1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
|
\GAPDocLabFile{polycyclic}
\makelabel{polycyclic:Title page}{}{X7D2C85EC87DD46E5}
\makelabel{polycyclic:Copyright}{}{X81488B807F2A1CF1}
\makelabel{polycyclic:Acknowledgements}{}{X82A988D47DFAFCFA}
\makelabel{polycyclic:Table of Contents}{}{X8537FEB07AF2BEC8}
\makelabel{polycyclic:Preface}{1}{X874E1D45845007FE}
\makelabel{polycyclic:Introduction to polycyclic presentations}{2}{X792561B378D95B23}
\makelabel{polycyclic:Collectors}{3}{X792305CC81E8606A}
\makelabel{polycyclic:Constructing a Collector}{3.1}{X800FD91386C08CD8}
\makelabel{polycyclic:Accessing Parts of a Collector}{3.2}{X818484817C3BAAE6}
\makelabel{polycyclic:Special Features}{3.3}{X79AEB3477800DC16}
\makelabel{polycyclic:Pcp-groups - polycyclically presented groups}{4}{X7E2AF25881CF7307}
\makelabel{polycyclic:Pcp-elements -- elements of a pc-presented group}{4.1}{X7882F0F57ABEB680}
\makelabel{polycyclic:Methods for pcp-elements}{4.2}{X790471D07A953E12}
\makelabel{polycyclic:Pcp-groups - groups of pcp-elements}{4.3}{X7A4EF7C68151905A}
\makelabel{polycyclic:Basic methods and functions for pcp-groups}{5}{X7B9B85AE7C9B13EE}
\makelabel{polycyclic:Elementary methods for pcp-groups}{5.1}{X821360107E355B88}
\makelabel{polycyclic:Elementary properties of pcp-groups}{5.2}{X80E88168866D54F3}
\makelabel{polycyclic:Subgroups of pcp-groups}{5.3}{X85A7E26C7E14AFBA}
\makelabel{polycyclic:Polycyclic presentation sequences for subfactors}{5.4}{X803D62BC86EF07D0}
\makelabel{polycyclic:Factor groups of pcp-groups}{5.5}{X845D29B478CA7656}
\makelabel{polycyclic:Homomorphisms for pcp-groups}{5.6}{X82E643F178E765EA}
\makelabel{polycyclic:Changing the defining pc-presentation}{5.7}{X7C873F807D4F3A3C}
\makelabel{polycyclic:Printing a pc-presentation}{5.8}{X85E681027AF19B1E}
\makelabel{polycyclic:Converting to and from a presentation}{5.9}{X826ACBBB7A977206}
\makelabel{polycyclic:Libraries and examples of pcp-groups}{6}{X78CEF1F27ED8D7BB}
\makelabel{polycyclic:Libraries of various types of polycyclic groups}{6.1}{X84A48FAB83934263}
\makelabel{polycyclic:Some assorted example groups}{6.2}{X806FBA4A7CB8FB71}
\makelabel{polycyclic:Higher level methods for pcp-groups}{7}{X85BB6FE078679DAF}
\makelabel{polycyclic:Subgroup series in pcp-groups}{7.1}{X8266A0A2821D98A1}
\makelabel{polycyclic:Orbit stabilizer methods for pcp-groups}{7.2}{X7CE2DA437FD2B383}
\makelabel{polycyclic:Centralizers, Normalizers and Intersections}{7.3}{X80E3B42E792532B3}
\makelabel{polycyclic:Finite subgroups}{7.4}{X7CF015E87A2B2388}
\makelabel{polycyclic:Subgroups of finite index and maximal subgroups}{7.5}{X7D9F737F80F6E396}
\makelabel{polycyclic:Further attributes for pcp-groups based on the Fitting subgroup}{7.6}{X785E0E877AB1D549}
\makelabel{polycyclic:Functions for nilpotent groups}{7.7}{X878DBDC77CCA4F7E}
\makelabel{polycyclic:Random methods for pcp-groups}{7.8}{X8640F9D47A1F7434}
\makelabel{polycyclic:Non-abelian tensor product and Schur extensions}{7.9}{X824142B784453DB9}
\makelabel{polycyclic:Schur covers}{7.10}{X7D3023697BA5CE5A}
\makelabel{polycyclic:Cohomology for pcp-groups}{8}{X796AB9787E2A752C}
\makelabel{polycyclic:Cohomology records}{8.1}{X875758FA7C6F5CE1}
\makelabel{polycyclic:Cohomology groups}{8.2}{X874759D582393441}
\makelabel{polycyclic:Extended 1-cohomology}{8.3}{X79610E9178BD0C54}
\makelabel{polycyclic:Extensions and Complements}{8.4}{X853E51787A24AE00}
\makelabel{polycyclic:Constructing pcp groups as extensions}{8.5}{X823771527DBD857D}
\makelabel{polycyclic:Matrix Representations}{9}{X858D1BB07A8FBF87}
\makelabel{polycyclic:Unitriangular matrix groups}{9.1}{X7D0ED06C7E6A457D}
\makelabel{polycyclic:Upper unitriangular matrix groups}{9.2}{X79A8A51B84E4BF8C}
\makelabel{polycyclic:Obsolete Functions and Name Changes}{A}{X874ECE907CAF380D}
\makelabel{polycyclic:Bibliography}{Bib}{X7A6F98FD85F02BFE}
\makelabel{polycyclic:References}{Bib}{X7A6F98FD85F02BFE}
\makelabel{polycyclic:Index}{Ind}{X83A0356F839C696F}
\makelabel{polycyclic:License}{}{X81488B807F2A1CF1}
\makelabel{polycyclic:FromTheLeftCollector}{3.1.1}{X8382A4E78706DE65}
\makelabel{polycyclic:SetRelativeOrder}{3.1.2}{X79A308B28183493B}
\makelabel{polycyclic:SetRelativeOrderNC}{3.1.2}{X79A308B28183493B}
\makelabel{polycyclic:SetPower}{3.1.3}{X7BC319BA8698420C}
\makelabel{polycyclic:SetPowerNC}{3.1.3}{X7BC319BA8698420C}
\makelabel{polycyclic:SetConjugate}{3.1.4}{X86A08D887E049347}
\makelabel{polycyclic:SetConjugateNC}{3.1.4}{X86A08D887E049347}
\makelabel{polycyclic:SetCommutator}{3.1.5}{X7B25997C7DF92B6D}
\makelabel{polycyclic:UpdatePolycyclicCollector}{3.1.6}{X7E9903F57BC5CC24}
\makelabel{polycyclic:IsConfluent}{3.1.7}{X8006790B86328CE8}
\makelabel{polycyclic:RelativeOrders}{3.2.1}{X7DD0DF677AC1CF10}
\makelabel{polycyclic:GetPower}{3.2.2}{X844C0A478735EF4B}
\makelabel{polycyclic:GetPowerNC}{3.2.2}{X844C0A478735EF4B}
\makelabel{polycyclic:GetConjugate}{3.2.3}{X865160E07FA93E00}
\makelabel{polycyclic:GetConjugateNC}{3.2.3}{X865160E07FA93E00}
\makelabel{polycyclic:NumberOfGenerators}{3.2.4}{X7D6A26A4871FF51A}
\makelabel{polycyclic:ObjByExponents}{3.2.5}{X873ECF388503E5DE}
\makelabel{polycyclic:ExponentsByObj}{3.2.6}{X85BCB97B8021EAD6}
