File: libraries.xml

package info (click to toggle)
gap-polycyclic 2.11-3
  • links: PTS
  • area: main
  • in suites: stretch
  • size: 2,936 kB
  • ctags: 512
  • sloc: xml: 3,000; makefile: 118; sh: 2
file content (128 lines) | stat: -rw-r--r-- 4,894 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
<Chapter Label="Libraries and examples of pcp-groups">
<Heading>Libraries and examples of pcp-groups</Heading>

<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Libraries of various types of polycyclic groups">
<Heading>Libraries of various types of polycyclic groups</Heading>

There are the following generic pcp-groups available.
<ManSection>
<Func Name="AbelianPcpGroup" Arg="n, rels"/>
<Description>
      constructs the   abelian  group  on  <A>n</A>  generators  such  that
      generator <M>i</M> has  order <M>rels[i]</M>. If  this  order is infinite,
      then <M>rels[i]</M> should be either unbound or 0.
</Description>
</ManSection>

<ManSection>
<Func Name="DihedralPcpGroup" Arg="n"/>
<Description>
      constructs the dihedral  group of order <A>n</A>. If <A>n</A>  is an odd
      integer, then 'fail' is returned.  If  <A>n</A> is zero or not an
      integer, then the infinite dihedral group is returned.
</Description>
</ManSection>

<ManSection>
<Func Name="UnitriangularPcpGroup" Arg="n, c"/>
<Description>
      returns a pcp-group isomorphic  to the group of upper triangular
      in <M>GL(n, R)</M> where <M>R = &ZZ;</M> if <M>c = 0</M> and <M>R = \mathbb{F}_p</M> if <M>c = p</M>.
      The natural unitriangular matrix representation of the returned
      pcp-group <M>G</M> can be obtained as <M>G!.isomorphism</M>.
</Description>
</ManSection>

<ManSection>
<Func Name="SubgroupUnitriangularPcpGroup" Arg="mats"/>
<Description>
      <A>mats</A> should be a list of upper unitriangular <M>n \times n</M>
      matrices over <M>&ZZ;</M> or over <M>\mathbb{F}_p</M>. This function returns the
      subgroup of the corresponding 'UnitriangularPcpGroup' generated
      by the matrices in <A>mats</A>.
</Description>
</ManSection>

<ManSection>
<Func Name="InfiniteMetacyclicPcpGroup" Arg="n, m, r"/>
<Description>
	Infinite metacyclic groups are classified in <Cite Key="B-K00"/>. Every
	infinite metacyclic group <M>G</M> is isomorphic to a finitely presented
	group <M>G(m,n,r)</M> with two generators <M>a</M> and <M>b</M> and relations of the
	form <M>a^n = b^m = 1</M> and <M>[a,b] = a^{1-r}</M>, where <M>m,n,r</M> are three
	non-negative integers with <M>mn=0</M> and <M>r</M> relatively prime to <M>m</M>.
	If <M>r \equiv -1</M> mod <M>m</M> then <M>n</M> is even, and if <M>r \equiv 1</M> mod
	<M>m</M> then <M>m=0</M>. Also <M>m</M> and <M>n</M> must not be <M>1</M>.
	<P/>

	Moreover, <M>G(m,n,r)\cong G(m',n',s)</M> if and only if <M>m=m'</M>, <M>n=n'</M>,
	and either <M>r \equiv s</M> or <M>r \equiv s^{-1}</M> mod <M>m</M>.
	<P/>

	This function returns the metacyclic group with parameters <A>n</A>,
	<A>m</A> and <A>r</A> as a pcp-group with the pc-presentation <M>\langle
	x,y | x^n, y^m, y^x = y^r\rangle</M>.  This presentation is easily
	transformed into the one above via the mapping <M>x \mapsto b^{-1},
	y \mapsto a</M>.
</Description>
</ManSection>

<ManSection>
<Func Name="HeisenbergPcpGroup" Arg="n"/>
<Description>
      returns the Heisenberg group on <M>2<A>n</A></M> generators as pcp-group.
      This gives a group of Hirsch length <M>3<A>n</A></M>.
</Description>
</ManSection>

<ManSection>
<Func Name="MaximalOrderByUnitsPcpGroup" Arg="f"/>
<Description>
      takes as input a normed, irreducible polynomial over the integers.
      Thus <A>f</A> defines a field extension <A>F</A> over the rationals. This
      function returns the split extension of the maximal order <A>O</A> of <A>F</A>
      by the unit group <A>U</A> of <A>O</A>, where <A>U</A> acts by right multiplication
      on <A>O</A>.
</Description>
</ManSection>

<ManSection>
<Func Name="BurdeGrunewaldPcpGroup" Arg="s, t"/>
<Description>
      returns a nilpotent group of Hirsch length 11 which has been
      constructed by Burde und Grunewald. If <A>s</A> is not 0, then this
      group has no faithful 12-dimensional linear representation.
</Description>
</ManSection>

</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Some asorted example groups">
<Heading>Some assorted example groups</Heading>

The functions in this section provide some more example groups to play
with. They come with no further description and their investigation is
left to the interested user.
<ManSection>
<Func Name="ExampleOfMetabelianPcpGroup" Arg="a, k"/>
<Description>
      returns an example of a metabelian group. The input parameters must
      be two positive integers greater than 1.
</Description>
</ManSection>

<ManSection>
<Func Name="ExamplesOfSomePcpGroups" Arg="n"/>
<Description>
      this function takes values <A>n</A> in 1 up to 16 and returns for each
      input an example of a pcp-group. The groups in this example list
      have been used as test groups for the functions in this package.
</Description>
</ManSection>

</Section>
</Chapter>