.html#X80BCCF0B81344933">5.4-8 GroupOfPcp</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5.html#X87F0BA5F7BA0F4B4">5.4-9 OneOfPcp</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5.html#X7A8C8BBC81581E09">5.4-10 ExponentsByPcp</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5.html#X87D75F7F86FEF203">5.4-11 PcpGroupByPcp</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap5.html#X845D29B478CA7656">5.5 <span class="Heading">Factor groups of pcp-groups</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5.html#X7E3F6CCD7C793211">5.5-1 NaturalHomomorphism</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5.html#X7F51DF007F51DF00">5.5-2 \/</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap5.html#X82E643F178E765EA">5.6 <span class="Heading">Homomorphisms for pcp-groups</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5.html#X7F348F497C813BE0">5.6-1 GroupHomomorphismByImages</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5.html#X7DCD99628504B810">5.6-2 Kernel</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5.html#X87F4D35A826599C6">5.6-3 Image</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5.html#X836FAEAC78B55BF4">5.6-4 PreImage</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5.html#X7AE24A1586B7DE79">5.6-5 PreImagesRepresentative</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5.html#X7F065FD7822C0A12">5.6-6 IsInjective</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap5.html#X7C873F807D4F3A3C">5.7 <span class="Heading">Changing the defining pc-presentation</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5.html#X80E9B60E853B2E05">5.7-1 RefinedPcpGroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5.html#X7F88F5548329E279">5.7-2 PcpGroupBySeries</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap5.html#X85E681027AF19B1E">5.8 <span class="Heading">Printing a pc-presentation</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5.html#X863EE3547C3629C6">5.8-1 PrintPcpPresentation</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap5.html#X826ACBBB7A977206">5.9 <span class="Heading">Converting to and from a presentation</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5.html#X8771540F7A235763">5.9-1 IsomorphismPcpGroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5.html#X7F5EBF1C831B4BA9">5.9-2 IsomorphismPcpGroupFromFpGroupWithPcPres</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5.html#X873CEB137BA1CD6E">5.9-3 IsomorphismPcGroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5.html#X7F28268F850F454E">5.9-4 IsomorphismFpGroup</a></span>
</div></div>
</div>

<h3>5 <span class="Heading">Basic methods and functions for pcp-groups</span></h3>

<p>Pcp-groups are groups in the <strong class="pkg">GAP</strong> sense and hence all generic <strong class="pkg">GAP</strong> methods for groups can be applied for pcp-groups. However, for a number of group theoretic questions <strong class="pkg">GAP</strong> does not provide generic methods that can be applied to pcp-groups. For some of these questions there are functions provided in <strong class="pkg">Polycyclic</strong>.</p>

<p><a id="X821360107E355B88" name="X821360107E355B88"></a></p>

<h4>5.1 <span class="Heading">Elementary methods for pcp-groups</span></h4>

<p>In this chapter we describe some important basic functions which are available for pcp-groups. A number of higher level functions are outlined in later sections and chapters.</p>

<p>Let <span class="SimpleMath">U, V</span> and <span class="SimpleMath">N</span> be subgroups of a pcp-group.</p>

<p><a id="X806A4814806A4814" name="X806A4814806A4814"></a></p>

<h5>5.1-1 \=</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; \=</code>( <var class="Arg">U</var>, <var class="Arg">V</var> )</td><td class="tdright">( method )</td></tr></table></div>
<p>decides if <var class="Arg">U</var> and <var class="Arg">V</var> are equal as sets.</p>

<p><a id="X858ADA3B7A684421" name="X858ADA3B7A684421"></a></p>

<h5>5.1-2 Size</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Size</code>( <var class="Arg">U</var> )</td><td class="tdright">( method )</td></tr></table></div>
<p>returns the size of <var class="Arg">U</var>.</p>

<p><a id="X79730D657AB219DB" name="X79730D657AB219DB"></a></p>

<h5>5.1-3 Random</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Random</code>( <var class="Arg">U</var> )</td><td class="tdright">( method )</td></tr></table></div>
<p>returns a random element of <var class="Arg">U</var>.</p>

<p><a id="X83A0356F839C696F" name="X83A0356F839C696F"></a></p>

<h5>5.1-4 Index</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Index</code>( <var class="Arg">U</var>, <var class="Arg">V</var> )</td><td class="tdright">( method )</td></tr></table></div>
<p>returns the index of <var class="Arg">V</var> in <var class="Arg">U</var> if <var class="Arg">V</var> is a subgroup of <var class="Arg">U</var>. The function does not check if <var class="Arg">V</var> is a subgroup of <var class="Arg">U</var> and if it is not, the result is not meaningful.</p>

<p><a id="X87BDB89B7AAFE8AD" name="X87BDB89B7AAFE8AD"></a></p>

<h5>5.1-5 \in</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; \in</code>( <var class="Arg">g</var>, <var class="Arg">U</var> )</td><td class="tdright">( method )</td></tr></table></div>
<p>checks if <var class="Arg">g</var> is an element of <var class="Arg">U</var>.</p>

<p><a id="X79B130FC7906FB4C" name="X79B130FC7906FB4C"></a></p>

<h5>5.1-6 Elements</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Elements</code>( <var class="Arg">U</var> )</td><td class="tdright">( method )</td></tr></table></div>
<p>returns a list containing all elements of <var class="Arg">U</var> if <var class="Arg">U</var> is finite and it returns the list [fail] otherwise.</p>

<p><a id="X7D13FC1F8576FFD8" name="X7D13FC1F8576FFD8"></a></p>

<h5>5.1-7 ClosureGroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ClosureGroup</code>( <var class="Arg">U</var>, <var class="Arg">V</var> )</td><td class="tdright">( method )</td></tr></table></div>
<p>returns the group generated by <var class="Arg">U</var> and <var class="Arg">V</var>.</p>

<p><a id="X7BDEA0A98720D1BB" name="X7BDEA0A98720D1BB"></a></p>

<h5>5.1-8 NormalClosure</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; NormalClosure</code>( <var class="Arg">U</var>, <var class="Arg">V</var> )</td><td class="tdright">( method )</td></tr></table></div>
<p>returns the normal closure of <var class="Arg">V</var> under action of <var class="Arg">U</var>.</p>

<p><a id="X839B42AE7A1DD544" name="X839B42AE7A1DD544"></a></p>

<h5>5.1-9 HirschLength</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; HirschLength</code>( <var class="Arg">U</var> )</td><td class="tdright">( method )</td></tr></table></div>
<p>returns the Hirsch length of <var class="Arg">U</var>.</p>

<p><a id="X7A9A3D5578CE33A0" name="X7A9A3D5578CE33A0"></a></p>

<h5>5.1-10 CommutatorSubgroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; CommutatorSubgroup</code>( <var class="Arg">U</var>, <var class="Arg">V</var> )</td><td class="tdright">( method )</td></tr></table></div>
<p>returns the group generated by all commutators <span class="SimpleMath">[u,v]</span> with <span class="SimpleMath">u</span> in <var class="Arg">U</var> and <span class="SimpleMath">v</span> in <var class="Arg">V</var>.</p>

<p><a id="X796DA805853FAC90" name="X796DA805853FAC90"></a></p>

<h5>5.1-11 PRump</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PRump</code>( <var class="Arg">U</var>, <var class="Arg">p</var> )</td><td class="tdright">( method )</td></tr></table></div>
<p>returns the subgroup <span class="SimpleMath">U'U^p</span> of <var class="Arg">U</var> where <var class="Arg">p</var> is a prime number.</p>

<p><a id="X814DBABC878D5232" name="X814DBABC878D5232"></a></p>

<h5>5.1-12 SmallGeneratingSet</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SmallGeneratingSet</code>( <var class="Arg">U</var> )</td><td class="tdright">( method )</td></tr></table></div>
<p>returns a small generating set for <var class="Arg">U</var>.</p>

<p><a id="X80E88168866D54F3" name="X80E88168866D54F3"></a></p>

<h4>5.2 <span class="Heading">Elementary properties of pcp-groups</span></h4>

<p><a id="X7839D8927E778334" name="X7839D8927E778334"></a></p>

<h5>5.2-1 IsSubgroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsSubgroup</code>( <var class="Arg">U</var>, <var class="Arg">V</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>tests if <var class="Arg">V</var> is a subgroup of <var class="Arg">U</var>.</p>