\makelabel{polycyclic:IsWeightedCollector}{3.3.1}{X82EE2ACD7B8C178B}
\makelabel{polycyclic:AddHallPolynomials}{3.3.2}{X7A1D7ED68334282C}
\makelabel{polycyclic:String}{3.3.3}{X81FB5BE27903EC32}
\makelabel{polycyclic:FTLCollectorPrintTo}{3.3.4}{X7ED466B6807D16FE}
\makelabel{polycyclic:FTLCollectorAppendTo}{3.3.5}{X789D9EB37ECFA9D7}
\makelabel{polycyclic:UseLibraryCollector}{3.3.6}{X808A26FB873A354F}
\makelabel{polycyclic:USELIBRARYCOLLECTOR}{3.3.7}{X844E195C7D55F8BD}
\makelabel{polycyclic:DEBUGCOMBINATORIALCOLLECTOR}{3.3.8}{X7945C6B97BECCDA8}
\makelabel{polycyclic:USECOMBINATORIALCOLLECTOR}{3.3.9}{X7BDFB55D7CB33543}
\makelabel{polycyclic:PcpElementByExponentsNC}{4.1.1}{X786DB93F7862D903}
\makelabel{polycyclic:PcpElementByExponents}{4.1.1}{X786DB93F7862D903}
\makelabel{polycyclic:PcpElementByGenExpListNC}{4.1.2}{X7BBB358C7AA64135}
\makelabel{polycyclic:PcpElementByGenExpList}{4.1.2}{X7BBB358C7AA64135}
\makelabel{polycyclic:IsPcpElement}{4.1.3}{X86083E297D68733B}
\makelabel{polycyclic:IsPcpElementCollection}{4.1.4}{X8695069A7D5073B7}
\makelabel{polycyclic:IsPcpElementRep}{4.1.5}{X7F2C83AD862910B9}
\makelabel{polycyclic:IsPcpGroup}{4.1.6}{X8470284A78A6C41B}
\makelabel{polycyclic:Collector}{4.2.1}{X7E2D258B7DCE8AC9}
\makelabel{polycyclic:Exponents}{4.2.2}{X85C672E78630C507}
\makelabel{polycyclic:GenExpList}{4.2.3}{X8571F6FB7E74346C}
\makelabel{polycyclic:NameTag}{4.2.4}{X82252C5E7B011559}
\makelabel{polycyclic:Depth}{4.2.5}{X840D32D9837E99F5}
\makelabel{polycyclic:LeadingExponent}{4.2.6}{X874F1EC178721833}
\makelabel{polycyclic:RelativeOrder}{4.2.7}{X8008AB61823A76B7}
\makelabel{polycyclic:RelativeIndex}{4.2.8}{X875D04288577015B}
\makelabel{polycyclic:FactorOrder}{4.2.9}{X87E070747955F2C1}
\makelabel{polycyclic:NormingExponent}{4.2.10}{X79A247797F0A8583}
\makelabel{polycyclic:NormedPcpElement}{4.2.11}{X798BB22B80833441}
\makelabel{polycyclic:PcpGroupByCollector}{4.3.1}{X7C8FBCAB7F63FACB}
\makelabel{polycyclic:PcpGroupByCollectorNC}{4.3.1}{X7C8FBCAB7F63FACB}
\makelabel{polycyclic:Group}{4.3.2}{X7D7B075385435151}
\makelabel{polycyclic:Subgroup}{4.3.3}{X7C82AA387A42DCA0}
\makelabel{polycyclic:Size}{5.1.2}{X858ADA3B7A684421}
\makelabel{polycyclic:Random}{5.1.3}{X79730D657AB219DB}
\makelabel{polycyclic:Index}{5.1.4}{X83A0356F839C696F}
\makelabel{polycyclic:Elements}{5.1.6}{X79B130FC7906FB4C}
\makelabel{polycyclic:ClosureGroup}{5.1.7}{X7D13FC1F8576FFD8}
\makelabel{polycyclic:NormalClosure}{5.1.8}{X7BDEA0A98720D1BB}
\makelabel{polycyclic:HirschLength}{5.1.9}{X839B42AE7A1DD544}
