File: basics.xml

package info (click to toggle)
gap-polycyclic 2.15.1-1
  • links: PTS
  • area: main
  • in suites: bullseye
  • size: 2,636 kB
  • sloc: xml: 3,007; makefile: 126
file content (647 lines) | stat: -rw-r--r-- 19,935 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
<Chapter Label="Basic methods and functions for pcp-groups">
<Heading>Basic methods and functions for pcp-groups</Heading>

Pcp-groups are groups in the &GAP; sense and hence all generic &GAP;
methods for groups can be applied for pcp-groups.  However, for a
number of group theoretic questions &GAP; does not provide generic
methods that can be applied to pcp-groups. For some of these questions
there are functions provided in &Polycyclic;.

<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="methods">
<Heading>Elementary methods for pcp-groups</Heading>

In this chapter we describe some important basic functions which are
available for pcp-groups. A number of higher level functions are outlined
in later sections and chapters.
<P/>

Let <M>U, V</M> and <M>N</M> be subgroups of a pcp-group.

<ManSection>
<Meth Name="\=" Arg='U, V'/><!-- FIXME: Was:   \>`U = V'{equality}!{subgroups} O   -->
<Description>
	decides if <A>U</A> and <A>V</A> are equal as sets.
</Description>
</ManSection>

<ManSection>
<Meth Name="Size" Arg="U"/>
<Description>
	returns the size of <A>U</A>.
</Description>
</ManSection>

<ManSection>
<Meth Name="Random" Arg="U"/>
<Description>
	returns a random element of <A>U</A>.
</Description>
</ManSection>

<ManSection>
<Meth Name="Index" Arg="U, V"/>
<Description>
	returns the index of  <A>V</A> in <A>U</A>  if <A>V</A>  is  a subgroup of  <A>U</A>.  The
	function does not check if <A>V</A> is a subgroup of <A>U</A> and  if it is not,
	the result is not meaningful.
</Description>
</ManSection>

<ManSection>
<Meth Name="\in" Arg="g, U"/>
<Description>
	checks if <A>g</A> is an element of <A>U</A>.
</Description>
</ManSection>

<ManSection>
<Meth Name="Elements" Arg="U"/>
<Description>
	returns a list  containing all elements of  <A>U</A> if <A>U</A> is finite and it
	returns the list [fail] otherwise.
</Description>
</ManSection>

<ManSection>
<Meth Name="ClosureGroup" Arg="U, V"/>
<Description>
	returns the group generated by <A>U</A> and <A>V</A>.
</Description>
</ManSection>

<ManSection>
<Meth Name="NormalClosure" Arg="U, V"/>
<Description>
	returns  the normal closure of <A>V</A>  under action of <A>U</A>.
</Description>
</ManSection>

<ManSection>
<Meth Name="HirschLength" Arg="U"/>
<Description>
	returns the Hirsch length of <A>U</A>.
</Description>
</ManSection>

<ManSection>
<Meth Name="CommutatorSubgroup" Arg="U, V"/>
<Description>
	returns the group generated by all commutators <M>[u,v]</M> with <M>u</M> in <A>U</A>
and <M>v</M> in <A>V</A>.
</Description>
</ManSection>

<ManSection>
<Meth Name="PRump" Arg="U, p"/>
<Description>
	returns the subgroup <M>U'U^p</M> of <A>U</A> where <A>p</A> is a prime number.
</Description>
</ManSection>

<ManSection>
<Meth Name="SmallGeneratingSet" Arg="U"/>
<Description>
	returns a small generating set for <A>U</A>.
</Description>
</ManSection>

</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Elementary properties of pcp-groups">
<Heading>Elementary properties of pcp-groups</Heading>

<ManSection>
<Func Name="IsSubgroup" Arg="U, V"/>
<Description>
	tests if <A>V</A> is a subgroup of <A>U</A>.
</Description>
</ManSection>

<ManSection>
<Func Name="IsNormal" Arg="U, V"/>
<Description>
	tests if <A>V</A> is normal in <A>U</A>.
</Description>
</ManSection>

<ManSection>
<Meth Name="IsNilpotentGroup" Arg="U"/>
<Description>
	checks whether <A>U</A> is nilpotent.
</Description>
</ManSection>

<ManSection>
<Meth Name="IsAbelian" Arg="U"/>
<Description>
	checks whether <A>U</A> is abelian.
</Description>
</ManSection>

<ManSection>
<Meth Name="IsElementaryAbelian" Arg="U"/>
<Description>
	checks whether <A>U</A> is elementary abelian.
</Description>
</ManSection>

