File: manual.lab

package info (click to toggle)
gap-polycyclic 2.17-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 2,796 kB
  • sloc: xml: 3,018; javascript: 155; makefile: 124
file content (259 lines) | stat: -rw-r--r-- 17,906 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
\GAPDocLabFile{polycyclic}
\makelabel{polycyclic:Title page}{}{X7D2C85EC87DD46E5}
\makelabel{polycyclic:Copyright}{}{X81488B807F2A1CF1}
\makelabel{polycyclic:Acknowledgements}{}{X82A988D47DFAFCFA}
\makelabel{polycyclic:Table of Contents}{}{X8537FEB07AF2BEC8}
\makelabel{polycyclic:Preface}{1}{X874E1D45845007FE}
\makelabel{polycyclic:Introduction to polycyclic presentations}{2}{X792561B378D95B23}
\makelabel{polycyclic:Collectors}{3}{X792305CC81E8606A}
\makelabel{polycyclic:Constructing a Collector}{3.1}{X800FD91386C08CD8}
\makelabel{polycyclic:Accessing Parts of a Collector}{3.2}{X818484817C3BAAE6}
\makelabel{polycyclic:Special Features}{3.3}{X79AEB3477800DC16}
\makelabel{polycyclic:Pcp-groups - polycyclically presented groups}{4}{X7E2AF25881CF7307}
\makelabel{polycyclic:Pcp-elements -- elements of a pc-presented group}{4.1}{X7882F0F57ABEB680}
\makelabel{polycyclic:Methods for pcp-elements}{4.2}{X790471D07A953E12}
\makelabel{polycyclic:Pcp-groups - groups of pcp-elements}{4.3}{X7A4EF7C68151905A}
\makelabel{polycyclic:Basic methods and functions for pcp-groups}{5}{X7B9B85AE7C9B13EE}
\makelabel{polycyclic:Elementary methods for pcp-groups}{5.1}{X821360107E355B88}
\makelabel{polycyclic:Elementary properties of pcp-groups}{5.2}{X80E88168866D54F3}
\makelabel{polycyclic:Subgroups of pcp-groups}{5.3}{X85A7E26C7E14AFBA}
\makelabel{polycyclic:Polycyclic presentation sequences for subfactors}{5.4}{X803D62BC86EF07D0}
\makelabel{polycyclic:Factor groups of pcp-groups}{5.5}{X845D29B478CA7656}
\makelabel{polycyclic:Homomorphisms for pcp-groups}{5.6}{X82E643F178E765EA}
\makelabel{polycyclic:Changing the defining pc-presentation}{5.7}{X7C873F807D4F3A3C}
\makelabel{polycyclic:Printing a pc-presentation}{5.8}{X85E681027AF19B1E}
\makelabel{polycyclic:Converting to and from a presentation}{5.9}{X826ACBBB7A977206}
\makelabel{polycyclic:Libraries and examples of pcp-groups}{6}{X78CEF1F27ED8D7BB}
\makelabel{polycyclic:Libraries of various types of polycyclic groups}{6.1}{X84A48FAB83934263}
\makelabel{polycyclic:Some assorted example groups}{6.2}{X806FBA4A7CB8FB71}
\makelabel{polycyclic:Higher level methods for pcp-groups}{7}{X85BB6FE078679DAF}
\makelabel{polycyclic:Subgroup series in pcp-groups}{7.1}{X8266A0A2821D98A1}
\makelabel{polycyclic:Orbit stabilizer methods for pcp-groups}{7.2}{X7CE2DA437FD2B383}
