1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
|
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>GAP (polycyclic) - Contents</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap0" onload="jscontent()">
<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a> <a href="chap1.html">1</a> <a href="chap2.html">2</a> <a href="chap3.html">3</a> <a href="chap4.html">4</a> <a href="chap5.html">5</a> <a href="chap6.html">6</a> <a href="chap7.html">7</a> <a href="chap8.html">8</a> <a href="chap9.html">9</a> <a href="chapA.html">A</a> <a href="chapBib.html">Bib</a> <a href="chapInd.html">Ind</a> </div>
<div class="chlinkprevnexttop"> <a href="chap0.html">[Top of Book]</a> <a href="chap0.html#contents">[Contents]</a> <a href="chap1.html">[Next Chapter]</a> </div>
<p id="mathjaxlink" class="pcenter"><a href="chap0_mj.html">[MathJax on]</a></p>
<p><a id="X7D2C85EC87DD46E5" name="X7D2C85EC87DD46E5"></a></p>
<div class="pcenter">
<h1>Polycyclic</h1>
<h2>Computation with polycyclic groups</h2>
<p>
2.17</p>
<p>
28 August 2025
</p>
</div>
<p><b>
Bettina Eick
</b>
<br />Email: <span class="URL"><a href="mailto:beick@tu-bs.de">beick@tu-bs.de</a></span>
<br />Homepage: <span class="URL"><a href="http://www.iaa.tu-bs.de/beick">http://www.iaa.tu-bs.de/beick</a></span>
<br />Address: <br />Institut Analysis und Algebra<br /> TU Braunschweig<br /> Universitätsplatz 2<br /> D-38106 Braunschweig<br /> Germany<br />
</p><p><b>
Werner Nickel
</b>
<br />Homepage: <span class="URL"><a href="http://www.mathematik.tu-darmstadt.de/~nickel/">http://www.mathematik.tu-darmstadt.de/~nickel/</a></span>
</p><p><b>
Max Horn
</b>
<br />Email: <span class="URL"><a href="mailto:mhorn@rptu.de">mhorn@rptu.de</a></span>
<br />Homepage: <span class="URL"><a href="https://www.quendi.de/math">https://www.quendi.de/math</a></span>
<br />Address: <br />Fachbereich Mathematik<br /> RPTU Kaiserslautern-Landau<br /> Gottlieb-Daimler-Straße 48<br /> 67663 Kaiserslautern<br /> Germany<br />
</p>
<p><a id="X81488B807F2A1CF1" name="X81488B807F2A1CF1"></a></p>
<h3>Copyright</h3>
<p>© 2003-2018 by Bettina Eick, Max Horn and Werner Nickel</p>
<p>The <strong class="pkg">Polycyclic</strong> package is free software; you can redistribute it and/or modify it under the terms of the <span class="URL"><a href="http://www.fsf.org/licenses/gpl.html">GNU General Public License</a></span> as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.</p>
<p><a id="X82A988D47DFAFCFA" name="X82A988D47DFAFCFA"></a></p>
<h3>Acknowledgements</h3>
<p>We appreciate very much all past and future comments, suggestions and contributions to this package and its documentation provided by <strong class="pkg">GAP</strong> users and developers.</p>
<p><a id="X8537FEB07AF2BEC8" name="X8537FEB07AF2BEC8"></a></p>
<div class="contents">
<h3>Contents<a id="contents" name="contents"></a></h3>
<div class="ContChap"><a href="chap1.html#X874E1D45845007FE">1 <span class="Heading">Preface</span></a>
</div>
<div class="ContChap"><a href="chap2.html#X792561B378D95B23">2 <span class="Heading">Introduction to polycyclic presentations</span></a>
</div>
<div class="ContChap"><a href="chap3.html#X792305CC81E8606A">3 <span class="Heading">Collectors</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap3.html#X800FD91386C08CD8">3.1 <span class="Heading">Constructing a Collector</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap3.html#X8382A4E78706DE65">3.1-1 FromTheLeftCollector</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap3.html#X79A308B28183493B">3.1-2 SetRelativeOrder</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap3.html#X7BC319BA8698420C">3.1-3 SetPower</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap3.html#X86A08D887E049347">3.1-4 SetConjugate</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap3.html#X7B25997C7DF92B6D">3.1-5 SetCommutator</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap3.html#X7E9903F57BC5CC24">3.1-6 UpdatePolycyclicCollector</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap3.html#X8006790B86328CE8">3.1-7 IsConfluent</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap3.html#X818484817C3BAAE6">3.2 <span class="Heading">Accessing Parts of a Collector</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap3.html#X7DD0DF677AC1CF10">3.2-1 RelativeOrders</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap3.html#X844C0A478735EF4B">3.2-2 GetPower</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap3.html#X865160E07FA93E00">3.2-3 