<p><a id="X838186F9836F678C" name="X838186F9836F678C"></a></p>

<h5>5.2-2 IsNormal</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsNormal</code>( <var class="Arg">U</var>, <var class="Arg">V</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>tests if <var class="Arg">V</var> is normal in <var class="Arg">U</var>.</p>

<p><a id="X87D062608719F2CD" name="X87D062608719F2CD"></a></p>

<h5>5.2-3 IsNilpotentGroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsNilpotentGroup</code>( <var class="Arg">U</var> )</td><td class="tdright">( method )</td></tr></table></div>
<p>checks whether <var class="Arg">U</var> is nilpotent.</p>

<p><a id="X7C12AA7479A6C103" name="X7C12AA7479A6C103"></a></p>

<h5>5.2-4 IsAbelian</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsAbelian</code>( <var class="Arg">U</var> )</td><td class="tdright">( method )</td></tr></table></div>
<p>checks whether <var class="Arg">U</var> is abelian.</p>

<p><a id="X813C952F80E775D4" name="X813C952F80E775D4"></a></p>

<h5>5.2-5 IsElementaryAbelian</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsElementaryAbelian</code>( <var class="Arg">U</var> )</td><td class="tdright">( method )</td></tr></table></div>
<p>checks whether <var class="Arg">U</var> is elementary abelian.</p>

<p><a id="X84FFC668832F9ED6" name="X84FFC668832F9ED6"></a></p>

<h5>5.2-6 IsFreeAbelian</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsFreeAbelian</code>( <var class="Arg">U</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>checks whether <var class="Arg">U</var> is free abelian.</p>

<p><a id="X85A7E26C7E14AFBA" name="X85A7E26C7E14AFBA"></a></p>

<h4>5.3 <span class="Heading">Subgroups of pcp-groups</span></h4>

<p>A subgroup of a pcp-group <span class="SimpleMath">G</span> can be defined by a set of generators as described in Section <a href="chap4.html#X7A4EF7C68151905A"><span class="RefLink">4.3</span></a>. However, many computations with a subgroup <span class="SimpleMath">U</span> need an <em>induced generating sequence</em> or <em>igs</em> of <span class="SimpleMath">U</span>. An igs is a sequence of generators of <span class="SimpleMath">U</span> whose list of exponent vectors form a matrix in upper triangular form. Note that there may exist many igs of <span class="SimpleMath">U</span>. The first one calculated for <span class="SimpleMath">U</span> is stored as an attribute.</p>

<p>An induced generating sequence of a subgroup of a pcp-group <span class="SimpleMath">G</span> is a list of elements of <span class="SimpleMath">G</span>. An igs is called <em>normed</em>, if each element in the list is normed. Moreover, it is <em>canonical</em>, if the exponent vector matrix is in Hermite Normal Form. The following functions can be used to compute induced generating sequence for a given subgroup <var class="Arg">U</var> of <var class="Arg">G</var>.</p>

<p><a id="X833011AD7DFD2C50" name="X833011AD7DFD2C50"></a></p>

<h5>5.3-1 Igs</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Igs</code>( <var class="Arg">U</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Igs</code>( <var class="Arg">gens</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IgsParallel</code>( <var class="Arg">gens</var>, <var class="Arg">gens2</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns an induced generating sequence of the subgroup <var class="Arg">U</var> of a pcp-group. In the second form the subgroup is given via a generating set <var class="Arg">gens</var>. The third form computes an igs for the subgroup generated by <var class="Arg">gens</var> carrying <var class="Arg">gens2</var> through as shadows. This means that each operation that is applied to the first list is also applied to the second list.</p>

<p><a id="X8364E0C5841B650A" name="X8364E0C5841B650A"></a></p>

<h5>5.3-2 Ngs</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Ngs</code>( <var class="Arg">U</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Ngs</code>( <var class="Arg">igs</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns a normed induced generating sequence of the subgroup <var class="Arg">U</var> of a pcp-group. The second form takes an igs as input and norms it.</p>

