1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
|
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>GAP (polycyclic) - Chapter 4: Pcp-groups - polycyclically presented groups</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap4" onload="jscontent()">
<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a> <a href="chap1.html">1</a> <a href="chap2.html">2</a> <a href="chap3.html">3</a> <a href="chap4.html">4</a> <a href="chap5.html">5</a> <a href="chap6.html">6</a> <a href="chap7.html">7</a> <a href="chap8.html">8</a> <a href="chap9.html">9</a> <a href="chapA.html">A</a> <a href="chapBib.html">Bib</a> <a href="chapInd.html">Ind</a> </div>
<div class="chlinkprevnexttop"> <a href="chap0.html">[Top of Book]</a> <a href="chap0.html#contents">[Contents]</a> <a href="chap3.html">[Previous Chapter]</a> <a href="chap5.html">[Next Chapter]</a> </div>
<p id="mathjaxlink" class="pcenter"><a href="chap4_mj.html">[MathJax on]</a></p>
<p><a id="X7E2AF25881CF7307" name="X7E2AF25881CF7307"></a></p>
<div class="ChapSects"><a href="chap4.html#X7E2AF25881CF7307">4 <span class="Heading">Pcp-groups - polycyclically presented groups</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap4.html#X7882F0F57ABEB680">4.1 <span class="Heading">Pcp-elements -- elements of a pc-presented group</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap4.html#X786DB93F7862D903">4.1-1 PcpElementByExponentsNC</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap4.html#X7BBB358C7AA64135">4.1-2 PcpElementByGenExpListNC</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap4.html#X86083E297D68733B">4.1-3 IsPcpElement</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap4.html#X8695069A7D5073B7">4.1-4 IsPcpElementCollection</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap4.html#X7F2C83AD862910B9">4.1-5 IsPcpElementRep</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap4.html#X8470284A78A6C41B">4.1-6 IsPcpGroup</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap4.html#X790471D07A953E12">4.2 <span class="Heading">Methods for pcp-elements</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap4.html#X7E2D258B7DCE8AC9">4.2-1 Collector</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap4.html#X85C672E78630C507">4.2-2 Exponents</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap4.html#X8571F6FB7E74346C">4.2-3 GenExpList</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap4.html#X82252C5E7B011559">4.2-4 NameTag</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap4.html#X840D32D9837E99F5">4.2-5 Depth</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap4.html#X874F1EC178721833">4.2-6 LeadingExponent</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap4.html#X8008AB61823A76B7">4.2-7 RelativeOrder</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap4.html#X875D04288577015B">4.2-8 RelativeIndex</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap4.html#X87E070747955F2C1">4.2-9 FactorOrder</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap4.html#X79A247797F0A8583">4.2-10 NormingExponent</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap4.html#X798BB22B80833441">4.2-11 NormedPcpElement</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap4.html#X7A4EF7C68151905A">4.3 <span class="Heading">Pcp-groups - groups of pcp-elements</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap4.html#X7C8FBCAB7F63FACB">4.3-1 PcpGroupByCollector</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap4.html#X7D7B075385435151">4.3-2 Group</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap4.html#X7C82AA387A42DCA0">4.3-3 Subgroup</a></span>
</div></div>
</div>
<h3>4 <span class="Heading">Pcp-groups - polycyclically presented groups</span></h3>
<p><a id="X7882F0F57ABEB680" name="X7882F0F57ABEB680"></a></p>
<h4>4.1 <span class="Heading">Pcp-elements -- elements of a pc-presented group</span></h4>
<p>A <em>pcp-element</em> is an element of a group defined by a consistent pc-presentation given by a collector. Suppose that <span class="SimpleMath">g_1, ..., g_n</span> are the defining generators of the collector. Recall that each element <span class="SimpleMath">g</span> in this group can be written uniquely as a collected word <span class="SimpleMath">g_1^e_1 ⋯ g_n^e_n</span> with <span class="SimpleMath">e_i ∈ ℤ</span> and <span class="SimpleMath">0 ≤ e_i < r_i</span> for <span class="SimpleMath">i ∈ I</span>. The integer vector <span class="SimpleMath">[e_1, ..., e_n]</span> is called the <em>exponent vector</em> of <span class="SimpleMath">g</span>. The following functions can be used to define pcp-elements via their exponent vector or via an arbitrary generator exponent word as introduced in Chapter <a href="chap3.html#X792305CC81E8606A"><span class="RefLink">3</span></a>.</p>