\makelabel{polycyclic:CommutatorSubgroup}{5.1.10}{X7A9A3D5578CE33A0}
\makelabel{polycyclic:PRump}{5.1.11}{X796DA805853FAC90}
\makelabel{polycyclic:SmallGeneratingSet}{5.1.12}{X814DBABC878D5232}
\makelabel{polycyclic:IsSubgroup}{5.2.1}{X7839D8927E778334}
\makelabel{polycyclic:IsNormal}{5.2.2}{X838186F9836F678C}
\makelabel{polycyclic:IsNilpotentGroup}{5.2.3}{X87D062608719F2CD}
\makelabel{polycyclic:IsAbelian}{5.2.4}{X7C12AA7479A6C103}
\makelabel{polycyclic:IsElementaryAbelian}{5.2.5}{X813C952F80E775D4}
\makelabel{polycyclic:IsFreeAbelian}{5.2.6}{X84FFC668832F9ED6}
\makelabel{polycyclic:Igs for a subgroup}{5.3.1}{X815F756286701BE0}
\makelabel{polycyclic:Igs}{5.3.1}{X815F756286701BE0}
\makelabel{polycyclic:IgsParallel}{5.3.1}{X815F756286701BE0}
\makelabel{polycyclic:Ngs for a subgroup}{5.3.2}{X7F4D95C47F9652BA}
\makelabel{polycyclic:Ngs}{5.3.2}{X7F4D95C47F9652BA}
\makelabel{polycyclic:Cgs for a subgroup}{5.3.3}{X8077293A787D4571}
\makelabel{polycyclic:Cgs}{5.3.3}{X8077293A787D4571}
\makelabel{polycyclic:CgsParallel}{5.3.3}{X8077293A787D4571}
\makelabel{polycyclic:SubgroupByIgs}{5.3.4}{X83B92A2679EAB1EB}
\makelabel{polycyclic:SubgroupByIgs with extra generators}{5.3.4}{X83B92A2679EAB1EB}
\makelabel{polycyclic:AddToIgs}{5.3.5}{X78107DE78728B26B}
\makelabel{polycyclic:AddToIgsParallel}{5.3.5}{X78107DE78728B26B}
\makelabel{polycyclic:AddIgsToIgs}{5.3.5}{X78107DE78728B26B}
\makelabel{polycyclic:Pcp}{5.4.1}{X7DD931697DD93169}
\makelabel{polycyclic:Pcp for a factor}{5.4.1}{X7DD931697DD93169}
\makelabel{polycyclic:GeneratorsOfPcp}{5.4.2}{X821FF77086E38B3A}
\makelabel{polycyclic:Length}{5.4.4}{X780769238600AFD1}
\makelabel{polycyclic:RelativeOrdersOfPcp}{5.4.5}{X7ABCA7F2790E1673}
\makelabel{polycyclic:DenominatorOfPcp}{5.4.6}{X7D16C299825887AA}
\makelabel{polycyclic:NumeratorOfPcp}{5.4.7}{X803AED1A84FCBEE8}
\makelabel{polycyclic:GroupOfPcp}{5.4.8}{X80BCCF0B81344933}
\makelabel{polycyclic:OneOfPcp}{5.4.9}{X87F0BA5F7BA0F4B4}
\makelabel{polycyclic:ExponentsByPcp}{5.4.10}{X7A8C8BBC81581E09}
\makelabel{polycyclic:PcpGroupByPcp}{5.4.11}{X87D75F7F86FEF203}
\makelabel{polycyclic:NaturalHomomorphismByNormalSubgroup}{5.5.1}{X80FC390C7F38A13F}
\makelabel{polycyclic:FactorGroup}{5.5.2}{X7F51DF007F51DF00}
\makelabel{polycyclic:GroupHomomorphismByImages}{5.6.1}{X7F348F497C813BE0}
\makelabel{polycyclic:Kernel}{5.6.2}{X7DCD99628504B810}
\makelabel{polycyclic:Image for a homomorphism}{5.6.3}{X847322667E6166C8}
\makelabel{polycyclic:Image for a homomorphism and a subgroup}{5.6.3}{X847322667E6166C8}
\makelabel{polycyclic:Image for a homomorphism and an element}{5.6.3}{X847322667E6166C8}