<p><a id="X83E969F083F072C1" name="X83E969F083F072C1"></a></p>

<h5>5.3-3 Cgs</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Cgs</code>( <var class="Arg">U</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Cgs</code>( <var class="Arg">igs</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; CgsParallel</code>( <var class="Arg">gens</var>, <var class="Arg">gens2</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns a canonical generating sequence of the subgroup <var class="Arg">U</var> of a pcp-group. In the second form the function takes an igs as input and returns a canonical generating sequence. The third version takes a generating set and computes a canonical generating sequence carrying <var class="Arg">gens2</var> through as shadows. This means that each operation that is applied to the first list is also applied to the second list.</p>

<p>For a large number of methods for pcp-groups <var class="Arg">U</var> we will first of all determine an <var class="Arg">igs</var> for <var class="Arg">U</var>. Hence it might speed up computations, if a known <var class="Arg">igs</var> for a group <var class="Arg">U</var> is set <em>a priori</em>. The following functions can be used for this purpose.</p>

<p><a id="X83B92A2679EAB1EB" name="X83B92A2679EAB1EB"></a></p>

<h5>5.3-4 SubgroupByIgs</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SubgroupByIgs</code>( <var class="Arg">G</var>, <var class="Arg">igs</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SubgroupByIgs</code>( <var class="Arg">G</var>, <var class="Arg">igs</var>, <var class="Arg">gens</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns the subgroup of the pcp-group <var class="Arg">G</var> generated by the elements of the induced generating sequence <var class="Arg">igs</var>. Note that <var class="Arg">igs</var> must be an induced generating sequence of the subgroup generated by the elements of the <var class="Arg">igs</var>. In the second form <var class="Arg">igs</var> is a igs for a subgroup and <var class="Arg">gens</var> are some generators. The function returns the subgroup generated by <var class="Arg">igs</var> and <var class="Arg">gens</var>.</p>

<p><a id="X78107DE78728B26B" name="X78107DE78728B26B"></a></p>

<h5>5.3-5 AddToIgs</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; AddToIgs</code>( <var class="Arg">igs</var>, <var class="Arg">gens</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; AddToIgsParallel</code>( <var class="Arg">igs</var>, <var class="Arg">gens</var>, <var class="Arg">igs2</var>, <var class="Arg">gens2</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; AddIgsToIgs</code>( <var class="Arg">igs</var>, <var class="Arg">igs2</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>sifts the elements in the list <span class="SimpleMath">gens</span> into <span class="SimpleMath">igs</span>. The second version has the same functionality and carries shadows. This means that each operation that is applied to the first list and the element <var class="Arg">gens</var> is also applied to the second list and the element <var class="Arg">gens2</var>. The third version is available for efficiency reasons and assumes that the second list <var class="Arg">igs2</var> is not only a generating set, but an igs.</p>

<p><a id="X803D62BC86EF07D0" name="X803D62BC86EF07D0"></a></p>

<h4>5.4 <span class="Heading">Polycyclic presentation sequences for subfactors</span></h4>

<p>A subfactor of a pcp-group <span class="SimpleMath">G</span> is again a polycyclic group for which a polycyclic presentation can be computed. However, to compute a polycyclic presentation for a given subfactor can be time-consuming. Hence we introduce <em>polycyclic presentation sequences</em> or <em>Pcp</em> to compute more efficiently with subfactors. (Note that a subgroup is also a subfactor and thus can be handled by a pcp)</p>

<p>A pcp for a pcp-group <span class="SimpleMath">U</span> or a subfactor <span class="SimpleMath">U / N</span> can be created with one of the following functions.</p>

<p><a id="X7DD931697DD93169" name="X7DD931697DD93169"></a></p>

<h5>5.4-1 Pcp</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Pcp</code>( <var class="Arg">U</var>[, <var class="Arg">flag</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Pcp</code>( <var class="Arg">U</var>, <var class="Arg">N</var>[, <var class="Arg">flag</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns a polycyclic presentation sequence for the subgroup <var class="Arg">U</var> or the quotient group <var class="Arg">U</var> modulo <var class="Arg">N</var>. If the parameter <var class="Arg">flag</var> is present and equals the string "snf", the function can only be applied to an abelian subgroup <var class="Arg">U</var> or abelian subfactor <var class="Arg">U</var>/<var class="Arg">N</var>. The pcp returned will correspond to a decomposition of the abelian group into a direct product of cyclic groups.</p>