\makelabel{polycyclic:Centralizers, Normalizers and Intersections}{7.3}{X80E3B42E792532B3}
\makelabel{polycyclic:Finite subgroups}{7.4}{X7CF015E87A2B2388}
\makelabel{polycyclic:Subgroups of finite index and maximal subgroups}{7.5}{X7D9F737F80F6E396}
\makelabel{polycyclic:Further attributes for pcp-groups based on the Fitting subgroup}{7.6}{X785E0E877AB1D549}
\makelabel{polycyclic:Functions for nilpotent groups}{7.7}{X878DBDC77CCA4F7E}
\makelabel{polycyclic:Random methods for pcp-groups}{7.8}{X8640F9D47A1F7434}
\makelabel{polycyclic:Non-abelian tensor product and Schur extensions}{7.9}{X824142B784453DB9}
\makelabel{polycyclic:Schur covers}{7.10}{X7D3023697BA5CE5A}
\makelabel{polycyclic:Cohomology for pcp-groups}{8}{X796AB9787E2A752C}
\makelabel{polycyclic:Cohomology records}{8.1}{X875758FA7C6F5CE1}
\makelabel{polycyclic:Cohomology groups}{8.2}{X874759D582393441}
\makelabel{polycyclic:Extended 1-cohomology}{8.3}{X79610E9178BD0C54}
\makelabel{polycyclic:Extensions and Complements}{8.4}{X853E51787A24AE00}
\makelabel{polycyclic:Constructing pcp groups as extensions}{8.5}{X823771527DBD857D}
\makelabel{polycyclic:Matrix Representations}{9}{X858D1BB07A8FBF87}
\makelabel{polycyclic:Unitriangular matrix groups}{9.1}{X7D0ED06C7E6A457D}
\makelabel{polycyclic:Upper unitriangular matrix groups}{9.2}{X79A8A51B84E4BF8C}
\makelabel{polycyclic:Obsolete Functions and Name Changes}{A}{X874ECE907CAF380D}
\makelabel{polycyclic:Bibliography}{Bib}{X7A6F98FD85F02BFE}
\makelabel{polycyclic:References}{Bib}{X7A6F98FD85F02BFE}
\makelabel{polycyclic:Index}{Ind}{X83A0356F839C696F}
\makelabel{polycyclic:License}{}{X81488B807F2A1CF1}
\makelabel{polycyclic:FromTheLeftCollector}{3.1.1}{X8382A4E78706DE65}
\makelabel{polycyclic:SetRelativeOrder}{3.1.2}{X79A308B28183493B}
\makelabel{polycyclic:SetRelativeOrderNC}{3.1.2}{X79A308B28183493B}
\makelabel{polycyclic:SetPower}{3.1.3}{X7BC319BA8698420C}
\makelabel{polycyclic:SetPowerNC}{3.1.3}{X7BC319BA8698420C}
\makelabel{polycyclic:SetConjugate}{3.1.4}{X86A08D887E049347}
\makelabel{polycyclic:SetConjugateNC}{3.1.4}{X86A08D887E049347}
\makelabel{polycyclic:SetCommutator}{3.1.5}{X7B25997C7DF92B6D}
\makelabel{polycyclic:UpdatePolycyclicCollector}{3.1.6}{X7E9903F57BC5CC24}
\makelabel{polycyclic:IsConfluent}{3.1.7}{X8006790B86328CE8}
\makelabel{polycyclic:RelativeOrders}{3.2.1}{X7DD0DF677AC1CF10}
\makelabel{polycyclic:GetPower}{3.2.2}{X844C0A478735EF4B}
\makelabel{polycyclic:GetPowerNC}{3.2.2}{X844C0A478735EF4B}
\makelabel{polycyclic:GetConjugate}{3.2.3}{X865160E07FA93E00}
\makelabel{polycyclic:GetConjugateNC}{3.2.3}{X865160E07FA93E00}