\makelabel{polycyclic:PreImage}{5.6.4}{X836FAEAC78B55BF4}
\makelabel{polycyclic:PreImagesRepresentative}{5.6.5}{X7AE24A1586B7DE79}
\makelabel{polycyclic:IsInjective}{5.6.6}{X7F065FD7822C0A12}
\makelabel{polycyclic:RefinedPcpGroup}{5.7.1}{X80E9B60E853B2E05}
\makelabel{polycyclic:PcpGroupBySeries}{5.7.2}{X7F88F5548329E279}
\makelabel{polycyclic:PrintPcpPresentation for a group}{5.8.1}{X79D247127FD57FC8}
\makelabel{polycyclic:PrintPcpPresentation for a pcp}{5.8.1}{X79D247127FD57FC8}
\makelabel{polycyclic:IsomorphismPcpGroup}{5.9.1}{X8771540F7A235763}
\makelabel{polycyclic:IsomorphismPcpGroupFromFpGroupWithPcPres}{5.9.2}{X7F5EBF1C831B4BA9}
\makelabel{polycyclic:IsomorphismPcGroup}{5.9.3}{X873CEB137BA1CD6E}
\makelabel{polycyclic:IsomorphismFpGroup}{5.9.4}{X7F28268F850F454E}
\makelabel{polycyclic:AbelianPcpGroup}{6.1.1}{X7AEDE1BA82014B86}
\makelabel{polycyclic:AbelianPcpGroup rels only}{6.1.1}{X7AEDE1BA82014B86}
\makelabel{polycyclic:DihedralPcpGroup}{6.1.2}{X7ACF57737D0F12DB}
\makelabel{polycyclic:UnitriangularPcpGroup}{6.1.3}{X864CEDAB7911CC79}
\makelabel{polycyclic:SubgroupUnitriangularPcpGroup}{6.1.4}{X812E35B17AADBCD5}
\makelabel{polycyclic:InfiniteMetacyclicPcpGroup}{6.1.5}{X7A80F7F27FDA6810}
\makelabel{polycyclic:HeisenbergPcpGroup}{6.1.6}{X81BEC875827D1CC2}
\makelabel{polycyclic:MaximalOrderByUnitsPcpGroup}{6.1.7}{X87F9B9C9786430D7}
\makelabel{polycyclic:BurdeGrunewaldPcpGroup}{6.1.8}{X852283A77A2C93DD}
\makelabel{polycyclic:ExampleOfMetabelianPcpGroup}{6.2.1}{X86293081865CDFC3}
\makelabel{polycyclic:ExamplesOfSomePcpGroups}{6.2.2}{X83A74A6E7E232FD6}
\makelabel{polycyclic:PcpSeries}{7.1.1}{X8037DAD77A19D9B2}
\makelabel{polycyclic:EfaSeries}{7.1.2}{X86C633357ACD342C}
\makelabel{polycyclic:SemiSimpleEfaSeries}{7.1.3}{X80ED4F8380DC477E}
\makelabel{polycyclic:DerivedSeriesOfGroup}{7.1.4}{X7A879948834BD889}
\makelabel{polycyclic:RefinedDerivedSeries}{7.1.5}{X866D4C5C79F26611}
\makelabel{polycyclic:RefinedDerivedSeriesDown}{7.1.6}{X86F7DE927DE3B5CD}
\makelabel{polycyclic:LowerCentralSeriesOfGroup}{7.1.7}{X879D55A67DB42676}
\makelabel{polycyclic:UpperCentralSeriesOfGroup}{7.1.8}{X8428592E8773CD7B}
\makelabel{polycyclic:TorsionByPolyEFSeries}{7.1.9}{X83CA5DE785AE3F2C}
\makelabel{polycyclic:PcpsBySeries}{7.1.10}{X7E39431286969377}
\makelabel{polycyclic:PcpsOfEfaSeries}{7.1.11}{X79789A1C82139854}
\makelabel{polycyclic:PcpOrbitStabilizer}{7.2.1}{X83E17DB483B33AB5}
\makelabel{polycyclic:PcpOrbitsStabilizers}{7.2.1}{X83E17DB483B33AB5}
\makelabel{polycyclic:StabilizerIntegralAction}{7.2.2}{X80694BA480F69A0E}