<ManSection>
<Prop Name="IsFreeAbelian" Arg="U"/>
<Description>
	checks whether <A>U</A> is free abelian.
</Description>
</ManSection>

</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Subgroups of pcp-groups">
<Heading>Subgroups of pcp-groups</Heading>

A subgroup of a pcp-group <M>G</M> can be defined by a set of generators as
described in Section <Ref Sect="pcpgroup"/>. However, many computations  with a
subgroup <M>U</M> need  an <E>induced generating sequence</E> or <E>igs</E>  of <M>U</M>.
An igs is a sequence of generators of <M>U</M> whose list of exponent vectors
form a matrix  in upper triangular form.  Note that there may  exist
many igs of <M>U</M>.  The first one  calculated for <M>U</M> is stored as an
attribute.
<P/>

An induced generating sequence of a subgroup of a pcp-group <M>G</M> is a
list of elements of <M>G</M>.  An igs is called <E>normed</E>, if each element
in the list is normed.  Moreover, it is <E>canonical</E>, if the exponent
vector matrix is in Hermite Normal Form. The following functions can
be used to compute induced generating sequence for a given subgroup
<A>U</A> of <A>G</A>.

<ManSection>
<Attr Name="Igs" Arg="U"/>
<Func Name="Igs" Arg="gens"/>
<Func Name="IgsParallel" Arg="gens, gens2"/>
<Description>
	returns an induced generating sequence of the subgroup <A>U</A> of a
	pcp-group. In the second form the subgroup is given via a generating
	set <A>gens</A>. The third form computes an igs for the subgroup generated
	by <A>gens</A> carrying <A>gens2</A> through as shadows.  This means that each
	operation that is applied to the first list is also applied to the
	second list.
</Description>
</ManSection>

<ManSection>
<Attr Name="Ngs" Arg="U"/>
<Func Name="Ngs" Arg="igs"/>
<Description>
	returns a normed induced generating sequence of the subgroup <A>U</A> of a
	pcp-group. The second form takes an igs as input and norms it.
</Description>
</ManSection>

<ManSection>
<Attr Name="Cgs" Arg="U"/>
<Func Name="Cgs" Arg="igs"/>
<Func Name="CgsParallel" Arg="gens, gens2"/>
<Description>
	returns a canonical generating sequence of the subgroup <A>U</A> of a
	pcp-group. In the second form the function takes an igs as input and
	returns a canonical generating sequence. The third version takes a
	generating set and computes a canonical generating sequence carrying
	<A>gens2</A> through as shadows.  This means that each operation that is
	applied to the first list is also applied to the second list.
	<P/>

	For a large number of methods for pcp-groups <A>U</A> we will first of all
	determine an <A>igs</A> for <A>U</A>. Hence it might speed up computations, if
	a known <A>igs</A> for a group <A>U</A> is set <E>a priori</E>. The following
	functions can be used for this purpose.
</Description>
</ManSection>

<ManSection>
<Func Name="SubgroupByIgs" Arg="G, igs"/>
<Func Name="SubgroupByIgs" Arg="G, igs, gens"/>
<Description>
	returns the subgroup of the pcp-group <A>G</A> generated by the elements of
	the induced  generating sequence <A>igs</A>.   Note that  <A>igs</A> must  be an
	induced generating sequence of  the subgroup generated by the elements
	of the <A>igs</A>. In the second form <A>igs</A> is a igs for a subgroup and
	<A>gens</A> are some generators. The function returns the subgroup generated
	by <A>igs</A> and <A>gens</A>.
</Description>
</ManSection>

<ManSection>
<Func Name="AddToIgs" Arg="igs, gens"/>
<Func Name="AddToIgsParallel" Arg="igs, gens, igs2, gens2"/>
<Func Name="AddIgsToIgs" Arg="igs, igs2"/>
<Description>
	sifts the elements in the list <M>gens</M> into <M>igs</M>.  The second version
	has the same functionality and carries shadows.  This means that each
	operation that is applied to the first list and the element <A>gens</A> is
	also applied to the second list and the element <A>gens2</A>.  The third
	version is available for efficiency reasons and assumes that the
	second list <A>igs2</A> is not only a generating set, but an igs.
</Description>
</ManSection>

</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="pcps">
<Heading>Polycyclic presentation sequences for subfactors</Heading>

A subfactor of a pcp-group <M>G</M> is again a polycyclic group for which a
polycyclic presentation can be computed. However, to compute a polycyclic
presentation for  a given subfactor  can  be time-consuming.  Hence we
introduce <E>polycyclic presentation sequences</E> or <E>Pcp</E> to compute more
efficiently with subfactors. (Note that a subgroup is also a subfactor
and  thus can be handled by a pcp)
<P/>

A pcp for a pcp-group <M>U</M> or a subfactor <M>U /  N</M> can be created with
one of the following functions.