<p><a id="X786DB93F7862D903" name="X786DB93F7862D903"></a></p>
<h5>4.1-1 PcpElementByExponentsNC</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PcpElementByExponentsNC</code>( <var class="Arg">coll</var>, <var class="Arg">exp</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PcpElementByExponents</code>( <var class="Arg">coll</var>, <var class="Arg">exp</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns the pcp-element with exponent vector <var class="Arg">exp</var>. The exponent vector is considered relative to the defining generators of the pc-presentation.</p>
<p><a id="X7BBB358C7AA64135" name="X7BBB358C7AA64135"></a></p>
<h5>4.1-2 PcpElementByGenExpListNC</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PcpElementByGenExpListNC</code>( <var class="Arg">coll</var>, <var class="Arg">word</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PcpElementByGenExpList</code>( <var class="Arg">coll</var>, <var class="Arg">word</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns the pcp-element with generators exponent list <var class="Arg">word</var>. This list <var class="Arg">word</var> consists of a sequence of generator numbers and their corresponding exponents and is of the form <span class="SimpleMath">[i_1, e_i_1, i_2, e_i_2, ..., i_r, e_i_r]</span>. The generators exponent list is considered relative to the defining generators of the pc-presentation.</p>
<p>These functions return pcp-elements in the category <code class="code">IsPcpElement</code>. Presently, the only representation implemented for this category is <code class="code">IsPcpElementRep</code>. (This allows us to be a little sloppy right now. The basic set of operations for <code class="code">IsPcpElement</code> has not been defined yet. This is going to happen in one of the next version, certainly as soon as the need for different representations arises.)</p>
<p><a id="X86083E297D68733B" name="X86083E297D68733B"></a></p>
<h5>4.1-3 IsPcpElement</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsPcpElement</code>( <var class="Arg">obj</var> )</td><td class="tdright">( category )</td></tr></table></div>
<p>returns true if the object <var class="Arg">obj</var> is a pcp-element.</p>
<p><a id="X8695069A7D5073B7" name="X8695069A7D5073B7"></a></p>
<h5>4.1-4 IsPcpElementCollection</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsPcpElementCollection</code>( <var class="Arg">obj</var> )</td><td class="tdright">( category )</td></tr></table></div>
<p>returns true if the object <var class="Arg">obj</var> is a collection of pcp-elements.</p>
<p><a id="X7F2C83AD862910B9" name="X7F2C83AD862910B9"></a></p>
<h5>4.1-5 IsPcpElementRep</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsPcpElementRep</code>( <var class="Arg">obj</var> )</td><td class="tdright">( representation )</td></tr></table></div>
<p>returns true if the object <var class="Arg">obj</var> is represented as a pcp-element.</p>
<p><a id="X8470284A78A6C41B" name="X8470284A78A6C41B"></a></p>
<h5>4.1-6 IsPcpGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsPcpGroup</code>( <var class="Arg">obj</var> )</td><td class="tdright">( filter )</td></tr></table></div>
<p>returns true if the object <var class="Arg">obj</var> is a group and also a pcp-element collection.</p>
<p><a id="X790471D07A953E12" name="X790471D07A953E12"></a></p>
<h4>4.2 <span class="Heading">Methods for pcp-elements</span></h4>
<p>Now we can describe attributes and functions for pcp-elements. The four basic attributes of a pcp-element, <code class="code">Collector</code>, <code class="code">Exponents</code>, <code class="code">GenExpList</code> and <code class="code">NameTag</code> are computed at the creation of the pcp-element. All other attributes are determined at runtime.</p>
<p>Let <var class="Arg">g</var> be a pcp-element and <span class="SimpleMath">g_1, ..., g_n</span> a polycyclic generating sequence of the underlying pc-presented group. Let <span class="SimpleMath">C_1, ..., C_n</span> be the polycyclic series defined by <span class="SimpleMath">g_1, ..., g_n</span>.</p>