GetConjugate</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap3.html#X7D6A26A4871FF51A">3.2-4 NumberOfGenerators</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap3.html#X873ECF388503E5DE">3.2-5 ObjByExponents</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap3.html#X85BCB97B8021EAD6">3.2-6 ExponentsByObj</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap3.html#X79AEB3477800DC16">3.3 <span class="Heading">Special Features</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap3.html#X82EE2ACD7B8C178B">3.3-1 IsWeightedCollector</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap3.html#X7A1D7ED68334282C">3.3-2 AddHallPolynomials</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap3.html#X81FB5BE27903EC32">3.3-3 String</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap3.html#X7ED466B6807D16FE">3.3-4 FTLCollectorPrintTo</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap3.html#X789D9EB37ECFA9D7">3.3-5 FTLCollectorAppendTo</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap3.html#X808A26FB873A354F">3.3-6 UseLibraryCollector</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap3.html#X844E195C7D55F8BD">3.3-7 USE_LIBRARY_COLLECTOR</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap3.html#X7945C6B97BECCDA8">3.3-8 DEBUG_COMBINATORIAL_COLLECTOR</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap3.html#X7BDFB55D7CB33543">3.3-9 USE_COMBINATORIAL_COLLECTOR</a></span>
</div></div>
</div>
<div class="ContChap"><a href="chap4.html#X7E2AF25881CF7307">4 <span class="Heading">Pcp-groups - polycyclically presented groups</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap4.html#X7882F0F57ABEB680">4.1 <span class="Heading">Pcp-elements -- elements of a pc-presented group</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap4.html#X786DB93F7862D903">4.1-1 PcpElementByExponentsNC</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap4.html#X7BBB358C7AA64135">4.1-2 PcpElementByGenExpListNC</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap4.html#X86083E297D68733B">4.1-3 IsPcpElement</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap4.html#X8695069A7D5073B7">4.1-4 IsPcpElementCollection</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap4.html#X7F2C83AD862910B9">4.1-5 IsPcpElementRep</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap4.html#X8470284A78A6C41B">4.1-6 IsPcpGroup</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap4.html#X790471D07A953E12">4.2 <span class="Heading">Methods for pcp-elements</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap4.html#X7E2D258B7DCE8AC9">4.2-1 Collector</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap4.html#X85C672E78630C507">4.2-2 Exponents</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap4.html#X8571F6FB7E74346C">4.2-3 GenExpList</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap4.html#X82252C5E7B011559">4.2-4 NameTag</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap4.html#X840D32D9837E99F5">4.2-5 Depth</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap4.html#X874F1EC178721833">4.2-6 LeadingExponent</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap4.html#X8008AB61823A76B7">4.2-7 RelativeOrder</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap4.html#X875D04288577015B">4.2-8 RelativeIndex</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap4.html#X87E070747955F2C1">4.2-9 FactorOrder</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap4.html#X79A247797F0A8583">4.2-10 NormingExponent</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap4.html#X798BB22B80833441">4.2-11 NormedPcpElement</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap4.html#X7A4EF7C68151905A">4.3 <span class="Heading">Pcp-groups - groups of pcp-elements</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap4.html#X7C8FBCAB7F63FACB">4.3-1 PcpGroupByCollector</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap4.html#X7D7B075385435151">4.3-2 Group</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap4.html#X7C82AA387A42DCA0">4.3-3 Subgroup</a></span>
</div></div>
</div>