<ManSection>
<Func Name="Pcp" Arg="U[, flag]"/>
<Func Name="Pcp" Arg="U, N[, flag]"/>
<Description>
	returns a polycyclic presentation sequence for the subgroup <A>U</A> or the
	quotient group  <A>U</A> modulo <A>N</A>.  If the  parameter <A>flag</A> is present
	and equals the string <Q>snf</Q>,
	the function can only be applied to an abelian  subgroup <A>U</A>  or abelian
	subfactor   <A>U</A>/<A>N</A>.   The pcp  returned  will correspond     to a
	decomposition of  the abelian  group  into a direct  product of cyclic
	groups.
</Description>
</ManSection>


A  pcp   is  a component  object which    behaves similar  to   a list
representing an igs of the  subfactor in question. The basic functions
to   obtain  the  stored  values of  this     component object  are as
follows.  Let <M>pcp</M>  be a pcp  for  a subfactor <M>U/N</M>  of the defining
pcp-group <M>G</M>.


<ManSection>
<Func Name="GeneratorsOfPcp" Arg="pcp"/>
<Description>
	this returns a list   of elements of <M>U</M>   corresponding to an  igs of
	<M>U/N</M>.
</Description>
</ManSection>

<ManSection>
<Meth Name="\[\]" Arg="pcp, i"/> <!-- <Func Name="<C>pcp[i]</C>{pcp}!{as list}"/> FIXME -->
<Description>
	returns the <A>i</A>-th element of <A>pcp</A>.
</Description>
</ManSection>

<ManSection>
<Meth Name="Length" Arg="pcp"/>
<Description>
	returns the number of generators in <A>pcp</A>.
</Description>
</ManSection>

<ManSection>
<Func Name="RelativeOrdersOfPcp" Arg="pcp"/>
<Description>
	the relative orders of the igs in <A>U/N</A>.
</Description>
</ManSection>

<ManSection>
<Func Name="DenominatorOfPcp" Arg="pcp"/>
<Description>
	returns an igs of <A>N</A>.
</Description>
</ManSection>

<ManSection>
<Func Name="NumeratorOfPcp" Arg="pcp"/>
<Description>
	returns an igs of <A>U</A>.
</Description>
</ManSection>

<ManSection>
<Func Name="GroupOfPcp" Arg="pcp"/>
<Description>
	returns <A>U</A>.
</Description>
</ManSection>

<ManSection>
<Func Name="OneOfPcp" Arg="pcp"/>
<Description>
	returns the identity element of <A>G</A>.
</Description>
</ManSection>


The main feature of a pcp are the  possibility to compute exponent
vectors without having to determine an explicit pcp-group corresponding
to the subfactor that is represented by the pcp. Nonetheless, it is
possible to determine this subfactor.


<ManSection>
<Func Name="ExponentsByPcp" Arg="pcp, g"/>
<Description>
	returns the exponent vector  of <A>g</A> with  respect to the generators of
	<A>pcp</A>.  This is the exponent vector of <A>g</A><M>N</M> with  respect to the igs
	of <A>U/N</A>.
</Description>
</ManSection>

<ManSection>
<Func Name="PcpGroupByPcp" Arg="pcp"/>
<Description>
	let <A>pcp</A> be a Pcp of a subgroup or a factor group of a pcp-group. This
	function computes a new pcp-group whose defining generators correspond
	to the generators in <A>pcp</A>.

