File: methods.xml

package info (click to toggle)
gap-polycyclic 2.17-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 2,796 kB
  • sloc: xml: 3,018; javascript: 155; makefile: 124
file content (955 lines) | stat: -rw-r--r-- 33,697 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
<Chapter Label="Higher level methods for pcp-groups">
<Heading>Higher level methods for pcp-groups</Heading>

This is a description of some higher level functions of the &Polycyclic;
package of GAP 4. Throughout this chapter we let <A>G</A> be a pc-presented group
and we consider algorithms for subgroups <A>U</A> and <A>V</A> of <A>G</A>. For background
and a description of the underlying algorithms we refer to <Cite Key="Eic01b"/>.
<P/>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Subgroup series in pcp-groups">
<Heading>Subgroup series in pcp-groups</Heading>

Many  algorithm for  pcp-groups work  by induction  using  some series
through  the group.  In this  section we  provide a  number  of useful
series  for pcp-groups.   An  <E>efa  series</E> is  a  normal series  with
elementary or free abelian  factors.  See <Cite Key="Eic00"/> for outlines on
the algorithms of a number of the available series.
<ManSection>
<Func Name="PcpSeries" Arg="U"/>
<Description>
	returns the polycyclic series of <A>U</A> defined by an igs of <A>U</A>.
</Description>
</ManSection>

<ManSection>
<Attr Name="EfaSeries" Arg="U"/>
<Description>
	returns a normal series of <A>U</A> with elementary or free abelian factors.
</Description>
</ManSection>

<ManSection>
<Attr Name="SemiSimpleEfaSeries" Arg="U"/>
<Description>
	returns an efa series of <A>U</A> such that every factor in the series is
	semisimple as a module for <A>U</A> over a finite field or over the rationals.
</Description>
</ManSection>

<ManSection>
<Meth Name="DerivedSeriesOfGroup" Arg="U"/>
<Description>
	the derived series of <A>U</A>.
</Description>
</ManSection>

<ManSection>
<Func Name="RefinedDerivedSeries" Arg="U"/>
<Description>
	the  derived series of <A>U</A> refined  to an efa series such that
	in each abelian factor of the  derived series the free abelian
	factor is at the top.
</Description>
</ManSection>

<ManSection>
<Func Name="RefinedDerivedSeriesDown" Arg="U"/>
<Description>
	the  derived series of <A>U</A> refined  to an efa series such that
	in each abelian factor of  the derived series the free abelian
	factor is at the bottom.
</Description>
</ManSection>

<ManSection>
<Meth Name="LowerCentralSeriesOfGroup" Arg="U"/>
<Description>
	the lower  central  series of <A>U</A>.  If  <A>U</A>  does not   have a
	largest  nilpotent quotient group, then  this function may not
	terminate.
</Description>
</ManSection>

<ManSection>
<Meth Name="UpperCentralSeriesOfGroup" Arg="U"/>
<Description>
	the upper central series of <A>U</A>. This function always terminates,
	but it may terminate at a proper subgroup of <A>U</A>.
</Description>
</ManSection>

<ManSection>
<Func Name="TorsionByPolyEFSeries" Arg="U"/>
<Description>
	returns  an  efa series  of   <A>U</A> such  that  all torsion-free
	factors  are  at the  top and  all  finite  factors are at the
	bottom. Such a series might not exist for <A>U</A> and in this case
	the function returns fail.

<Example><![CDATA[
gap> G := ExamplesOfSomePcpGroups(5);
Pcp-group with orders [ 2, 0, 0, 0 ]
gap> Igs(G);
[ g1, g2, g3, g4 ]

gap> PcpSeries(G);
[ Pcp-group with orders [ 2, 0, 0, 0 ],
  Pcp-group with orders [ 0, 0, 0 ],
  Pcp-group with orders [ 0, 0 ],
  Pcp-group with orders [ 0 ],
  Pcp-group with orders [  ] ]

gap> List( PcpSeries(G), