File: chap4.html

package info (click to toggle)
gap-polycyclic 2.17-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 2,796 kB
  • sloc: xml: 3,018; javascript: 155; makefile: 124
file content (257 lines) | stat: -rw-r--r-- 21,730 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
         "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>GAP (polycyclic) - Chapter 4: Pcp-groups - polycyclically presented groups</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap4"  onload="jscontent()">


<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a>  <a href="chapA.html">A</a>  <a href="chapBib.html">Bib</a>  <a href="chapInd.html">Ind</a>  </div>

<div class="chlinkprevnexttop">&nbsp;<a href="chap0.html">[Top of Book]</a>&nbsp;  <a href="chap0.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap3.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap5.html">[Next Chapter]</a>&nbsp;  </div>

<p id="mathjaxlink" class="pcenter"><a href="chap4_mj.html">[MathJax on]</a></p>
<p><a id="X7E2AF25881CF7307" name="X7E2AF25881CF7307"></a></p>
<div class="ChapSects"><a href="chap4.html#X7E2AF25881CF7307">4 <span class="Heading">Pcp-groups - polycyclically presented groups</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap4.html#X7882F0F57ABEB680">4.1 <span class="Heading">Pcp-elements -- elements of a pc-presented group</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X786DB93F7862D903">4.1-1 PcpElementByExponentsNC</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X7BBB358C7AA64135">4.1-2 PcpElementByGenExpListNC</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X86083E297D68733B">4.1-3 IsPcpElement</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X8695069A7D5073B7">4.1-4 IsPcpElementCollection</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X7F2C83AD862910B9">4.1-5 IsPcpElementRep</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X8470284A78A6C41B">4.1-6 IsPcpGroup</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap4.html#X790471D07A953E12">4.2 <span class="Heading">Methods for pcp-elements</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X7E2D258B7DCE8AC9">4.2-1 Collector</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X85C672E78630C507">4.2-2 Exponents</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X8571F6FB7E74346C">4.2-3 GenExpList</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X82252C5E7B011559">4.2-4 NameTag</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X840D32D9837E99F5">4.2-5 Depth</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X874F1EC178721833">4.2-6 LeadingExponent</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X8008AB61823A76B7">4.2-7 RelativeOrder</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X875D04288577015B">4.2-8 RelativeIndex</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X87E070747955F2C1">4.2-9 FactorOrder</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X79A247797F0A8583">4.2-10 NormingExponent</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X798BB22B80833441">4.2-11 NormedPcpElement</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap4.html#X7A4EF7C68151905A">4.3 <span class="Heading">Pcp-groups - groups of pcp-elements</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X7C8FBCAB7F63FACB">4.3-1 PcpGroupByCollector</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X7D7B075385435151">4.3-2 Group</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X7C82AA387A42DCA0">4.3-3 Subgroup</a></span>
</div></div>
</div>

<h3>4 <span class="Heading">Pcp-groups - polycyclically presented groups</span></h3>

<p><a id="X7882F0F57ABEB680" name="X7882F0F57ABEB680"></a></p>

<h4>4.1 <span class="Heading">Pcp-elements -- elements of a pc-presented group</span></h4>

<p>A <em>pcp-element</em> is an element of a group defined by a consistent pc-presentation given by a collector. Suppose that <span class="SimpleMath">g_1, ..., g_n</span> are the defining generators of the collector. Recall that each element <span class="SimpleMath">g</span> in this group can be written uniquely as a collected word <span class="SimpleMath">g_1^e_1 ⋯ g_n^e_n</span> with <span class="SimpleMath">e_i ∈ ℤ</span> and <span class="SimpleMath">0 ≤ e_i &lt; r_i</span> for <span class="SimpleMath">i ∈ I</span>. The integer vector <span class="SimpleMath">[e_1, ..., e_n]</span> is called the <em>exponent vector</em> of <span class="SimpleMath">g</span>. The following functions can be used to define pcp-elements via their exponent vector or via an arbitrary generator exponent word as introduced in Chapter <a href="chap3.html#X792305CC81E8606A"><span class="RefLink">3</span></a>.</p>