<p>The <em>depth</em> of a non-trivial element <span class="SimpleMath">g</span> of a pcp-group (with respect to the defining generators) is the integer <span class="SimpleMath">i</span> such that <span class="SimpleMath">g ∈ C_i ∖ C_i+1</span>. The depth of the trivial element is defined to be <span class="SimpleMath">n+1</span>. If <span class="SimpleMath">gnot=1</span> has depth <span class="SimpleMath">i</span> and <span class="SimpleMath">g_i^e_i ⋯ g_n^e_n</span> is the collected word for <span class="SimpleMath">g</span>, then <span class="SimpleMath">e_i</span> is the <em>leading exponent</em> of <span class="SimpleMath">g</span>.</p>
<p>If <span class="SimpleMath">g</span> has depth <span class="SimpleMath">i</span>, then we call <span class="SimpleMath">r_i = [C_i:C_i+1]</span> the <em>factor order</em> of <span class="SimpleMath">g</span>. If <span class="SimpleMath">r < ∞</span>, then the smallest positive integer <span class="SimpleMath">l</span> with <span class="SimpleMath">g^l ∈ C_i+1</span> is the called <em>relative order</em> of <span class="SimpleMath">g</span>. If <span class="SimpleMath">r=∞</span>, then the relative order of <span class="SimpleMath">g</span> is defined to be <span class="SimpleMath">0</span>. The index <span class="SimpleMath">e</span> of <span class="SimpleMath">⟨ g,C_i+1⟩</span> in <span class="SimpleMath">C_i</span> is called <em>relative index</em> of <span class="SimpleMath">g</span>. We have that <span class="SimpleMath">r = el</span>.</p>
<p>We call a pcp-element <em>normed</em>, if its leading exponent is equal to its relative index. For each pcp-element <span class="SimpleMath">g</span> there exists an integer <span class="SimpleMath">e</span> such that <span class="SimpleMath">g^e</span> is normed.</p>
<p><a id="X7E2D258B7DCE8AC9" name="X7E2D258B7DCE8AC9"></a></p>
<h5>4.2-1 Collector</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Collector</code>( <var class="Arg">g</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>the collector to which the pcp-element <var class="Arg">g</var> belongs.</p>
<p><a id="X85C672E78630C507" name="X85C672E78630C507"></a></p>
<h5>4.2-2 Exponents</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Exponents</code>( <var class="Arg">g</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>returns the exponent vector of the pcp-element <var class="Arg">g</var> with respect to the defining generating set of the underlying collector.</p>
<p><a id="X8571F6FB7E74346C" name="X8571F6FB7E74346C"></a></p>
<h5>4.2-3 GenExpList</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ GenExpList</code>( <var class="Arg">g</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>returns the generators exponent list of the pcp-element <var class="Arg">g</var> with respect to the defining generating set of the underlying collector.</p>
<p><a id="X82252C5E7B011559" name="X82252C5E7B011559"></a></p>
<h5>4.2-4 NameTag</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ NameTag</code>( <var class="Arg">g</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>the name used for printing the pcp-element <var class="Arg">g</var>. Printing is done by using the name tag and appending the generator number of <var class="Arg">g</var>.</p>
<p><a id="X840D32D9837E99F5" name="X840D32D9837E99F5"></a></p>
<h5>4.2-5 Depth</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Depth</code>( <var class="Arg">g</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>returns the depth of the pcp-element <var class="Arg">g</var> relative to the defining generators.</p>
<p><a id="X874F1EC178721833" name="X874F1EC178721833"></a></p>
<h5>4.2-6 LeadingExponent</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ LeadingExponent</code>( <var class="Arg">g</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>returns the leading exponent of pcp-element <var class="Arg">g</var> relative to the defining generators. If <var class="Arg">g</var> is the identity element, the functions returns 'fail'</p>
<p><a id="X8008AB61823A76B7" name="X8008AB61823A76B7"></a></p>
<h5>4.2-7 RelativeOrder</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ RelativeOrder</code>( <var class="Arg">g</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>returns the relative order of the pcp-element <var class="Arg">g</var> with respect to the defining generators.</p>
<p><a id="X875D04288577015B" name="X875D04288577015B"></a></p>
<h5>4.2-8 RelativeIndex</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ RelativeIndex</code>( <var class="Arg">g</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>returns the relative index of the pcp-element <var class="Arg">g</var> with respect to the defining generators.</p>