<p>A pcp is a component object which behaves similar to a list representing an igs of the subfactor in question. The basic functions to obtain the stored values of this component object are as follows. Let <span class="SimpleMath">pcp</span> be a pcp for a subfactor <span class="SimpleMath">U/N</span> of the defining pcp-group <span class="SimpleMath">G</span>.</p>

<p><a id="X821FF77086E38B3A" name="X821FF77086E38B3A"></a></p>

<h5>5.4-2 GeneratorsOfPcp</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; GeneratorsOfPcp</code>( <var class="Arg">pcp</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>this returns a list of elements of <span class="SimpleMath">U</span> corresponding to an igs of <span class="SimpleMath">U/N</span>.</p>

<p><a id="X8297BBCD79642BE6" name="X8297BBCD79642BE6"></a></p>

<h5>5.4-3 \[\]</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; \[\]</code>( <var class="Arg">pcp</var>, <var class="Arg">i</var> )</td><td class="tdright">( method )</td></tr></table></div>
<p>returns the <var class="Arg">i</var>-th element of <var class="Arg">pcp</var>.</p>

<p><a id="X780769238600AFD1" name="X780769238600AFD1"></a></p>

<h5>5.4-4 Length</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Length</code>( <var class="Arg">pcp</var> )</td><td class="tdright">( method )</td></tr></table></div>
<p>returns the number of generators in <var class="Arg">pcp</var>.</p>

<p><a id="X7ABCA7F2790E1673" name="X7ABCA7F2790E1673"></a></p>

<h5>5.4-5 RelativeOrdersOfPcp</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RelativeOrdersOfPcp</code>( <var class="Arg">pcp</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>the relative orders of the igs in <var class="Arg">U/N</var>.</p>

<p><a id="X7D16C299825887AA" name="X7D16C299825887AA"></a></p>

<h5>5.4-6 DenominatorOfPcp</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; DenominatorOfPcp</code>( <var class="Arg">pcp</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns an igs of <var class="Arg">N</var>.</p>

<p><a id="X803AED1A84FCBEE8" name="X803AED1A84FCBEE8"></a></p>

<h5>5.4-7 NumeratorOfPcp</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; NumeratorOfPcp</code>( <var class="Arg">pcp</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns an igs of <var class="Arg">U</var>.</p>

<p><a id="X80BCCF0B81344933" name="X80BCCF0B81344933"></a></p>

<h5>5.4-8 GroupOfPcp</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; GroupOfPcp</code>( <var class="Arg">pcp</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns <var class="Arg">U</var>.</p>

<p><a id="X87F0BA5F7BA0F4B4" name="X87F0BA5F7BA0F4B4"></a></p>

<h5>5.4-9 OneOfPcp</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; OneOfPcp</code>( <var class="Arg">pcp</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns the identity element of <var class="Arg">G</var>.</p>

<p>The main feature of a pcp are the possibility to compute exponent vectors without having to determine an explicit pcp-group corresponding to the subfactor that is represented by the pcp. Nonetheless, it is possible to determine this subfactor.</p>

<p><a id="X7A8C8BBC81581E09" name="X7A8C8BBC81581E09"></a></p>

<h5>5.4-10 ExponentsByPcp</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ExponentsByPcp</code>( <var class="Arg">pcp</var>, <var class="Arg">g</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns the exponent vector of <var class="Arg">g</var> with respect to the generators of <var class="Arg">pcp</var>. This is the exponent vector of <var class="Arg">g</var><span class="SimpleMath">N</span> with respect to the igs of <var class="Arg">U/N</var>.</p>