<div class="ContChap"><a href="chap5.html#X7B9B85AE7C9B13EE">5 <span class="Heading">Basic methods and functions for pcp-groups</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap5.html#X821360107E355B88">5.1 <span class="Heading">Elementary methods for pcp-groups</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X806A4814806A4814"><code>5.1-1 \=</code></a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X858ADA3B7A684421">5.1-2 Size</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X79730D657AB219DB">5.1-3 Random</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X83A0356F839C696F">5.1-4 Index</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X87BDB89B7AAFE8AD"><code>5.1-5 \in</code></a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X79B130FC7906FB4C">5.1-6 Elements</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X7D13FC1F8576FFD8">5.1-7 ClosureGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X7BDEA0A98720D1BB">5.1-8 NormalClosure</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X839B42AE7A1DD544">5.1-9 HirschLength</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X7A9A3D5578CE33A0">5.1-10 CommutatorSubgroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X796DA805853FAC90">5.1-11 PRump</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X814DBABC878D5232">5.1-12 SmallGeneratingSet</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap5.html#X80E88168866D54F3">5.2 <span class="Heading">Elementary properties of pcp-groups</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X7839D8927E778334">5.2-1 IsSubgroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X838186F9836F678C">5.2-2 IsNormal</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X87D062608719F2CD">5.2-3 IsNilpotentGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X7C12AA7479A6C103">5.2-4 IsAbelian</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X813C952F80E775D4">5.2-5 IsElementaryAbelian</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X84FFC668832F9ED6">5.2-6 IsFreeAbelian</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap5.html#X85A7E26C7E14AFBA">5.3 <span class="Heading">Subgroups of pcp-groups</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X815F756286701BE0">5.3-1 Igs</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X7F4D95C47F9652BA">5.3-2 Ngs</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X8077293A787D4571">5.3-3 Cgs</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X83B92A2679EAB1EB">5.3-4 SubgroupByIgs</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X78107DE78728B26B">5.3-5 AddToIgs</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap5.html#X803D62BC86EF07D0">5.4 <span class="Heading">Polycyclic presentation sequences for subfactors</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X7DD931697DD93169">5.4-1 Pcp</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X821FF77086E38B3A">5.4-2 GeneratorsOfPcp</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X8297BBCD79642BE6"><code>5.4-3 <span>\</span>[<span>\</span>]</code></a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X780769238600AFD1">5.4-4 Length</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X7ABCA7F2790E1673">5.4-5 RelativeOrdersOfPcp</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X7D16C299825887AA">5.4-6 DenominatorOfPcp</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X803AED1A84FCBEE8">5.4-7 NumeratorOfPcp</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X80BCCF0B81344933">5.4-8 GroupOfPcp</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X87F0BA5F7BA0F4B4">5.4-9 OneOfPcp</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X7A8C8BBC81581E09">5.4-10 ExponentsByPcp</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X87D75F7F86FEF203">5.4-11 PcpGroupByPcp</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap5.html#X845D29B478CA7656">5.5 <span class="Heading">Factor groups of pcp-groups</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X80FC390C7F38A13F">5.5-1 NaturalHomomorphismByNormalSubgroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X7F51DF007F51DF00"><code>5.5-2 \/</code></a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap5.html#X82E643F178E765EA">5.6 <span class="Heading">Homomorphisms for pcp-groups</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X7F348F497C813BE0">5.6-1 GroupHomomorphismByImages</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X7DCD99628504B810">5.6-2 Kernel</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X847322667E6166C8">5.6-3 Image</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X836FAEAC78B55BF4">5.6-4 PreImage</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X7AE24A1586B7DE79">5.6-5 PreImagesRepresentative</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X7F065FD7822C0A12">5.6-6 IsInjective</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap5.html#X7C873F807D4F3A3C">5.7 <span class="Heading">Changing the defining