\makelabel{polycyclic:NumberOfGenerators}{3.2.4}{X7D6A26A4871FF51A}
\makelabel{polycyclic:ObjByExponents}{3.2.5}{X873ECF388503E5DE}
\makelabel{polycyclic:ExponentsByObj}{3.2.6}{X85BCB97B8021EAD6}
\makelabel{polycyclic:IsWeightedCollector}{3.3.1}{X82EE2ACD7B8C178B}
\makelabel{polycyclic:AddHallPolynomials}{3.3.2}{X7A1D7ED68334282C}
\makelabel{polycyclic:String}{3.3.3}{X81FB5BE27903EC32}
\makelabel{polycyclic:FTLCollectorPrintTo}{3.3.4}{X7ED466B6807D16FE}
\makelabel{polycyclic:FTLCollectorAppendTo}{3.3.5}{X789D9EB37ECFA9D7}
\makelabel{polycyclic:UseLibraryCollector}{3.3.6}{X808A26FB873A354F}
\makelabel{polycyclic:USELIBRARYCOLLECTOR}{3.3.7}{X844E195C7D55F8BD}
\makelabel{polycyclic:DEBUGCOMBINATORIALCOLLECTOR}{3.3.8}{X7945C6B97BECCDA8}
\makelabel{polycyclic:USECOMBINATORIALCOLLECTOR}{3.3.9}{X7BDFB55D7CB33543}
\makelabel{polycyclic:PcpElementByExponentsNC}{4.1.1}{X786DB93F7862D903}
\makelabel{polycyclic:PcpElementByExponents}{4.1.1}{X786DB93F7862D903}
\makelabel{polycyclic:PcpElementByGenExpListNC}{4.1.2}{X7BBB358C7AA64135}
\makelabel{polycyclic:PcpElementByGenExpList}{4.1.2}{X7BBB358C7AA64135}
\makelabel{polycyclic:IsPcpElement}{4.1.3}{X86083E297D68733B}
\makelabel{polycyclic:IsPcpElementCollection}{4.1.4}{X8695069A7D5073B7}
\makelabel{polycyclic:IsPcpElementRep}{4.1.5}{X7F2C83AD862910B9}
\makelabel{polycyclic:IsPcpGroup}{4.1.6}{X8470284A78A6C41B}
\makelabel{polycyclic:Collector}{4.2.1}{X7E2D258B7DCE8AC9}
\makelabel{polycyclic:Exponents}{4.2.2}{X85C672E78630C507}
\makelabel{polycyclic:GenExpList}{4.2.3}{X8571F6FB7E74346C}
\makelabel{polycyclic:NameTag}{4.2.4}{X82252C5E7B011559}
\makelabel{polycyclic:Depth}{4.2.5}{X840D32D9837E99F5}
\makelabel{polycyclic:LeadingExponent}{4.2.6}{X874F1EC178721833}
\makelabel{polycyclic:RelativeOrder}{4.2.7}{X8008AB61823A76B7}
\makelabel{polycyclic:RelativeIndex}{4.2.8}{X875D04288577015B}
\makelabel{polycyclic:FactorOrder}{4.2.9}{X87E070747955F2C1}
\makelabel{polycyclic:NormingExponent}{4.2.10}{X79A247797F0A8583}
\makelabel{polycyclic:NormedPcpElement}{4.2.11}{X798BB22B80833441}
\makelabel{polycyclic:PcpGroupByCollector}{4.3.1}{X7C8FBCAB7F63FACB}
\makelabel{polycyclic:PcpGroupByCollectorNC}{4.3.1}{X7C8FBCAB7F63FACB}
\makelabel{polycyclic:Group}{4.3.2}{X7D7B075385435151}
\makelabel{polycyclic:Subgroup}{4.3.3}{X7C82AA387A42DCA0}
\makelabel{polycyclic:Size}{5.1.2}{X858ADA3B7A684421}
\makelabel{polycyclic:Random}{5.1.3}{X79730D657AB219DB}
\makelabel{polycyclic:Index}{5.1.4}{X83A0356F839C696F}
\makelabel{polycyclic:Elements}{5.1.6}{X79B130FC7906FB4C}
\makelabel{polycyclic:ClosureGroup}{5.1.7}{X7D13FC1F8576FFD8}