<p><a id="X87D75F7F86FEF203" name="X87D75F7F86FEF203"></a></p>

<h5>5.4-11 PcpGroupByPcp</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PcpGroupByPcp</code>( <var class="Arg">pcp</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>let <var class="Arg">pcp</var> be a Pcp of a subgroup or a factor group of a pcp-group. This function computes a new pcp-group whose defining generators correspond to the generators in <var class="Arg">pcp</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput"> G := DihedralPcpGroup(0);</span>
Pcp-group with orders [ 2, 0 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput"> pcp := Pcp(G);</span>
Pcp [ g1, g2 ] with orders [ 2, 0 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput"> pcp[1];</span>
g1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput"> Length(pcp);</span>
2
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput"> RelativeOrdersOfPcp(pcp);</span>
[ 2, 0 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput"> DenominatorOfPcp(pcp);</span>
[  ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput"> NumeratorOfPcp(pcp);</span>
[ g1, g2 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput"> GroupOfPcp(pcp);</span>
Pcp-group with orders [ 2, 0 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">OneOfPcp(pcp);</span>
identity
</pre></div>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G := ExamplesOfSomePcpGroups(5);</span>
Pcp-group with orders [ 2, 0, 0, 0 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">D := DerivedSubgroup( G );</span>
Pcp-group with orders [ 0, 0, 0 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput"> GeneratorsOfGroup( G );</span>
[ g1, g2, g3, g4 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput"> GeneratorsOfGroup( D );</span>
[ g2^-2, g3^-2, g4^2 ]

# an ordinary pcp for G / D
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pcp1 := Pcp( G, D );</span>
Pcp [ g1, g2, g3, g4 ] with orders [ 2, 2, 2, 2 ]

# a pcp for G/D in independent generators
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput"> pcp2 := Pcp( G, D, "snf" );</span>
Pcp [ g2, g3, g1 ] with orders [ 2, 2, 4 ]

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput"> g := Random( G );</span>
g1*g2^-4*g3*g4^2

# compute the exponent vector of g in G/D with respect to pcp1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ExponentsByPcp( pcp1, g );</span>
[ 1, 0, 1, 0 ]

# compute the exponent vector of g in G/D with respect to pcp2
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput"> ExponentsByPcp( pcp2, g );</span>
[ 0, 1, 1 ]
</pre></div>

<p><a id="X845D29B478CA7656" name="X845D29B478CA7656"></a></p>

<h4>5.5 <span class="Heading">Factor groups of pcp-groups</span></h4>

<p>Pcp's for subfactors of pcp-groups have already been described above. These are usually used within algorithms to compute with pcp-groups. However, it is also possible to explicitly construct factor groups and their corresponding natural homomorphisms.</p>

<p><a id="X7E3F6CCD7C793211" name="X7E3F6CCD7C793211"></a></p>

<h5>5.5-1 NaturalHomomorphism</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; NaturalHomomorphism</code>( <var class="Arg">G</var>, <var class="Arg">N</var> )</td><td class="tdright">( method )</td></tr></table></div>
<p>returns the natural homomorphism <span class="SimpleMath">G -&gt; G/N</span>. Its image is the factor group <span class="SimpleMath">G/N</span>.</p>

<p><a id="X7F51DF007F51DF00" name="X7F51DF007F51DF00"></a></p>

<h5>5.5-2 \/</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; \/</code>( <var class="Arg">G</var>, <var class="Arg">N</var> )</td><td class="tdright">( method )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; FactorGroup</code>( <var class="Arg">G</var>, <var class="Arg">N</var> )</td><td class="tdright">( method )</td></tr></table></div>
<p>returns the desired factor as pcp-group without giving the explicit homomorphism. This function is just a wrapper for <code class="code">PcpGroupByPcp( Pcp( G, N ) )</code>.</p>

<p><a id="X82E643F178E765EA" name="X82E643F178E765EA"></a></p>

<h4>5.6 <span class="Heading">Homomorphisms for pcp-groups</span></h4>

<p><strong class="pkg">Polycyclic</strong> provides code for defining group homomorphisms by generators and images where either the source or the range or both are pcp groups. All methods provided by GAP for such group homomorphisms are supported, in particular the following:</p>

<p><a id="X7F348F497C813BE0" name="X7F348F497C813BE0"></a></p>

<h5>5.6-1 GroupHomomorphismByImages</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; GroupHomomorphismByImages</code>( <var class="Arg">G</var>, <var class="Arg">H</var>, <var class="Arg">gens</var>, <var class="Arg">imgs</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns the homomorphism from the (pcp-) group <var class="Arg">G</var> to the pcp-group <var class="Arg">H</var> mapping the generators of <var class="Arg">G</var> in the list <var class="Arg">gens</var> to the corresponding images in the list <var class="Arg">imgs</var> of elements of <var class="Arg">H</var>.</p>