<p><a id="X87E070747955F2C1" name="X87E070747955F2C1"></a></p>
<h5>4.2-9 FactorOrder</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ FactorOrder</code>( <var class="Arg">g</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>returns the factor order of the pcp-element <var class="Arg">g</var> with respect to the defining generators.</p>
<p><a id="X79A247797F0A8583" name="X79A247797F0A8583"></a></p>
<h5>4.2-10 NormingExponent</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ NormingExponent</code>( <var class="Arg">g</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns a positive integer <span class="SimpleMath">e</span> such that the pcp-element <var class="Arg">g</var> raised to the power of <span class="SimpleMath">e</span> is normed.</p>
<p><a id="X798BB22B80833441" name="X798BB22B80833441"></a></p>
<h5>4.2-11 NormedPcpElement</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ NormedPcpElement</code>( <var class="Arg">g</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns the normed element corresponding to the pcp-element <var class="Arg">g</var>.</p>
<p><a id="X7A4EF7C68151905A" name="X7A4EF7C68151905A"></a></p>
<h4>4.3 <span class="Heading">Pcp-groups - groups of pcp-elements</span></h4>
<p>A <em>pcp-group</em> is a group consisting of pcp-elements such that all pcp-elements in the group share the same collector. Thus the group <span class="SimpleMath">G</span> defined by a polycyclic presentation and all its subgroups are pcp-groups.</p>
<p><a id="X7C8FBCAB7F63FACB" name="X7C8FBCAB7F63FACB"></a></p>
<h5>4.3-1 PcpGroupByCollector</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PcpGroupByCollector</code>( <var class="Arg">coll</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PcpGroupByCollectorNC</code>( <var class="Arg">coll</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns a pcp-group build from the collector <var class="Arg">coll</var>.</p>
<p>The function calls <code class="func">UpdatePolycyclicCollector</code> (<a href="chap3.html#X7E9903F57BC5CC24"><span class="RefLink">3.1-6</span></a>) and checks the confluence (see <code class="func">IsConfluent</code> (<a href="chap3.html#X8006790B86328CE8"><span class="RefLink">3.1-7</span></a>)) of the collector.</p>
<p>The non-check version bypasses these checks.</p>
<p><a id="X7D7B075385435151" name="X7D7B075385435151"></a></p>
<h5>4.3-2 Group</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Group</code>( <var class="Arg">gens</var>, <var class="Arg">id</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns the group generated by the pcp-elements <var class="Arg">gens</var> with identity <var class="Arg">id</var>.</p>
<p><a id="X7C82AA387A42DCA0" name="X7C82AA387A42DCA0"></a></p>
<h5>4.3-3 Subgroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Subgroup</code>( <var class="Arg">G</var>, <var class="Arg">gens</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns a subgroup of the pcp-group <var class="Arg">G</var> generated by the list <var class="Arg">gens</var> of pcp-elements from <var class="Arg">G</var>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput"> ftl := FromTheLeftCollector( 2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput"> SetRelativeOrder( ftl, 1, 2 );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput"> SetConjugate( ftl, 2, 1, [2,-1] );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput"> UpdatePolycyclicCollector( ftl );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput"> G:= PcpGroupByCollectorNC( ftl );</span>
Pcp-group with orders [ 2, 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Subgroup( G, GeneratorsOfGroup(G){[2]} );</span>
Pcp-group with orders [ 0 ]
</pre></div>
<div class="chlinkprevnextbot"> <a href="chap0.html">[Top of Book]</a> <a href="chap0.html#contents">[Contents]</a> <a href="chap3.html">[Previous Chapter]</a> <a href="chap5.html">[Next Chapter]</a> </div>
<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a> <a href="chap1.html">1</a> <a href="chap2.html">2</a> <a href="chap3.html">3</a> <a href="chap4.html">4</a> <a href="chap5.html">5</a> <a href="chap6.html">6</a> <a href="chap7.html">7</a> <a href="chap8.html">8</a> <a href="chap9.html">9</a> <a href="chapA.html">A</a> <a href="chapBib.html">Bib</a> <a href="chapInd.html">Ind</a> </div>
<hr />
<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>
|