<p><a id="X786DB93F7862D903" name="X786DB93F7862D903"></a></p>

<h5>4.1-1 PcpElementByExponentsNC</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PcpElementByExponentsNC</code>( <var class="Arg">coll</var>, <var class="Arg">exp</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PcpElementByExponents</code>( <var class="Arg">coll</var>, <var class="Arg">exp</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns the pcp-element with exponent vector <var class="Arg">exp</var>. The exponent vector is considered relative to the defining generators of the pc-presentation.</p>

<p><a id="X7BBB358C7AA64135" name="X7BBB358C7AA64135"></a></p>

<h5>4.1-2 PcpElementByGenExpListNC</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PcpElementByGenExpListNC</code>( <var class="Arg">coll</var>, <var class="Arg">word</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PcpElementByGenExpList</code>( <var class="Arg">coll</var>, <var class="Arg">word</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns the pcp-element with generators exponent list <var class="Arg">word</var>. This list <var class="Arg">word</var> consists of a sequence of generator numbers and their corresponding exponents and is of the form <span class="SimpleMath">[i_1, e_i_1, i_2, e_i_2, ..., i_r, e_i_r]</span>. The generators exponent list is considered relative to the defining generators of the pc-presentation.</p>

<p>These functions return pcp-elements in the category <code class="code">IsPcpElement</code>. Presently, the only representation implemented for this category is <code class="code">IsPcpElementRep</code>. (This allows us to be a little sloppy right now. The basic set of operations for <code class="code">IsPcpElement</code> has not been defined yet. This is going to happen in one of the next version, certainly as soon as the need for different representations arises.)</p>

<p><a id="X86083E297D68733B" name="X86083E297D68733B"></a></p>

<h5>4.1-3 IsPcpElement</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsPcpElement</code>( <var class="Arg">obj</var> )</td><td class="tdright">(&nbsp;category&nbsp;)</td></tr></table></div>
<p>returns true if the object <var class="Arg">obj</var> is a pcp-element.</p>

<p><a id="X8695069A7D5073B7" name="X8695069A7D5073B7"></a></p>

<h5>4.1-4 IsPcpElementCollection</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsPcpElementCollection</code>( <var class="Arg">obj</var> )</td><td class="tdright">(&nbsp;category&nbsp;)</td></tr></table></div>
<p>returns true if the object <var class="Arg">obj</var> is a collection of pcp-elements.</p>

<p><a id="X7F2C83AD862910B9" name="X7F2C83AD862910B9"></a></p>

<h5>4.1-5 IsPcpElementRep</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsPcpElementRep</code>( <var class="Arg">obj</var> )</td><td class="tdright">(&nbsp;representation&nbsp;)</td></tr></table></div>
<p>returns true if the object <var class="Arg">obj</var> is represented as a pcp-element.</p>

<p><a id="X8470284A78A6C41B" name="X8470284A78A6C41B"></a></p>

<h5>4.1-6 IsPcpGroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsPcpGroup</code>( <var class="Arg">obj</var> )</td><td class="tdright">(&nbsp;filter&nbsp;)</td></tr></table></div>
<p>returns true if the object <var class="Arg">obj</var> is a group and also a pcp-element collection.</p>

<p><a id="X790471D07A953E12" name="X790471D07A953E12"></a></p>

<h4>4.2 <span class="Heading">Methods for pcp-elements</span></h4>

<p>Now we can describe attributes and functions for pcp-elements. The four basic attributes of a pcp-element, <code class="code">Collector</code>, <code class="code">Exponents</code>, <code class="code">GenExpList</code> and <code class="code">NameTag</code> are computed at the creation of the pcp-element. All other attributes are determined at runtime.</p>

<p>Let <var class="Arg">g</var> be a pcp-element and <span class="SimpleMath">g_1, ..., g_n</span> a polycyclic generating sequence of the underlying pc-presented group. Let <span class="SimpleMath">C_1, ..., C_n</span> be the polycyclic series defined by <span class="SimpleMath">g_1, ..., g_n</span>.</p>

