File: chap6.html

package info (click to toggle)
gap-polycyclic 2.15.1-1
  • links: PTS
  • area: main
  • in suites: bullseye
  • size: 2,636 kB
  • sloc: xml: 3,007; makefile: 126
file content (142 lines) | stat: -rw-r--r-- 12,939 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
         "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>GAP (polycyclic) - Chapter 6: Libraries and examples of pcp-groups</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap6"  onload="jscontent()">


<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a>  <a href="chapA.html">A</a>  <a href="chapBib.html">Bib</a>  <a href="chapInd.html">Ind</a>  </div>

<div class="chlinkprevnexttop">&nbsp;<a href="chap0.html">[Top of Book]</a>&nbsp;  <a href="chap0.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap5.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap7.html">[Next Chapter]</a>&nbsp;  </div>

<p id="mathjaxlink" class="pcenter"><a href="chap6_mj.html">[MathJax on]</a></p>
<p><a id="X78CEF1F27ED8D7BB" name="X78CEF1F27ED8D7BB"></a></p>
<div class="ChapSects"><a href="chap6.html#X78CEF1F27ED8D7BB">6 <span class="Heading">Libraries and examples of pcp-groups</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap6.html#X84A48FAB83934263">6.1 <span class="Heading">Libraries of various types of polycyclic groups</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap6.html#X7AEDE1BA82014B86">6.1-1 AbelianPcpGroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap6.html#X7ACF57737D0F12DB">6.1-2 DihedralPcpGroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap6.html#X864CEDAB7911CC79">6.1-3 UnitriangularPcpGroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap6.html#X812E35B17AADBCD5">6.1-4 SubgroupUnitriangularPcpGroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap6.html#X7A80F7F27FDA6810">6.1-5 InfiniteMetacyclicPcpGroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap6.html#X81BEC875827D1CC2">6.1-6 HeisenbergPcpGroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap6.html#X87F9B9C9786430D7">6.1-7 MaximalOrderByUnitsPcpGroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap6.html#X852283A77A2C93DD">6.1-8 BurdeGrunewaldPcpGroup</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap6.html#X806FBA4A7CB8FB71">6.2 <span class="Heading">Some assorted example groups</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap6.html#X86293081865CDFC3">6.2-1 ExampleOfMetabelianPcpGroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap6.html#X83A74A6E7E232FD6">6.2-2 ExamplesOfSomePcpGroups</a></span>
</div></div>
</div>

<h3>6 <span class="Heading">Libraries and examples of pcp-groups</span></h3>

<p><a id="X84A48FAB83934263" name="X84A48FAB83934263"></a></p>

<h4>6.1 <span class="Heading">Libraries of various types of polycyclic groups</span></h4>

<p>There are the following generic pcp-groups available.</p>

<p><a id="X7AEDE1BA82014B86" name="X7AEDE1BA82014B86"></a></p>

<h5>6.1-1 AbelianPcpGroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; AbelianPcpGroup</code>( <var class="Arg">n</var>, <var class="Arg">rels</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>constructs the abelian group on <var class="Arg">n</var> generators such that generator <span class="SimpleMath">i</span> has order <span class="SimpleMath">rels[i]</span>. If this order is infinite, then <span class="SimpleMath">rels[i]</span> should be either unbound or 0.</p>

<p><a id="X7ACF57737D0F12DB" name="X7ACF57737D0F12DB"></a></p>

<h5>6.1-2 DihedralPcpGroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; DihedralPcpGroup</code>( <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>constructs the dihedral group of order <var class="Arg">n</var>. If <var class="Arg">n</var> is an odd integer, then 'fail' is returned. If <var class="Arg">n</var> is zero or not an integer, then the infinite dihedral group is returned.</p>

<p><a id="X864CEDAB7911CC79" name="X864CEDAB7911CC79"></a></p>

<h5>6.1-3 UnitriangularPcpGroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; UnitriangularPcpGroup</code>( <var class="Arg">n</var>, <var class="Arg">c</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns a pcp-group isomorphic to the group of upper triangular in <span class="SimpleMath">GL(n, R)</span> where <span class="SimpleMath">R = ℤ</span> if <span class="SimpleMath">c = 0</span> and <span class="SimpleMath">R = F_p</span> if <span class="SimpleMath">c = p</span>. The natural unitriangular matrix representation of the returned pcp-group <span class="SimpleMath">G</span> can be obtained as <span class="SimpleMath">G!.isomorphism</span>.</p>

<p><a id="X812E35B17AADBCD5" name="X812E35B17AADBCD5"></a></p>

<h5>6.1-4 SubgroupUnitriangularPcpGroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SubgroupUnitriangularPcpGroup</code>( <var class="Arg">mats</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p><var class="Arg">mats</var> should be a list of upper unitriangular <span class="SimpleMath">n × n</span> matrices over <span class="SimpleMath">ℤ</span> or over <span class="SimpleMath">F_p</span>. This function returns the subgroup of the corresponding 'UnitriangularPcpGroup' generated by the matrices in <var class="Arg">mats</var>.</p>

