1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
|
<Chapter Label="Collectors">
<Heading>Collectors</Heading>
Let <M>G</M> be a group defined by a pc-presentation as described in the
Chapter <Ref Chap="Introduction to polycyclic presentations" Style="Text"/>.
<P/>
The process for computing the collected form for an arbitrary word in
the generators of <M>G</M> is called <E>collection</E>. The basic idea in
collection is the following. Given a word in the defining generators,
one scans the word for occurrences of adjacent generators (or their
inverses) in the wrong order or occurrences of subwords <M>g_i^{e_i}</M>
with <M>i\in I</M> and <M>e_i</M> not in the range <M>0\ldots r_{i}-1</M>. In the
first case, the appropriate conjugacy relation is used to move the
generator with the smaller index to the left. In the second case, one
uses the appropriate power relation to move the exponent of <M>g_i</M> into
the required range. These steps are repeated until a collected word
is obtained.
<P/>
There exist a number of different strategies for collecting a given
word to collected form. The strategies implemented in this package
are <E>collection from the left</E> as described by <Cite Key="LGS90"/> and
<Cite Key="Sims94"/> and <E>combinatorial collection from the left</E> by
<Cite Key="MVL90"/>. In addition, the package provides access to Hall
polynomials computed by Deep Thought for the multiplication in a
nilpotent group, see <Cite Key="WWM97"/> and <Cite Key="LGS98"/>.
<P/>
The first step in defining a pc-presented group is setting up a data
structure that knows the pc-presentation and has routines that perform
the collection algorithm with words in the generators of the
presentation. Such a data structure is called <E>a collector</E>.
<P/>
To describe the right hand sides of the relations in a pc-presentation
we use <E>generator exponent lists</E>; the word
<M>g_{i_1}^{e_1}g_{i_2}^{e_2}\ldots g_{i_k}^{e_k}</M> is represented by the
generator exponent list <M>[i_1,e_1,i_2,e_2,\ldots,i_k,e_k]</M>.
<P/>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Constructing a Collector">
<Heading>Constructing a Collector</Heading>
A collector for a group given by a pc-presentation starts by
setting up an empty data structure for the collector. Then the
relative orders, the power relations and the conjugate relations are
added into the data structure. The construction is finalised by
calling a routine that completes the data structure for the
collector. The following functions provide the necessary tools for
setting up a collector.
<ManSection>
<Oper Name="FromTheLeftCollector" Arg="n"/>
<Description>
returns an empty data structure for a collector with <A>n</A> generators.
No generator has a relative order, no right hand sides of power and
conjugate relations are defined. Two generators for which no right
hand side of a conjugate relation is defined commute. Therefore, the
collector returned by this function can be used to define a free
abelian group of rank <A>n</A>.
<Example><![CDATA[
gap> ftl := FromTheLeftCollector( 4 );
<<from the left collector with 4 generators>>
gap> PcpGroupByCollector( ftl );
Pcp-group with orders [ 0, 0, 0, 0 ]
gap> IsAbelian(last);
true
]]></Example>
If the relative order of a generators has been defined (see
<Ref Func="SetRelativeOrder"/>), but the right hand side of the corresponding
power relation has not, then the order and the relative order of the
generator are the same.
</Description>
</ManSection>
<ManSection>
<Oper Name="SetRelativeOrder" Arg="coll, i, ro"/>
<Oper Name="SetRelativeOrderNC" Arg="coll, i, ro"/>
<Description>
set the relative order in collector <A>coll</A> for generator <A>i</A> to <A>ro</A>.
The parameter <A>coll</A> is a collector as returned by the function
<Ref Func="FromTheLeftCollector"/>, <A>i</A> is a generator number and <A>ro</A> is a
non-negative integer. The generator number <A>i</A> is an integer in the
range <M>1,\ldots,n</M> where <M>n</M> is the number of generators of the
collector.
<P/>
If <A>ro</A> is <M>0,</M> then the generator with number <A>i</A> has infinite order
and no power relation can be specified. As a side effect in this
case, a previously defined power relation is deleted.