\makelabel{polycyclic:OrbitIntegralAction}{7.2.2}{X80694BA480F69A0E}
\makelabel{polycyclic:NormalizerIntegralAction}{7.2.3}{X875BE4077B32A411}
\makelabel{polycyclic:ConjugacyIntegralAction}{7.2.3}{X875BE4077B32A411}
\makelabel{polycyclic:Centralizer for an element}{7.3.1}{X808EE8AD7EE3ECE1}
\makelabel{polycyclic:IsConjugate for elements}{7.3.1}{X808EE8AD7EE3ECE1}
\makelabel{polycyclic:Centralizer for a subgroup}{7.3.2}{X849B5C527BAFAAA4}
\makelabel{polycyclic:Normalizer}{7.3.2}{X849B5C527BAFAAA4}
\makelabel{polycyclic:IsConjugate for subgroups}{7.3.2}{X849B5C527BAFAAA4}
\makelabel{polycyclic:Intersection}{7.3.3}{X851069107CACF98E}
\makelabel{polycyclic:TorsionSubgroup}{7.4.1}{X8036FA507A170DC4}
\makelabel{polycyclic:NormalTorsionSubgroup}{7.4.2}{X8082CD337972DC63}
\makelabel{polycyclic:IsTorsionFree}{7.4.3}{X86D92DA17DCE22DD}
\makelabel{polycyclic:FiniteSubgroupClasses}{7.4.4}{X819058217B4F3DC0}
\makelabel{polycyclic:FiniteSubgroupClassesBySeries}{7.4.5}{X7E7C32EA81A297B6}
\makelabel{polycyclic:MaximalSubgroupClassesByIndex}{7.5.1}{X87D62D497A8715FB}
\makelabel{polycyclic:LowIndexSubgroupClasses}{7.5.2}{X7800133F81BC7674}
\makelabel{polycyclic:LowIndexNormalSubgroups}{7.5.3}{X7F7067C77F2DC32C}
\makelabel{polycyclic:NilpotentByAbelianNormalSubgroup}{7.5.4}{X85A5BC447D83175F}
\makelabel{polycyclic:FittingSubgroup}{7.6.1}{X780552B57C30DD8F}
\makelabel{polycyclic:IsNilpotentByFinite}{7.6.2}{X86BD63DC844731DF}
\makelabel{polycyclic:Centre}{7.6.3}{X847ABE6F781C7FE8}
\makelabel{polycyclic:FCCentre}{7.6.4}{X861C36368435EB09}
\makelabel{polycyclic:PolyZNormalSubgroup}{7.6.5}{X7E75E2BC806746AC}
\makelabel{polycyclic:NilpotentByAbelianByFiniteSeries}{7.6.6}{X86800BF783E30D4A}
\makelabel{polycyclic:MinimalGeneratingSet}{7.7.1}{X81D15723804771E2}
\makelabel{polycyclic:RandomCentralizerPcpGroup for an element}{7.8.1}{X80AEE73E7D639699}
\makelabel{polycyclic:RandomCentralizerPcpGroup for a subgroup}{7.8.1}{X80AEE73E7D639699}
\makelabel{polycyclic:RandomNormalizerPcpGroup}{7.8.1}{X80AEE73E7D639699}
\makelabel{polycyclic:SchurExtension}{7.9.1}{X79EF28D9845878C9}
\makelabel{polycyclic:SchurExtensionEpimorphism}{7.9.2}{X84B60EC978A9A05E}
\makelabel{polycyclic:SchurCover}{7.9.3}{X7DD1E37987612042}
\makelabel{polycyclic:AbelianInvariantsMultiplier}{7.9.4}{X792BC39D7CEB1D27}
\makelabel{polycyclic:NonAbelianExteriorSquareEpimorphism}{7.9.5}{X822ED5978647C93B}
\makelabel{polycyclic:NonAbelianExteriorSquare}{7.9.6}{X8739CD4686301A0E}
\makelabel{polycyclic:NonAbelianTensorSquareEpimorphism}{7.9.7}{X86553D7B7DABF38F}
\makelabel{polycyclic:NonAbelianTensorSquare}{7.9.8}{X7C0DF7C97F78C666}