<p>The <em>depth</em> of a non-trivial element <span class="SimpleMath">g</span> of a pcp-group (with respect to the defining generators) is the integer <span class="SimpleMath">i</span> such that <span class="SimpleMath">g ∈ C_i ∖ C_i+1</span>. The depth of the trivial element is defined to be <span class="SimpleMath">n+1</span>. If <span class="SimpleMath">gnot=1</span> has depth <span class="SimpleMath">i</span> and <span class="SimpleMath">g_i^e_i ⋯ g_n^e_n</span> is the collected word for <span class="SimpleMath">g</span>, then <span class="SimpleMath">e_i</span> is the <em>leading exponent</em> of <span class="SimpleMath">g</span>.</p>

<p>If <span class="SimpleMath">g</span> has depth <span class="SimpleMath">i</span>, then we call <span class="SimpleMath">r_i = [C_i:C_i+1]</span> the <em>factor order</em> of <span class="SimpleMath">g</span>. If <span class="SimpleMath">r &lt; ∞</span>, then the smallest positive integer <span class="SimpleMath">l</span> with <span class="SimpleMath">g^l ∈ C_i+1</span> is the called <em>relative order</em> of <span class="SimpleMath">g</span>. If <span class="SimpleMath">r=∞</span>, then the relative order of <span class="SimpleMath">g</span> is defined to be <span class="SimpleMath">0</span>. The index <span class="SimpleMath">e</span> of <span class="SimpleMath">⟨ g,C_i+1⟩</span> in <span class="SimpleMath">C_i</span> is called <em>relative index</em> of <span class="SimpleMath">g</span>. We have that <span class="SimpleMath">r = el</span>.</p>

<p>We call a pcp-element <em>normed</em>, if its leading exponent is equal to its relative index. For each pcp-element <span class="SimpleMath">g</span> there exists an integer <span class="SimpleMath">e</span> such that <span class="SimpleMath">g^e</span> is normed.</p>

<p><a id="X7E2D258B7DCE8AC9" name="X7E2D258B7DCE8AC9"></a></p>

<h5>4.2-1 Collector</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Collector</code>( <var class="Arg">g</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p>the collector to which the pcp-element <var class="Arg">g</var> belongs.</p>

<p><a id="X85C672E78630C507" name="X85C672E78630C507"></a></p>

<h5>4.2-2 Exponents</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Exponents</code>( <var class="Arg">g</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p>returns the exponent vector of the pcp-element <var class="Arg">g</var> with respect to the defining generating set of the underlying collector.</p>

<p><a id="X8571F6FB7E74346C" name="X8571F6FB7E74346C"></a></p>

<h5>4.2-3 GenExpList</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; GenExpList</code>( <var class="Arg">g</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p>returns the generators exponent list of the pcp-element <var class="Arg">g</var> with respect to the defining generating set of the underlying collector.</p>

<p><a id="X82252C5E7B011559" name="X82252C5E7B011559"></a></p>

<h5>4.2-4 NameTag</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; NameTag</code>( <var class="Arg">g</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p>the name used for printing the pcp-element <var class="Arg">g</var>. Printing is done by using the name tag and appending the generator number of <var class="Arg">g</var>.</p>

<p><a id="X840D32D9837E99F5" name="X840D32D9837E99F5"></a></p>

<h5>4.2-5 Depth</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Depth</code>( <var class="Arg">g</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p>returns the depth of the pcp-element <var class="Arg">g</var> relative to the defining generators.</p>

<p><a id="X874F1EC178721833" name="X874F1EC178721833"></a></p>

<h5>4.2-6 LeadingExponent</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; LeadingExponent</code>( <var class="Arg">g</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p>returns the leading exponent of pcp-element <var class="Arg">g</var> relative to the defining generators. If <var class="Arg">g</var> is the identity element, the functions returns 'fail'</p>

<p><a id="X8008AB61823A76B7" name="X8008AB61823A76B7"></a></p>

<h5>4.2-7 RelativeOrder</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RelativeOrder</code>( <var class="Arg">g</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<p>returns the relative order of the pcp-element <var class="Arg">g</var> with respect to the defining generators.</p>