<P/>
If <A>ro</A> is the relative order of a generator with number <A>i</A> and no
power relation is set for that generator, then <A>ro</A> is the order of
that generator.
<P/>
The NC version of the function bypasses checks on the range of <A>i</A>.
<Example><![CDATA[
gap> ftl := FromTheLeftCollector( 4 );
<<from the left collector with 4 generators>>
gap> for i in [1..4] do SetRelativeOrder( ftl, i, 3 ); od;
gap> G := PcpGroupByCollector( ftl );
Pcp-group with orders [ 3, 3, 3, 3 ]
gap> IsElementaryAbelian( G );
true
]]></Example>
</Description>
</ManSection>
<ManSection>
<Oper Name="SetPower" Arg="coll, i, rhs"/>
<Oper Name="SetPowerNC" Arg="coll, i, rhs"/>
<Description>
set the right hand side of the power relation for generator <A>i</A> in
collector <A>coll</A> to (a copy of) <A>rhs</A>. An attempt to set the right
hand side for a generator without a relative order results in an
error.
<P/>
Right hand sides are by default assumed to be trivial.
<P/>
The parameter <A>coll</A> is a collector, <A>i</A> is a generator number and
<A>rhs</A> is a generators exponent list or an element from a free group.
<P/>
The no-check (NC) version of the function bypasses checks on the range
of <A>i</A> and stores <A>rhs</A> (instead of a copy) in the collector.
</Description>
</ManSection>
<ManSection>
<Oper Name="SetConjugate" Arg="coll, j, i, rhs"/>
<Oper Name="SetConjugateNC" Arg="coll, j, i, rhs"/>
<Description>
set the right hand side of the conjugate relation for the generators
<A>j</A> and <A>i</A> with <A>j</A> larger than <A>i</A>. The parameter <A>coll</A> is a
collector, <A>j</A> and <A>i</A> are generator numbers and <A>rhs</A> is a generator
exponent list or an element from a free group. Conjugate relations
are by default assumed to be trivial.
<P/>
The generator number <A>i</A> can be negative in order to define
conjugation by the inverse of a generator.
<P/>
The no-check (NC) version of the function bypasses checks on the range
of <A>i</A> and <A>j</A> and stores <A>rhs</A> (instead of a copy) in the collector.
</Description>
</ManSection>
<ManSection>
<Oper Name="SetCommutator" Arg="coll, j, i, rhs"/>
<Description>
set the right hand side of the conjugate relation for the generators
<A>j</A> and <A>i</A> with <A>j</A> larger than <A>i</A> by specifying the commutator of
<A>j</A> and <A>i</A>. The parameter <A>coll</A> is a collector, <A>j</A> and <A>i</A> are
generator numbers and <A>rhs</A> is a generator exponent list or an element
from a free group.
<P/>
The generator number <A>i</A> can be negative in order to define
the right hand side of a commutator relation with the second generator
being the inverse of a generator.
</Description>
</ManSection>
<ManSection>
<Oper Name="UpdatePolycyclicCollector" Arg="coll"/>
<Description>
completes the data structures of a collector. This is usually the
last step in setting up a collector. Among the steps performed is the
completion of the conjugate relations. For each non-trivial conjugate
relation of a generator, the corresponding conjugate relation of the
inverse generator is calculated.
<P/>
Note that <C>UpdatePolycyclicCollector</C> is automatically called by the
function <C>PcpGroupByCollector</C> (see <Ref Func="PcpGroupByCollector"/>).
</Description>
</ManSection>
<ManSection>
<Prop Name="IsConfluent" Arg="coll"/>
<Description>
tests if the collector <A>coll</A> is confluent. The function returns true
or false accordingly.
<P/>
Compare Chapter <Ref Chap="Introduction to polycyclic presentations"/> for a
definition of confluence.
<P/>
Note that confluence is automatically checked by the function
<C>PcpGroupByCollector</C> (see <Ref Func="PcpGroupByCollector"/>).