pc-presentation</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X80E9B60E853B2E05">5.7-1 RefinedPcpGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X7F88F5548329E279">5.7-2 PcpGroupBySeries</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap5.html#X85E681027AF19B1E">5.8 <span class="Heading">Printing a pc-presentation</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X79D247127FD57FC8">5.8-1 PrintPcpPresentation</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap5.html#X826ACBBB7A977206">5.9 <span class="Heading">Converting to and from a presentation</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X8771540F7A235763">5.9-1 IsomorphismPcpGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X7F5EBF1C831B4BA9">5.9-2 IsomorphismPcpGroupFromFpGroupWithPcPres</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X873CEB137BA1CD6E">5.9-3 IsomorphismPcGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X7F28268F850F454E">5.9-4 IsomorphismFpGroup</a></span>
</div></div>
</div>
<div class="ContChap"><a href="chap6.html#X78CEF1F27ED8D7BB">6 <span class="Heading">Libraries and examples of pcp-groups</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap6.html#X84A48FAB83934263">6.1 <span class="Heading">Libraries of various types of polycyclic groups</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap6.html#X7AEDE1BA82014B86">6.1-1 AbelianPcpGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap6.html#X7ACF57737D0F12DB">6.1-2 DihedralPcpGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap6.html#X864CEDAB7911CC79">6.1-3 UnitriangularPcpGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap6.html#X812E35B17AADBCD5">6.1-4 SubgroupUnitriangularPcpGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap6.html#X7A80F7F27FDA6810">6.1-5 InfiniteMetacyclicPcpGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap6.html#X81BEC875827D1CC2">6.1-6 HeisenbergPcpGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap6.html#X87F9B9C9786430D7">6.1-7 MaximalOrderByUnitsPcpGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap6.html#X852283A77A2C93DD">6.1-8 BurdeGrunewaldPcpGroup</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap6.html#X806FBA4A7CB8FB71">6.2 <span class="Heading">Some assorted example groups</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap6.html#X86293081865CDFC3">6.2-1 ExampleOfMetabelianPcpGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap6.html#X83A74A6E7E232FD6">6.2-2 ExamplesOfSomePcpGroups</a></span>
</div></div>
</div>
<div class="ContChap"><a href="chap7.html#X85BB6FE078679DAF">7 <span class="Heading">Higher level methods for pcp-groups</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap7.html#X8266A0A2821D98A1">7.1 <span class="Heading">Subgroup series in pcp-groups</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X8037DAD77A19D9B2">7.1-1 PcpSeries</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X86C633357ACD342C">7.1-2 EfaSeries</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X80ED4F8380DC477E">7.1-3 SemiSimpleEfaSeries</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X7A879948834BD889">7.1-4 DerivedSeriesOfGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X866D4C5C79F26611">7.1-5 RefinedDerivedSeries</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X86F7DE927DE3B5CD">7.1-6 RefinedDerivedSeriesDown</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X879D55A67DB42676">7.1-7 LowerCentralSeriesOfGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X8428592E8773CD7B">7.1-8 UpperCentralSeriesOfGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X83CA5DE785AE3F2C">7.1-9 TorsionByPolyEFSeries</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X7E39431286969377">7.1-10 PcpsBySeries</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X79789A1C82139854">7.1-11 PcpsOfEfaSeries</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap7.html#X7CE2DA437FD2B383">7.2 <span class="Heading">Orbit stabilizer methods for pcp-groups</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X83E17DB483B33AB5">7.2-1 PcpOrbitStabilizer</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X80694BA480F69A0E">7.2-2 StabilizerIntegralAction</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X875BE4077B32A411">7.2-3 NormalizerIntegralAction</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap7.html#X80E3B42E792532B3">7.3 <span class="Heading">Centralizers, Normalizers and Intersections</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X808EE8AD7EE3ECE1">7.3-1 Centralizer</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X849B5C527BAFAAA4">7.3-2 Centralizer</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X851069107CACF98E">7.3-3 Intersection</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap7.html#X7CF015E87A2B2388">7.4 <span class="Heading">Finite subgroups</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X8036FA507A170DC4">7.4-1 TorsionSubgroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X8082CD337972DC63">7.4-2 NormalTorsionSubgroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X86D92DA17DCE22DD">7.4-3 IsTorsionFree</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X819058217B4F3DC0">7.4-4 FiniteSubgroupClasses</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X7E7C32EA81A297B6">7.4-5 FiniteSubgroupClassesBySeries</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap7.html#X7D9F737F80F6E396">7.5 <span class="Heading">Subgroups of finite index and maximal subgroups</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X87D62D497A8715FB">7.5-1 MaximalSubgroupClassesByIndex</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X7800133F81BC7674">7.5-2 LowIndexSubgroupClasses</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X7F7067C77F2DC32C">7.5-3 LowIndexNormalSubgroups</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X85A5BC447D83175F">7.5-4 NilpotentByAbelianNormalSubgroup</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap7.html#X785E0E877AB1D549">7.6 <span class="Heading">Further attributes for pcp-groups based on the Fitting subgroup</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X780552B57C30DD8F">7.6-1 FittingSubgroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X86BD63DC844731DF">7.6-2 IsNilpotentByFinite</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X847ABE6F781C7FE8">7.6-3 Centre</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X861C36368435EB09">7.6-4 FCCentre</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X7E75E2BC806746AC">7.6-5 PolyZNormalSubgroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X86800BF783E30D4A">7.6-6 NilpotentByAbelianByFiniteSeries</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap7.html#X878DBDC77CCA4F7E">7.7 <span class="Heading">Functions for nilpotent groups</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X81D15723804771E2">7.7-1 MinimalGeneratingSet</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap7.html#X8640F9D47A1F7434">7.8 <span class="Heading">Random methods for pcp-groups</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X80AEE73E7D639699">7.8-1 RandomCentralizerPcpGroup</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap7.html#X824142B784453DB9">7.9 <span class="Heading">Non-abelian tensor product and Schur extensions</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X79EF28D9845878C9">7.9-1 SchurExtension</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X84B60EC978A9A05E">7.9-2 SchurExtensionEpimorphism</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X7DD1E37987612042">7.9-3 SchurCover</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X792BC39D7CEB1D27">7.9-4 AbelianInvariantsMultiplier</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X822ED5978647C93B">7.9-5 NonAbelianExteriorSquareEpimorphism</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X8739CD4686301A0E">7.9-6 NonAbelianExteriorSquare</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X86553D7B7DABF38F">7.9-7 NonAbelianTensorSquareEpimorphism</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X7C0DF7C97F78C666">7.9-8 NonAbelianTensorSquare</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X7AE75EC1860FFE7A">7.9-9 NonAbelianExteriorSquarePlusEmbedding</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X7D96C84E87925B0F">7.9-10 NonAbelianTensorSquarePlusEpimorphism</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X8746533787C4E8BC">7.9-11 NonAbelianTensorSquarePlus</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X78F9184078B2761A">7.9-12 WhiteheadQuadraticFunctor</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap7.html#X7D3023697BA5CE5A">7.10 <span class="Heading">Schur covers</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X7D90B44E7B96AFF1">7.10-1 SchurCovers</a></span>
</div></div>
</div>