\makelabel{polycyclic:NonAbelianExteriorSquarePlusEmbedding}{7.9.9}{X7AE75EC1860FFE7A}
\makelabel{polycyclic:NonAbelianTensorSquarePlusEpimorphism}{7.9.10}{X7D96C84E87925B0F}
\makelabel{polycyclic:NonAbelianTensorSquarePlus}{7.9.11}{X8746533787C4E8BC}
\makelabel{polycyclic:WhiteheadQuadraticFunctor}{7.9.12}{X78F9184078B2761A}
\makelabel{polycyclic:SchurCovers}{7.10.1}{X7D90B44E7B96AFF1}
\makelabel{polycyclic:CRRecordByMats}{8.1.1}{X7C97442C7B78806C}
\makelabel{polycyclic:CRRecordBySubgroup}{8.1.2}{X8646DFA1804D2A11}
\makelabel{polycyclic:CRRecordByPcp}{8.1.2}{X8646DFA1804D2A11}
\makelabel{polycyclic:OneCoboundariesCR}{8.2.1}{X85EF170387D39D4A}
\makelabel{polycyclic:OneCocyclesCR}{8.2.1}{X85EF170387D39D4A}
\makelabel{polycyclic:TwoCoboundariesCR}{8.2.1}{X85EF170387D39D4A}
\makelabel{polycyclic:TwoCocyclesCR}{8.2.1}{X85EF170387D39D4A}
\makelabel{polycyclic:OneCohomologyCR}{8.2.1}{X85EF170387D39D4A}
\makelabel{polycyclic:TwoCohomologyCR}{8.2.1}{X85EF170387D39D4A}
\makelabel{polycyclic:TwoCohomologyModCR}{8.2.2}{X79B48D697A8A84C8}
\makelabel{polycyclic:OneCoboundariesEX}{8.3.1}{X7E87E3EA81C84621}
\makelabel{polycyclic:OneCocyclesEX}{8.3.2}{X8111D2087C16CC0C}
\makelabel{polycyclic:OneCohomologyEX}{8.3.3}{X84718DDE792FB212}
\makelabel{polycyclic: ComplementCR}{8.4.1}{X7DA9162085058006}
\makelabel{polycyclic: ComplementsCR}{8.4.2}{X7F8984D386A813D6}
\makelabel{polycyclic: ComplementClassesCR}{8.4.3}{X7FAB3EB0803197FA}
\makelabel{polycyclic: ComplementClassesEfaPcps}{8.4.4}{X8759DC59799DD508}
\makelabel{polycyclic: ComplementClasses}{8.4.5}{X7B0EC76D81A056AB}
\makelabel{polycyclic:ExtensionCR}{8.4.6}{X85F3B55C78CF840B}
\makelabel{polycyclic:ExtensionsCR}{8.4.7}{X81DC85907E0948FD}
\makelabel{polycyclic:ExtensionClassesCR}{8.4.8}{X7AE16E3687E14B24}
\makelabel{polycyclic:SplitExtensionPcpGroup}{8.4.9}{X7986997B78AD3292}
\makelabel{polycyclic:UnitriangularMatrixRepresentation}{9.1.1}{X7E6F320F865E309C}
\makelabel{polycyclic:IsMatrixRepresentation}{9.1.2}{X7F5E7F5F7DDB2E2C}
\makelabel{polycyclic:IsomorphismUpperUnitriMatGroupPcpGroup}{9.2.1}{X8434972E7DDB68C1}
\makelabel{polycyclic:SiftUpperUnitriMatGroup}{9.2.2}{X843C9D427FFA2487}
\makelabel{polycyclic:RanksLevels}{9.2.3}{X7CF8B8F981931846}
\makelabel{polycyclic:MakeNewLevel}{9.2.4}{X81F3760186734EA7}
\makelabel{polycyclic:SiftUpperUnitriMat}{9.2.5}{X851A216C85B74574}
\makelabel{polycyclic:DecomposeUpperUnitriMat}{9.2.6}{X86D711217C639C2C}
\makelabel{polycyclic:SchurCovering}{A}{X874ECE907CAF380D}
\makelabel{polycyclic:SchurMultPcpGroup}{A}{X874ECE907CAF380D}
|