<P/>
The following example defines a collector for a semidirect product
of the cyclic group of order <M>3</M> with the free abelian group of rank
<M>2</M>. The action of the cyclic group on the free abelian
group is given by the matrix
<Display><![CDATA[\pmatrix{ 0 & 1 \cr -1 & -1}.]]></Display>
This leads to the following polycyclic presentation:
<Display>\langle g_1,g_2,g_3 | g_1^3,
g_2^{g_1}=g_3,
g_3^{g_1}=g_2^{-1}g_3^{-1},
g_3^{g_2}=g_3\rangle.</Display>
<Example><![CDATA[
gap> ftl := FromTheLeftCollector( 3 );
<<from the left collector with 3 generators>>
gap> SetRelativeOrder( ftl, 1, 3 );
gap> SetConjugate( ftl, 2, 1, [3,1] );
gap> SetConjugate( ftl, 3, 1, [2,-1,3,-1] );
gap> UpdatePolycyclicCollector( ftl );
gap> IsConfluent( ftl );
true
]]></Example>
The action of the inverse of <M>g_1</M> on <M>\langle g_2,g_2\rangle</M> is
given by the matrix <Display><![CDATA[\pmatrix{ -1 & -1 \cr 1 & 0}.]]></Display> The
corresponding conjugate relations are automatically computed by
<C>UpdatePolycyclicCollector</C>. It is also possible to specify the
conjugation by inverse generators. Note that you need to run
<C>UpdatePolycyclicCollector</C> after one of the set functions has been
used.
<Example><![CDATA[
gap> SetConjugate( ftl, 2, -1, [2,-1,3,-1] );
gap> SetConjugate( ftl, 3, -1, [2,1] );
gap> IsConfluent( ftl );
Error, Collector is out of date called from
CollectWordOrFail( coll, ev1, [ j, 1, i, 1 ] ); called from
<function>( <arguments> ) called from read-eval-loop
Entering break read-eval-print loop ...
you can 'quit;' to quit to outer loop, or
you can 'return;' to continue
brk>
gap> UpdatePolycyclicCollector( ftl );
gap> IsConfluent( ftl );
true
]]></Example>
</Description>
</ManSection>
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Accessing Parts of a Collector">
<Heading>Accessing Parts of a Collector</Heading>
<ManSection>
<Attr Name="RelativeOrders" Arg="coll"/>
<Description>
returns (a copy of) the list of relative order stored in the collector
<A>coll</A>.
</Description>
</ManSection>
<ManSection>
<Oper Name="GetPower" Arg="coll, i"/>
<Oper Name="GetPowerNC" Arg="coll, i"/>
<Description>
returns a copy of the generator exponent list stored for the right
hand side of the power relation of the generator <A>i</A> in the collector
<A>coll</A>.
<P/>
The no-check (NC) version of the function bypasses checks on the range
of <A>i</A> and does not create a copy before returning the right hand side
of the power relation.
</Description>
</ManSection>
<ManSection>
<Oper Name="GetConjugate" Arg="coll, j, i"/>
<Oper Name="GetConjugateNC" Arg="coll, j, i"/>
<Description>
returns a copy of the right hand side of the conjugate relation stored
for the generators <A>j</A> and <A>i</A> in the collector <A>coll</A> as generator
exponent list. The generator <A>j</A> must be larger than <A>i</A>.
<P/>
The no-check (NC) version of the function bypasses checks on the range
of <A>i</A> and <A>j</A> and does not create a copy before returning the right
hand side of the power relation.
</Description>
</ManSection>
<ManSection>
<Oper Name="NumberOfGenerators" Arg="coll"/>
<Description>
returns the number of generators of the collector <A>coll</A>.
</Description>
</ManSection>
<ManSection>
<Oper Name="ObjByExponents" Arg="coll, expvec"/>
<Description>
returns a generator exponent list for the exponent vector <A>expvec</A>.
This is the inverse operation to <C>ExponentsByObj</C>. See
<Ref Func="ExponentsByObj"/> for an example.
</Description>
</ManSection>
<ManSection>
<Oper Name="ExponentsByObj" Arg="coll, genexp"/>
<Description>
returns an exponent vector for the generator exponent list <A>genexp</A>.
This is the inverse operation to <C>ObjByExponents</C>. The function
assumes that the generators in <A>genexp</A> are given in the right
order and that the exponents are in the right range.
<Example><![CDATA[
gap> G := UnitriangularPcpGroup( 4, 0 );
Pcp-group with orders [ 0, 0, 0, 0, 0, 0 ]
gap> coll := Collector ( G );
<<from the left collector with 6 generators>>
gap> ObjByExponents( coll, [6,-5,4,3,-2,1] );
[ 1, 6, 2, -5, 3, 4, 4, 3, 5, -2, 6, 1 ]
gap> ExponentsByObj( coll, last );
[ 6, -5, 4, 3, -2, 1 ]
]]></Example>
</Description>
</ManSection>
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Special Features">
<Heading>Special Features</Heading>
In this section we descibe collectors for nilpotent groups which make
use of the special structure of the given pc-presentation.
<ManSection>
<Prop Name="IsWeightedCollector" Arg="coll"/>
<Description>
checks if there is a function <M>w</M> from the generators of the collector
<A>coll</A> into the positive integers such that <M>w(g) \geq w(x)+w(y)</M> for
all generators <M>x</M>, <M>y</M> and all generators <M>g</M> in (the normal of)
<M>[x,y]</M>. If such a function does not exist, false is returned. If
such a function exists, it is computed and stored in the collector.
In addition, the default collection strategy for this collector is set
to combinatorial collection.
</Description>
</ManSection>
<ManSection>
<Func Name="AddHallPolynomials" Arg="coll"/>
<Description>
is applicable to a collector which passes <C>IsWeightedCollector</C> and
computes the Hall multiplication polynomials for the presentation
stored in <A>coll</A>. The default strategy for this collector is set to
evaluating those polynomial when multiplying two elements.
</Description>
</ManSection>
<ManSection>
<Attr Name="String" Arg="coll"/>
<Description>
converts a collector <A>coll</A> into a string.
</Description>
</ManSection>
<ManSection>
<Func Name="FTLCollectorPrintTo" Arg="file, name, coll"/>
<Description>
stores a collector <A>coll</A> in the file <A>file</A> such that the file can be
read back using the function 'Read' into &GAP; and would then be stored
in the variable <A>name</A>.
</Description>
</ManSection>
<ManSection>
<Func Name="FTLCollectorAppendTo" Arg="file, name, coll"/>
<Description>
appends a collector <A>coll</A> in the file <A>file</A> such that the file can
be read back into &GAP; and would then be stored in the variable
<A>name</A>.
</Description>
</ManSection>
<ManSection>
<Var Name="UseLibraryCollector"/>
<Description>
this property can be set to <K>true</K> for a collector to force a simple
from-the-left collection strategy implemented in the &GAP; language
to be used. Its main purpose is to help debug the collection
routines.
</Description>
</ManSection>
<ManSection>
<Var Name="USE_LIBRARY_COLLECTOR"/>
<Description>
this global variable can be set to <K>true</K> to force all collectors to
use a simple from-the-left collection strategy implemented in the
&GAP; language to be used. Its main purpose is to help debug the
collection routines.
</Description>
</ManSection>
<ManSection>
<Var Name="DEBUG_COMBINATORIAL_COLLECTOR"/>
<Description>
this global variable can be set to <K>true</K> to force the comparison of
results from the combinatorial collector with the result of an
identical collection performed by a simple from-the-left collector.
Its main purpose is to help debug the collection routines.
</Description>
</ManSection>
<ManSection>
<Var Name="USE_COMBINATORIAL_COLLECTOR"/>
<Description>
this global variable can be set to <K>false</K> in order to prevent the
combinatorial collector to be used.
</Description>
</ManSection>
</Section>
</Chapter>
|