<Example><![CDATA[
gap>  G := DihedralPcpGroup(0);
Pcp-group with orders [ 2, 0 ]
gap>  pcp := Pcp(G);
Pcp [ g1, g2 ] with orders [ 2, 0 ]
gap>  pcp[1];
g1
gap>  Length(pcp);
2
gap>  RelativeOrdersOfPcp(pcp);
[ 2, 0 ]
gap>  DenominatorOfPcp(pcp);
[  ]
gap>  NumeratorOfPcp(pcp);
[ g1, g2 ]
gap>  GroupOfPcp(pcp);
Pcp-group with orders [ 2, 0 ]
gap> OneOfPcp(pcp);
identity
]]></Example>

<Example><![CDATA[
gap> G := ExamplesOfSomePcpGroups(5);
Pcp-group with orders [ 2, 0, 0, 0 ]
gap> D := DerivedSubgroup( G );
Pcp-group with orders [ 0, 0, 0 ]
gap>  GeneratorsOfGroup( G );
[ g1, g2, g3, g4 ]
gap>  GeneratorsOfGroup( D );
[ g2^-2, g3^-2, g4^2 ]

# an ordinary pcp for G / D
gap> pcp1 := Pcp( G, D );
Pcp [ g1, g2, g3, g4 ] with orders [ 2, 2, 2, 2 ]

# a pcp for G/D in independent generators
gap>  pcp2 := Pcp( G, D, "snf" );
Pcp [ g2, g3, g1 ] with orders [ 2, 2, 4 ]

gap>  g := Random( G );
g1*g2^-4*g3*g4^2

# compute the exponent vector of g in G/D with respect to pcp1
gap> ExponentsByPcp( pcp1, g );
[ 1, 0, 1, 0 ]

# compute the exponent vector of g in G/D with respect to pcp2
gap>  ExponentsByPcp( pcp2, g );
[ 0, 1, 1 ]
]]></Example>
</Description>
</ManSection>

</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Factor groups of pcp-groups">
<Heading>Factor groups of pcp-groups</Heading>

Pcp's for subfactors of  pcp-groups have already been described above.
These are usually used within  algorithms to compute with  pcp-groups.
However, it is also possible to explicitly construct factor groups and
their corresponding natural homomorphisms.

<ManSection>
<Meth Name="NaturalHomomorphismByNormalSubgroup" Arg="G, N"/>
<Description>
	returns  the natural homomorphism   <M>G \to  G/N</M>.  Its image  is the
	factor group <M>G/N</M>.
</Description>
</ManSection>

<ManSection>
<Meth Name="\/" Arg='G, N'/>
<!-- <Oper Name="<C>G/N</C>{factor group}"/> FIXME -->
<Meth Name="FactorGroup" Arg="G, N"/>
<Description>
	returns  the desired factor as  pcp-group without  giving the explicit
	homomorphism. This function is just a wrapper for
	<C>PcpGroupByPcp( Pcp( G, N ) )</C>.
</Description>
</ManSection>

</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Homomorphisms for pcp-groups">
<Heading>Homomorphisms for pcp-groups</Heading>

&Polycyclic; provides code for defining group homomorphisms by
generators  and images where either the source or the range or both
are pcp groups. All methods provided by GAP for such group
homomorphisms are supported, in particular the following:

<ManSection>
<Func Name="GroupHomomorphismByImages" Arg="G, H, gens, imgs"/>
<Description>
	returns the homomorphism from the (pcp-) group <A>G</A> to the pcp-group <A>H</A>
	mapping the generators of <A>G</A> in the  list <A>gens</A> to the corresponding
	images in the list <A>imgs</A> of elements of <A>H</A>.
</Description>
</ManSection>

<ManSection>
<Func Name="Kernel" Arg="hom"/>
<Description>
	returns the kernel of  the homomorphism <A>hom</A> from   a pcp-group to  a
	pcp-group.
</Description>
</ManSection>

<ManSection>
<Oper Name="Image" Arg="hom"/>
<Func Name="Image" Arg="hom, U"/>
<Func Name="Image" Arg="hom, g"/>
<Description>
	returns the image of the whole group, of <A>U</A> and of <A>g</A>, respectively,
	under the homomorphism <A>hom</A>.
</Description>
</ManSection>

<ManSection>
<Func Name="PreImage" Arg="hom, U"/>
<Description>
	returns   the  complete  preimage of    the   subgroup <A>U</A>  under  the
	homomorphism <A>hom</A>.  If the domain of <A>hom</A> is  not a pcp-group, then
	this function only works properly if <A>hom</A> is injective.
</Description>
</ManSection>

<ManSection>
<Meth Name="PreImagesRepresentative" Arg="hom, g"/>
<Description>
	returns a preimage of the element <A>g</A> under the homomorphism <A>hom</A>.
</Description>
</ManSection>

<ManSection>
<Meth Name="IsInjective" Arg="hom"/>
<Description>
	checks if the homomorphism <A>hom</A> is injective.
</Description>
</ManSection>


</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Changing the defining pc-presentation">
<Heading>Changing the defining pc-presentation</Heading>