<p><a id="X875D04288577015B" name="X875D04288577015B"></a></p>

<h5>4.2-8 RelativeIndex</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RelativeIndex</code>( <var class="Arg">g</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<p>returns the relative index of the pcp-element <var class="Arg">g</var> with respect to the defining generators.</p>

<p><a id="X87E070747955F2C1" name="X87E070747955F2C1"></a></p>

<h5>4.2-9 FactorOrder</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; FactorOrder</code>( <var class="Arg">g</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<p>returns the factor order of the pcp-element <var class="Arg">g</var> with respect to the defining generators.</p>

<p><a id="X79A247797F0A8583" name="X79A247797F0A8583"></a></p>

<h5>4.2-10 NormingExponent</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; NormingExponent</code>( <var class="Arg">g</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns a positive integer <span class="SimpleMath">e</span> such that the pcp-element <var class="Arg">g</var> raised to the power of <span class="SimpleMath">e</span> is normed.</p>

<p><a id="X798BB22B80833441" name="X798BB22B80833441"></a></p>

<h5>4.2-11 NormedPcpElement</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; NormedPcpElement</code>( <var class="Arg">g</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns the normed element corresponding to the pcp-element <var class="Arg">g</var>.</p>

<p><a id="X7A4EF7C68151905A" name="X7A4EF7C68151905A"></a></p>

<h4>4.3 <span class="Heading">Pcp-groups - groups of pcp-elements</span></h4>

<p>A <em>pcp-group</em> is a group consisting of pcp-elements such that all pcp-elements in the group share the same collector. Thus the group <span class="SimpleMath">G</span> defined by a polycyclic presentation and all its subgroups are pcp-groups.</p>

<p><a id="X7C8FBCAB7F63FACB" name="X7C8FBCAB7F63FACB"></a></p>

<h5>4.3-1 PcpGroupByCollector</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PcpGroupByCollector</code>( <var class="Arg">coll</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PcpGroupByCollectorNC</code>( <var class="Arg">coll</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns a pcp-group build from the collector <var class="Arg">coll</var>.</p>

<p>The function calls <code class="func">UpdatePolycyclicCollector</code> (<a href="chap3.html#X7E9903F57BC5CC24"><span class="RefLink">3.1-6</span></a>) and checks the confluence (see <code class="func">IsConfluent</code> (<a href="chap3.html#X8006790B86328CE8"><span class="RefLink">3.1-7</span></a>)) of the collector.</p>

<p>The non-check version bypasses these checks.</p>

<p><a id="X7D7B075385435151" name="X7D7B075385435151"></a></p>

<h5>4.3-2 Group</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Group</code>( <var class="Arg">gens</var>, <var class="Arg">id</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns the group generated by the pcp-elements <var class="Arg">gens</var> with identity <var class="Arg">id</var>.</p>

<p><a id="X7C82AA387A42DCA0" name="X7C82AA387A42DCA0"></a></p>

<h5>4.3-3 Subgroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Subgroup</code>( <var class="Arg">G</var>, <var class="Arg">gens</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns a subgroup of the pcp-group <var class="Arg">G</var> generated by the list <var class="Arg">gens</var> of pcp-elements from <var class="Arg">G</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput"> ftl := FromTheLeftCollector( 2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput"> SetRelativeOrder( ftl, 1, 2 );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput"> SetConjugate( ftl, 2, 1, [2,-1] );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput"> UpdatePolycyclicCollector( ftl );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput"> G:= PcpGroupByCollectorNC( ftl );</span>
Pcp-group with orders [ 2, 0 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Subgroup( G, GeneratorsOfGroup(G){[2]} );</span>
Pcp-group with orders [ 0 ]
</pre></div>


<div class="chlinkprevnextbot">&nbsp;<a href="chap0.html">[Top of Book]</a>&nbsp;  <a href="chap0.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap3.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap5.html">[Next Chapter]</a>&nbsp;  </div>


<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a>  <a href="chapA.html">A</a>  <a href="chapBib.html">Bib</a>  <a href="chapInd.html">Ind</a>  </div>

<hr />
<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>