<div class="ContChap"><a href="chap8.html#X796AB9787E2A752C">8 <span class="Heading">Cohomology for pcp-groups</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap8.html#X875758FA7C6F5CE1">8.1 <span class="Heading">Cohomology records</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap8.html#X7C97442C7B78806C">8.1-1 CRRecordByMats</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap8.html#X8646DFA1804D2A11">8.1-2 CRRecordBySubgroup</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap8.html#X874759D582393441">8.2 <span class="Heading">Cohomology groups</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap8.html#X85EF170387D39D4A">8.2-1 OneCoboundariesCR</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap8.html#X79B48D697A8A84C8">8.2-2 TwoCohomologyModCR</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap8.html#X79610E9178BD0C54">8.3 <span class="Heading">Extended 1-cohomology</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap8.html#X7E87E3EA81C84621">8.3-1 OneCoboundariesEX</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap8.html#X8111D2087C16CC0C">8.3-2 OneCocyclesEX</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap8.html#X84718DDE792FB212">8.3-3 OneCohomologyEX</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap8.html#X853E51787A24AE00">8.4 <span class="Heading">Extensions and Complements</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap8.html#X7DA9162085058006">8.4-1 ComplementCR</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap8.html#X7F8984D386A813D6">8.4-2 ComplementsCR</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap8.html#X7FAB3EB0803197FA">8.4-3 ComplementClassesCR</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap8.html#X8759DC59799DD508">8.4-4 ComplementClassesEfaPcps</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap8.html#X7B0EC76D81A056AB">8.4-5 ComplementClasses</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap8.html#X85F3B55C78CF840B">8.4-6 ExtensionCR</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap8.html#X81DC85907E0948FD">8.4-7 ExtensionsCR</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap8.html#X7AE16E3687E14B24">8.4-8 ExtensionClassesCR</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap8.html#X7986997B78AD3292">8.4-9 SplitExtensionPcpGroup</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap8.html#X823771527DBD857D">8.5 <span class="Heading">Constructing pcp groups as extensions</span></a>
</span>
</div>
</div>
<div class="ContChap"><a href="chap9.html#X858D1BB07A8FBF87">9 <span class="Heading">Matrix Representations</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap9.html#X7D0ED06C7E6A457D">9.1 <span class="Heading">Unitriangular matrix groups</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap9.html#X7E6F320F865E309C">9.1-1 UnitriangularMatrixRepresentation</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap9.html#X7F5E7F5F7DDB2E2C">9.1-2 IsMatrixRepresentation</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap9.html#X79A8A51B84E4BF8C">9.2 <span class="Heading">Upper unitriangular matrix groups</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap9.html#X8434972E7DDB68C1">9.2-1 IsomorphismUpperUnitriMatGroupPcpGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap9.html#X843C9D427FFA2487">9.2-2 SiftUpperUnitriMatGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap9.html#X7CF8B8F981931846">9.2-3 RanksLevels</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap9.html#X81F3760186734EA7">9.2-4 MakeNewLevel</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap9.html#X851A216C85B74574">9.2-5 SiftUpperUnitriMat</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap9.html#X86D711217C639C2C">9.2-6 DecomposeUpperUnitriMat</a></span>
</div></div>
</div>
<div class="ContChap"><a href="chapA.html#X874ECE907CAF380D">A <span class="Heading">Obsolete Functions and Name Changes</span></a>
</div>
<div class="ContChap"><a href="chapBib.html"><span class="Heading">References</span></a></div>
<div class="ContChap"><a href="chapInd.html"><span class="Heading">Index</span></a></div>
<br />
</div>
<div class="chlinkprevnextbot"> <a href="chap0.html">[Top of Book]</a> <a href="chap0.html#contents">[Contents]</a> <a href="chap1.html">[Next Chapter]</a> </div>
<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a> <a href="chap1.html">1</a> <a href="chap2.html">2</a> <a href="chap3.html">3</a> <a href="chap4.html">4</a> <a href="chap5.html">5</a> <a href="chap6.html">6</a> <a href="chap7.html">7</a> <a href="chap8.html">8</a> <a href="chap9.html">9</a> <a href="chapA.html">A</a> <a href="chapBib.html">Bib</a> <a href="chapInd.html">Ind</a> </div>
<hr />
<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>
|