\makelabel{polycyclic:NormalClosure}{5.1.8}{X7BDEA0A98720D1BB}
\makelabel{polycyclic:HirschLength}{5.1.9}{X839B42AE7A1DD544}
\makelabel{polycyclic:CommutatorSubgroup}{5.1.10}{X7A9A3D5578CE33A0}
\makelabel{polycyclic:PRump}{5.1.11}{X796DA805853FAC90}
\makelabel{polycyclic:SmallGeneratingSet}{5.1.12}{X814DBABC878D5232}
\makelabel{polycyclic:IsSubgroup}{5.2.1}{X7839D8927E778334}
\makelabel{polycyclic:IsNormal}{5.2.2}{X838186F9836F678C}
\makelabel{polycyclic:IsNilpotentGroup}{5.2.3}{X87D062608719F2CD}
\makelabel{polycyclic:IsAbelian}{5.2.4}{X7C12AA7479A6C103}
\makelabel{polycyclic:IsElementaryAbelian}{5.2.5}{X813C952F80E775D4}
\makelabel{polycyclic:IsFreeAbelian}{5.2.6}{X84FFC668832F9ED6}
\makelabel{polycyclic:Igs for a subgroup}{5.3.1}{X815F756286701BE0}
\makelabel{polycyclic:Igs}{5.3.1}{X815F756286701BE0}
\makelabel{polycyclic:IgsParallel}{5.3.1}{X815F756286701BE0}
\makelabel{polycyclic:Ngs for a subgroup}{5.3.2}{X7F4D95C47F9652BA}
\makelabel{polycyclic:Ngs}{5.3.2}{X7F4D95C47F9652BA}
\makelabel{polycyclic:Cgs for a subgroup}{5.3.3}{X8077293A787D4571}
\makelabel{polycyclic:Cgs}{5.3.3}{X8077293A787D4571}
\makelabel{polycyclic:CgsParallel}{5.3.3}{X8077293A787D4571}
\makelabel{polycyclic:SubgroupByIgs}{5.3.4}{X83B92A2679EAB1EB}
\makelabel{polycyclic:SubgroupByIgs with extra generators}{5.3.4}{X83B92A2679EAB1EB}
\makelabel{polycyclic:AddToIgs}{5.3.5}{X78107DE78728B26B}
\makelabel{polycyclic:AddToIgsParallel}{5.3.5}{X78107DE78728B26B}
\makelabel{polycyclic:AddIgsToIgs}{5.3.5}{X78107DE78728B26B}
\makelabel{polycyclic:Pcp}{5.4.1}{X7DD931697DD93169}
\makelabel{polycyclic:Pcp for a factor}{5.4.1}{X7DD931697DD93169}
\makelabel{polycyclic:GeneratorsOfPcp}{5.4.2}{X821FF77086E38B3A}
\makelabel{polycyclic:Length}{5.4.4}{X780769238600AFD1}
\makelabel{polycyclic:RelativeOrdersOfPcp}{5.4.5}{X7ABCA7F2790E1673}
\makelabel{polycyclic:DenominatorOfPcp}{5.4.6}{X7D16C299825887AA}
\makelabel{polycyclic:NumeratorOfPcp}{5.4.7}{X803AED1A84FCBEE8}
\makelabel{polycyclic:GroupOfPcp}{5.4.8}{X80BCCF0B81344933}
\makelabel{polycyclic:OneOfPcp}{5.4.9}{X87F0BA5F7BA0F4B4}
\makelabel{polycyclic:ExponentsByPcp}{5.4.10}{X7A8C8BBC81581E09}
\makelabel{polycyclic:PcpGroupByPcp}{5.4.11}{X87D75F7F86FEF203}
\makelabel{polycyclic:NaturalHomomorphismByNormalSubgroup}{5.5.1}{X80FC390C7F38A13F}
\makelabel{polycyclic:FactorGroup}{5.5.2}{X7F51DF007F51DF00}
\makelabel{polycyclic:GroupHomomorphismByImages}{5.6.1}{X7F348F497C813BE0}
\makelabel{polycyclic:Kernel}{5.6.2}{X7DCD99628504B810}
\makelabel{polycyclic:Image for a homomorphism}{5.6.3}{X847322667E6166C8}
\makelabel{polycyclic:Image for a homomorphism and a subgroup}{5.6.3}{X847322667E6166C8}