<p><a id="X7DCD99628504B810" name="X7DCD99628504B810"></a></p>

<h5>5.6-2 Kernel</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Kernel</code>( <var class="Arg">hom</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns the kernel of the homomorphism <var class="Arg">hom</var> from a pcp-group to a pcp-group.</p>

<p><a id="X87F4D35A826599C6" name="X87F4D35A826599C6"></a></p>

<h5>5.6-3 Image</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Image</code>( <var class="Arg">hom</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Image</code>( <var class="Arg">hom</var>, <var class="Arg">U</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Image</code>( <var class="Arg">hom</var>, <var class="Arg">g</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns the image of the whole group, of <var class="Arg">U</var> and of <var class="Arg">g</var>, respectively, under the homomorphism <var class="Arg">hom</var>.</p>

<p><a id="X836FAEAC78B55BF4" name="X836FAEAC78B55BF4"></a></p>

<h5>5.6-4 PreImage</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PreImage</code>( <var class="Arg">hom</var>, <var class="Arg">U</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns the complete preimage of the subgroup <var class="Arg">U</var> under the homomorphism <var class="Arg">hom</var>. If the domain of <var class="Arg">hom</var> is not a pcp-group, then this function only works properly if <var class="Arg">hom</var> is injective.</p>

<p><a id="X7AE24A1586B7DE79" name="X7AE24A1586B7DE79"></a></p>

<h5>5.6-5 PreImagesRepresentative</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PreImagesRepresentative</code>( <var class="Arg">hom</var>, <var class="Arg">g</var> )</td><td class="tdright">( method )</td></tr></table></div>
<p>returns a preimage of the element <var class="Arg">g</var> under the homomorphism <var class="Arg">hom</var>.</p>

<p><a id="X7F065FD7822C0A12" name="X7F065FD7822C0A12"></a></p>

<h5>5.6-6 IsInjective</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsInjective</code>( <var class="Arg">hom</var> )</td><td class="tdright">( method )</td></tr></table></div>
<p>checks if the homomorphism <var class="Arg">hom</var> is injective.</p>

<p><a id="X7C873F807D4F3A3C" name="X7C873F807D4F3A3C"></a></p>

<h4>5.7 <span class="Heading">Changing the defining pc-presentation</span></h4>

<p><a id="X80E9B60E853B2E05" name="X80E9B60E853B2E05"></a></p>

<h5>5.7-1 RefinedPcpGroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RefinedPcpGroup</code>( <var class="Arg">G</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns a new pcp-group isomorphic to <var class="Arg">G</var> whose defining polycyclic presentation is refined; that is, the corresponding polycyclic series has prime or infinite factors only. If <span class="SimpleMath">H</span> is the new group, then <span class="SimpleMath">H!.bijection</span> is the isomorphism <span class="SimpleMath">G -&gt; H</span>.</p>

<p><a id="X7F88F5548329E279" name="X7F88F5548329E279"></a></p>

<h5>5.7-2 PcpGroupBySeries</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PcpGroupBySeries</code>( <var class="Arg">ser</var>[, <var class="Arg">flag</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns a new pcp-group isomorphic to the first subgroup <span class="SimpleMath">G</span> of the given series <var class="Arg">ser</var> such that its defining pcp refines the given series. The series must be subnormal and <span class="SimpleMath">H!.bijection</span> is the isomorphism <span class="SimpleMath">G -&gt; H</span>. If the parameter <var class="Arg">flag</var> is present and equals the string "snf", the series must have abelian factors. The pcp of the group returned corresponds to a decomposition of each abelian factor into a direct product of cyclic groups.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G := DihedralPcpGroup(0);</span>
Pcp-group with orders [ 2, 0 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput"> U := Subgroup( G, [Pcp(G)[2]^1440]);</span>
Pcp-group with orders [ 0 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput"> F := G/U;</span>
Pcp-group with orders [ 2, 1440 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RefinedPcpGroup(F);</span>
Pcp-group with orders [ 2, 2, 2, 2, 2, 2, 3, 3, 5 ]