<p><a id="X7A80F7F27FDA6810" name="X7A80F7F27FDA6810"></a></p>

<h5>6.1-5 InfiniteMetacyclicPcpGroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; InfiniteMetacyclicPcpGroup</code>( <var class="Arg">n</var>, <var class="Arg">m</var>, <var class="Arg">r</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Infinite metacyclic groups are classified in <a href="chapBib.html#biBB-K00">[BK00]</a>. Every infinite metacyclic group <span class="SimpleMath">G</span> is isomorphic to a finitely presented group <span class="SimpleMath">G(m,n,r)</span> with two generators <span class="SimpleMath">a</span> and <span class="SimpleMath">b</span> and relations of the form <span class="SimpleMath">a^m = b^n = 1</span> and <span class="SimpleMath">[a,b] = a^1-r</span>, where (differing from the conventions used by GAP) we have <span class="SimpleMath">[a,b] = a b a^-1 b^-1</span>, and <span class="SimpleMath">m,n,r</span> are three non-negative integers with <span class="SimpleMath">mn=0</span> and <span class="SimpleMath">r</span> relatively prime to <span class="SimpleMath">m</span>. If <span class="SimpleMath">r ≡ -1</span> mod <span class="SimpleMath">m</span> then <span class="SimpleMath">n</span> is even, and if <span class="SimpleMath">r ≡ 1</span> mod <span class="SimpleMath">m</span> then <span class="SimpleMath">m=0</span>. Also <span class="SimpleMath">m</span> and <span class="SimpleMath">n</span> must not be <span class="SimpleMath">1</span>.</p>

<p>Moreover, <span class="SimpleMath">G(m,n,r)≅ G(m',n',s)</span> if and only if <span class="SimpleMath">m=m'</span>, <span class="SimpleMath">n=n'</span>, and either <span class="SimpleMath">r ≡ s</span> or <span class="SimpleMath">r ≡ s^-1</span> mod <span class="SimpleMath">m</span>.</p>

<p>This function returns the metacyclic group with parameters <var class="Arg">n</var>, <var class="Arg">m</var> and <var class="Arg">r</var> as a pcp-group with the pc-presentation <span class="SimpleMath">⟨ x,y | x^n, y^m, y^x = y^r⟩</span>. This presentation is easily transformed into the one above via the mapping <span class="SimpleMath">x ↦ b^-1, y ↦ a</span>.</p>

<p><a id="X81BEC875827D1CC2" name="X81BEC875827D1CC2"></a></p>

<h5>6.1-6 HeisenbergPcpGroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; HeisenbergPcpGroup</code>( <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns the Heisenberg group on <span class="SimpleMath">2<var class="Arg">n</var>+1</span> generators as pcp-group. This gives a group of Hirsch length <span class="SimpleMath">2<var class="Arg">n</var>+1</span>.</p>

<p><a id="X87F9B9C9786430D7" name="X87F9B9C9786430D7"></a></p>

<h5>6.1-7 MaximalOrderByUnitsPcpGroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MaximalOrderByUnitsPcpGroup</code>( <var class="Arg">f</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>takes as input a normed, irreducible polynomial over the integers. Thus <var class="Arg">f</var> defines a field extension <var class="Arg">F</var> over the rationals. This function returns the split extension of the maximal order <var class="Arg">O</var> of <var class="Arg">F</var> by the unit group <var class="Arg">U</var> of <var class="Arg">O</var>, where <var class="Arg">U</var> acts by right multiplication on <var class="Arg">O</var>.</p>

<p><a id="X852283A77A2C93DD" name="X852283A77A2C93DD"></a></p>

<h5>6.1-8 BurdeGrunewaldPcpGroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; BurdeGrunewaldPcpGroup</code>( <var class="Arg">s</var>, <var class="Arg">t</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns a nilpotent group of Hirsch length 11 which has been constructed by Burde und Grunewald. If <var class="Arg">s</var> is not 0, then this group has no faithful 12-dimensional linear representation.</p>

<p><a id="X806FBA4A7CB8FB71" name="X806FBA4A7CB8FB71"></a></p>

<h4>6.2 <span class="Heading">Some assorted example groups</span></h4>

<p>The functions in this section provide some more example groups to play with. They come with no further description and their investigation is left to the interested user.</p>

<p><a id="X86293081865CDFC3" name="X86293081865CDFC3"></a></p>

<h5>6.2-1 ExampleOfMetabelianPcpGroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ExampleOfMetabelianPcpGroup</code>( <var class="Arg">a</var>, <var class="Arg">k</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns an example of a metabelian group. The input parameters must be two positive integers greater than 1.</p>

<p><a id="X83A74A6E7E232FD6" name="X83A74A6E7E232FD6"></a></p>

<h5>6.2-2 ExamplesOfSomePcpGroups</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ExamplesOfSomePcpGroups</code>( <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>this function takes values <var class="Arg">n</var> in 1 up to 16 and returns for each input an example of a pcp-group. The groups in this example list have been used as test groups for the functions in this package.</p>


<div class="chlinkprevnextbot">&nbsp;<a href="chap0.html">[Top of Book]</a>&nbsp;  <a href="chap0.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap5.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap7.html">[Next Chapter]</a>&nbsp;  </div>


<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a>  <a href="chapA.html">A</a>  <a href="chapBib.html">Bib</a>  <a href="chapInd.html">Ind</a>  </div>

<hr />
<p class="foot">generated by <a href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>