\makelabel{polycyclic:Image for a homomorphism and an element}{5.6.3}{X847322667E6166C8}
\makelabel{polycyclic:PreImage}{5.6.4}{X836FAEAC78B55BF4}
\makelabel{polycyclic:PreImagesRepresentative}{5.6.5}{X7AE24A1586B7DE79}
\makelabel{polycyclic:IsInjective}{5.6.6}{X7F065FD7822C0A12}
\makelabel{polycyclic:RefinedPcpGroup}{5.7.1}{X80E9B60E853B2E05}
\makelabel{polycyclic:PcpGroupBySeries}{5.7.2}{X7F88F5548329E279}
\makelabel{polycyclic:PrintPcpPresentation for a group}{5.8.1}{X79D247127FD57FC8}
\makelabel{polycyclic:PrintPcpPresentation for a pcp}{5.8.1}{X79D247127FD57FC8}
\makelabel{polycyclic:IsomorphismPcpGroup}{5.9.1}{X8771540F7A235763}
\makelabel{polycyclic:IsomorphismPcpGroupFromFpGroupWithPcPres}{5.9.2}{X7F5EBF1C831B4BA9}
\makelabel{polycyclic:IsomorphismPcGroup}{5.9.3}{X873CEB137BA1CD6E}
\makelabel{polycyclic:IsomorphismFpGroup}{5.9.4}{X7F28268F850F454E}
\makelabel{polycyclic:AbelianPcpGroup}{6.1.1}{X7AEDE1BA82014B86}
\makelabel{polycyclic:AbelianPcpGroup rels only}{6.1.1}{X7AEDE1BA82014B86}
\makelabel{polycyclic:DihedralPcpGroup}{6.1.2}{X7ACF57737D0F12DB}
\makelabel{polycyclic:UnitriangularPcpGroup}{6.1.3}{X864CEDAB7911CC79}
\makelabel{polycyclic:SubgroupUnitriangularPcpGroup}{6.1.4}{X812E35B17AADBCD5}
\makelabel{polycyclic:InfiniteMetacyclicPcpGroup}{6.1.5}{X7A80F7F27FDA6810}
\makelabel{polycyclic:HeisenbergPcpGroup}{6.1.6}{X81BEC875827D1CC2}
\makelabel{polycyclic:MaximalOrderByUnitsPcpGroup}{6.1.7}{X87F9B9C9786430D7}
\makelabel{polycyclic:BurdeGrunewaldPcpGroup}{6.1.8}{X852283A77A2C93DD}
\makelabel{polycyclic:ExampleOfMetabelianPcpGroup}{6.2.1}{X86293081865CDFC3}
\makelabel{polycyclic:ExamplesOfSomePcpGroups}{6.2.2}{X83A74A6E7E232FD6}
\makelabel{polycyclic:PcpSeries}{7.1.1}{X8037DAD77A19D9B2}
\makelabel{polycyclic:EfaSeries}{7.1.2}{X86C633357ACD342C}
\makelabel{polycyclic:SemiSimpleEfaSeries}{7.1.3}{X80ED4F8380DC477E}
\makelabel{polycyclic:DerivedSeriesOfGroup}{7.1.4}{X7A879948834BD889}
\makelabel{polycyclic:RefinedDerivedSeries}{7.1.5}{X866D4C5C79F26611}
\makelabel{polycyclic:RefinedDerivedSeriesDown}{7.1.6}{X86F7DE927DE3B5CD}
\makelabel{polycyclic:LowerCentralSeriesOfGroup}{7.1.7}{X879D55A67DB42676}
\makelabel{polycyclic:UpperCentralSeriesOfGroup}{7.1.8}{X8428592E8773CD7B}
\makelabel{polycyclic:TorsionByPolyEFSeries}{7.1.9}{X83CA5DE785AE3F2C}
\makelabel{polycyclic:PcpsBySeries}{7.1.10}{X7E39431286969377}
\makelabel{polycyclic:PcpsOfEfaSeries}{7.1.11}{X79789A1C82139854}
\makelabel{polycyclic:PcpOrbitStabilizer}{7.2.1}{X83E17DB483B33AB5}
\makelabel{polycyclic:PcpOrbitsStabilizers}{7.2.1}{X83E17DB483B33AB5}