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ser := [G, U, TrivialSubgroup(G)];</span>
[ Pcp-group with orders [ 2, 0 ],
  Pcp-group with orders [ 0 ],
  Pcp-group with orders [  ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput"> PcpGroupBySeries(ser);</span>
Pcp-group with orders [ 2, 1440, 0 ]
</pre></div>

<p><a id="X85E681027AF19B1E" name="X85E681027AF19B1E"></a></p>

<h4>5.8 <span class="Heading">Printing a pc-presentation</span></h4>

<p>By default, a pcp-group is printed using its relative orders only. The following methods can be used to view the pcp presentation of the group.</p>

<p><a id="X863EE3547C3629C6" name="X863EE3547C3629C6"></a></p>

<h5>5.8-1 PrintPcpPresentation</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PrintPcpPresentation</code>( <var class="Arg">G</var>[, <var class="Arg">flag</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PrintPcpPresentation</code>( <var class="Arg">pcp</var>[, <var class="Arg">flag</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<p>prints the pcp presentation defined by the igs of <var class="Arg">G</var> or the pcp <var class="Arg">pcp</var>. By default, the trivial conjugator relations are omitted from this presentation to shorten notation. Also, the relations obtained from conjugating with inverse generators are included only if the conjugating generator has infinite order. If this generator has finite order, then the conjugation relation is a consequence of the remaining relations. If the parameter <var class="Arg">flag</var> is present and equals the string "all", all conjugate relations are printed, including the trivial conjugate relations as well as those involving conjugation with inverses.</p>

<p><a id="X826ACBBB7A977206" name="X826ACBBB7A977206"></a></p>

<h4>5.9 <span class="Heading">Converting to and from a presentation</span></h4>

<p><a id="X8771540F7A235763" name="X8771540F7A235763"></a></p>

<h5>5.9-1 IsomorphismPcpGroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsomorphismPcpGroup</code>( <var class="Arg">G</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>returns an isomorphism from <var class="Arg">G</var> onto a pcp-group <var class="Arg">H</var>. There are various methods installed for this operation and some of these methods are part of the <strong class="pkg">Polycyclic</strong> package, while others may be part of other packages.</p>

<p>For example, <strong class="pkg">Polycyclic</strong> contains methods for this function in the case that <var class="Arg">G</var> is a finite pc-group or a finite solvable permutation group.</p>

<p>Other examples for methods for IsomorphismPcpGroup are the methods for the case that <var class="Arg">G</var> is a crystallographic group (see <strong class="pkg">Cryst</strong>) or the case that <var class="Arg">G</var> is an almost crystallographic group (see <strong class="pkg">AClib</strong>). A method for the case that <var class="Arg">G</var> is a rational polycyclic matrix group is included in the <strong class="pkg">Polenta</strong> package.</p>

<p><a id="X7F5EBF1C831B4BA9" name="X7F5EBF1C831B4BA9"></a></p>

<h5>5.9-2 IsomorphismPcpGroupFromFpGroupWithPcPres</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsomorphismPcpGroupFromFpGroupWithPcPres</code>( <var class="Arg">G</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>This function can convert a finitely presented group with a polycyclic presentation into a pcp group.</p>

<p><a id="X873CEB137BA1CD6E" name="X873CEB137BA1CD6E"></a></p>

<h5>5.9-3 IsomorphismPcGroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsomorphismPcGroup</code>( <var class="Arg">G</var> )</td><td class="tdright">( method )</td></tr></table></div>
<p>pc-groups are a representation for finite polycyclic groups. This function can convert finite pcp-groups to pc-groups.</p>

<p><a id="X7F28268F850F454E" name="X7F28268F850F454E"></a></p>

<h5>5.9-4 IsomorphismFpGroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsomorphismFpGroup</code>( <var class="Arg">G</var> )</td><td class="tdright">( method )</td></tr></table></div>
<p>This function can convert pcp-groups to a finitely presented group.</p>


<div class="chlinkprevnextbot">&nbsp;<a href="chap0.html">[Top of Book]</a>&nbsp;  <a href="chap0.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap4.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap6.html">[Next Chapter]</a>&nbsp;  </div>


<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a>  <a href="chapA.html">A</a>  <a href="chapBib.html">Bib</a>  <a href="chapInd.html">Ind</a>  </div>

<hr />
<p class="foot">generated by <a href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>