<ManSection>
<Func Name="RefinedPcpGroup" Arg="G"/>
<Description>
	returns a new  pcp-group isomorphic to  <A>G</A>  whose defining polycyclic
	presentation is refined;  that is, the corresponding polycyclic series
	has  prime or infinite  factors only. If  <M>H</M> is  the  new group, then
	<M>H!.bijection</M> is the isomorphism <M>G \to H</M>.
</Description>
</ManSection>

<ManSection>
<Func Name="PcpGroupBySeries" Arg="ser[, flag]"/>
<Description>
	returns a  new pcp-group isomorphic to  the first subgroup  <M>G</M> of the
	given  series <A>ser</A>  such  that  its defining  pcp  refines the  given
	series.  The  series  must  be  subnormal and  <M>H!.bijection</M>  is  the
	isomorphism  <M>G \to  H</M>.  If the  parameter <A>flag</A> is present
	and equals the string <Q>snf</Q>, the  series  must have
	abelian  factors.  The  pcp of  the  group returned  corresponds to  a
	decomposition of each  abelian factor into a direct  product of cyclic
	groups.

<Example><![CDATA[
gap> G := DihedralPcpGroup(0);
Pcp-group with orders [ 2, 0 ]
gap>  U := Subgroup( G, [Pcp(G)[2]^1440]);
Pcp-group with orders [ 0 ]
gap>  F := G/U;
Pcp-group with orders [ 2, 1440 ]
gap> RefinedPcpGroup(F);
Pcp-group with orders [ 2, 2, 2, 2, 2, 2, 3, 3, 5 ]

gap> ser := [G, U, TrivialSubgroup(G)];
[ Pcp-group with orders [ 2, 0 ],
  Pcp-group with orders [ 0 ],
  Pcp-group with orders [  ] ]
gap>  PcpGroupBySeries(ser);
Pcp-group with orders [ 2, 1440, 0 ]
]]></Example>
</Description>
</ManSection>

</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Printing a pc-presentation">
<Heading>Printing a pc-presentation</Heading>

By default, a pcp-group is printed using its relative orders only. The
following methods can be used to view the pcp presentation of the group.

<ManSection>
<Func Name="PrintPcpPresentation" Arg="G[, flag]"/>
<Func Name="PrintPcpPresentation" Arg="pcp[, flag]"/>
<Description>
	prints the pcp presentation defined by the igs of <A>G</A> or the pcp <A>pcp</A>.

	By default, the trivial conjugator relations are omitted from this
	presentation to shorten notation. Also, the relations obtained from
	conjugating with inverse generators are included only if the conjugating
	generator has infinite order. If this generator has finite order, then
	the conjugation relation is a consequence of the remaining relations.

	If the  parameter <A>flag</A> is present and equals the string <Q>all</Q>,
	all conjugate relations are printed, including the trivial conjugate
	relations as well as those involving conjugation with inverses.
</Description>
</ManSection>

</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Converting to and from a presentation">
<Heading>Converting to and from a presentation</Heading>

<ManSection>
<Attr Name="IsomorphismPcpGroup" Arg="G"/>
<Description>
	returns an isomorphism from <A>G</A> onto a pcp-group <A>H</A>. There are various
	methods installed for this operation and some of these methods are part
	of the &Polycyclic; package, while others may be part of other packages.
	<P/>

	For example, &Polycyclic; contains methods for this function in the case
	that <A>G</A> is a finite pc-group or a finite solvable permutation group.
	<P/>

	Other examples for methods for IsomorphismPcpGroup are the methods for
	the case that <A>G</A> is a crystallographic group (see &Cryst;) or the case
	that <A>G</A> is an almost crystallographic group (see &AClib;). A method for
	the case that <A>G</A> is a rational polycyclic matrix group is included in
	the &Polenta; package.
</Description>
</ManSection>

<ManSection>
<Func Name="IsomorphismPcpGroupFromFpGroupWithPcPres" Arg="G"/>
<Description>
	This function can convert a finitely presented group with a polycyclic
	presentation into a pcp group.
</Description>
</ManSection>

<ManSection>
<Meth Name="IsomorphismPcGroup" Arg="G"/>
<Description>
	pc-groups are a representation for finite polycyclic groups. This function
	can convert finite pcp-groups to pc-groups.
</Description>
</ManSection>

<ManSection>
<Meth Name="IsomorphismFpGroup" Arg="G"/>
<Description>
	This function can convert pcp-groups to a finitely presented group.
</Description>
</ManSection>

</Section>
</Chapter>