\makelabel{polycyclic:StabilizerIntegralAction}{7.2.2}{X80694BA480F69A0E}
\makelabel{polycyclic:OrbitIntegralAction}{7.2.2}{X80694BA480F69A0E}
\makelabel{polycyclic:NormalizerIntegralAction}{7.2.3}{X875BE4077B32A411}
\makelabel{polycyclic:ConjugacyIntegralAction}{7.2.3}{X875BE4077B32A411}
\makelabel{polycyclic:Centralizer for an element}{7.3.1}{X808EE8AD7EE3ECE1}
\makelabel{polycyclic:IsConjugate for elements}{7.3.1}{X808EE8AD7EE3ECE1}
\makelabel{polycyclic:Centralizer for a subgroup}{7.3.2}{X849B5C527BAFAAA4}
\makelabel{polycyclic:Normalizer}{7.3.2}{X849B5C527BAFAAA4}
\makelabel{polycyclic:IsConjugate for subgroups}{7.3.2}{X849B5C527BAFAAA4}
\makelabel{polycyclic:Intersection}{7.3.3}{X851069107CACF98E}
\makelabel{polycyclic:TorsionSubgroup}{7.4.1}{X8036FA507A170DC4}
\makelabel{polycyclic:NormalTorsionSubgroup}{7.4.2}{X8082CD337972DC63}
\makelabel{polycyclic:IsTorsionFree}{7.4.3}{X86D92DA17DCE22DD}
\makelabel{polycyclic:FiniteSubgroupClasses}{7.4.4}{X819058217B4F3DC0}
\makelabel{polycyclic:FiniteSubgroupClassesBySeries}{7.4.5}{X7E7C32EA81A297B6}
\makelabel{polycyclic:MaximalSubgroupClassesByIndex}{7.5.1}{X87D62D497A8715FB}
\makelabel{polycyclic:LowIndexSubgroupClasses}{7.5.2}{X7800133F81BC7674}
\makelabel{polycyclic:LowIndexNormalSubgroups}{7.5.3}{X7F7067C77F2DC32C}
\makelabel{polycyclic:NilpotentByAbelianNormalSubgroup}{7.5.4}{X85A5BC447D83175F}
\makelabel{polycyclic:FittingSubgroup}{7.6.1}{X780552B57C30DD8F}
\makelabel{polycyclic:IsNilpotentByFinite}{7.6.2}{X86BD63DC844731DF}
\makelabel{polycyclic:Centre}{7.6.3}{X847ABE6F781C7FE8}
\makelabel{polycyclic:FCCentre}{7.6.4}{X861C36368435EB09}
\makelabel{polycyclic:PolyZNormalSubgroup}{7.6.5}{X7E75E2BC806746AC}
\makelabel{polycyclic:NilpotentByAbelianByFiniteSeries}{7.6.6}{X86800BF783E30D4A}
\makelabel{polycyclic:MinimalGeneratingSet}{7.7.1}{X81D15723804771E2}
\makelabel{polycyclic:RandomCentralizerPcpGroup for an element}{7.8.1}{X80AEE73E7D639699}
\makelabel{polycyclic:RandomCentralizerPcpGroup for a subgroup}{7.8.1}{X80AEE73E7D639699}
\makelabel{polycyclic:RandomNormalizerPcpGroup}{7.8.1}{X80AEE73E7D639699}
\makelabel{polycyclic:SchurExtension}{7.9.1}{X79EF28D9845878C9}
\makelabel{polycyclic:SchurExtensionEpimorphism}{7.9.2}{X84B60EC978A9A05E}
\makelabel{polycyclic:SchurCover}{7.9.3}{X7DD1E37987612042}
\makelabel{polycyclic:AbelianInvariantsMultiplier}{7.9.4}{X792BC39D7CEB1D27}
\makelabel{polycyclic:NonAbelianExteriorSquareEpimorphism}{7.9.5}{X822ED5978647C93B}
\makelabel{polycyclic:NonAbelianExteriorSquare}{7.9.6}{X8739CD4686301A0E}
\makelabel{polycyclic:NonAbelianTensorSquareEpimorphism}{7.9.7}{X86553D7B7DABF38F}
\makelabel{polycyclic:NonAbelianTensorSquare}{7.9.8}{X7C0DF7C97F78C666}
\makelabel{polycyclic:NonAbelianExteriorSquarePlusEmbedding}{7.9.9}{X7AE75EC1860FFE7A}
\makelabel{polycyclic:NonAbelianTensorSquarePlusEpimorphism}{7.9.10}{X7D96C84E87925B0F}
\makelabel{polycyclic:NonAbelianTensorSquarePlus}{7.9.11}{X8746533787C4E8BC}
\makelabel{polycyclic:WhiteheadQuadraticFunctor}{7.9.12}{X78F9184078B2761A}
\makelabel{polycyclic:SchurCovers}{7.10.1}{X7D90B44E7B96AFF1}
\makelabel{polycyclic:CRRecordByMats}{8.1.1}{X7C97442C7B78806C}
\makelabel{polycyclic:CRRecordBySubgroup}{8.1.2}{X8646DFA1804D2A11}
\makelabel{polycyclic:CRRecordByPcp}{8.1.2}{X8646DFA1804D2A11}
\makelabel{polycyclic:OneCoboundariesCR}{8.2.1}{X85EF170387D39D4A}
\makelabel{polycyclic:OneCocyclesCR}{8.2.1}{X85EF170387D39D4A}
\makelabel{polycyclic:TwoCoboundariesCR}{8.2.1}{X85EF170387D39D4A}
\makelabel{polycyclic:TwoCocyclesCR}{8.2.1}{X85EF170387D39D4A}
\makelabel{polycyclic:OneCohomologyCR}{8.2.1}{X85EF170387D39D4A}
\makelabel{polycyclic:TwoCohomologyCR}{8.2.1}{X85EF170387D39D4A}
\makelabel{polycyclic:TwoCohomologyModCR}{8.2.2}{X79B48D697A8A84C8}
\makelabel{polycyclic:OneCoboundariesEX}{8.3.1}{X7E87E3EA81C84621}
\makelabel{polycyclic:OneCocyclesEX}{8.3.2}{X8111D2087C16CC0C}
\makelabel{polycyclic:OneCohomologyEX}{8.3.3}{X84718DDE792FB212}
\makelabel{polycyclic: ComplementCR}{8.4.1}{X7DA9162085058006}
\makelabel{polycyclic: ComplementsCR}{8.4.2}{X7F8984D386A813D6}
\makelabel{polycyclic: ComplementClassesCR}{8.4.3}{X7FAB3EB0803197FA}
\makelabel{polycyclic: ComplementClassesEfaPcps}{8.4.4}{X8759DC59799DD508}
\makelabel{polycyclic: ComplementClasses}{8.4.5}{X7B0EC76D81A056AB}
\makelabel{polycyclic:ExtensionCR}{8.4.6}{X85F3B55C78CF840B}
\makelabel{polycyclic:ExtensionsCR}{8.4.7}{X81DC85907E0948FD}
\makelabel{polycyclic:ExtensionClassesCR}{8.4.8}{X7AE16E3687E14B24}
\makelabel{polycyclic:SplitExtensionPcpGroup}{8.4.9}{X7986997B78AD3292}
\makelabel{polycyclic:UnitriangularMatrixRepresentation}{9.1.1}{X7E6F320F865E309C}
\makelabel{polycyclic:IsMatrixRepresentation}{9.1.2}{X7F5E7F5F7DDB2E2C}
\makelabel{polycyclic:IsomorphismUpperUnitriMatGroupPcpGroup}{9.2.1}{X8434972E7DDB68C1}
\makelabel{polycyclic:SiftUpperUnitriMatGroup}{9.2.2}{X843C9D427FFA2487}
\makelabel{polycyclic:RanksLevels}{9.2.3}{X7CF8B8F981931846}
\makelabel{polycyclic:MakeNewLevel}{9.2.4}{X81F3760186734EA7}
\makelabel{polycyclic:SiftUpperUnitriMat}{9.2.5}{X851A216C85B74574}
\makelabel{polycyclic:DecomposeUpperUnitriMat}{9.2.6}{X86D711217C639C2C}
\makelabel{polycyclic:SchurCovering}{A}{X874ECE907CAF380D}
\makelabel{polycyclic:SchurMultPcpGroup}{A}{X874ECE907CAF380D}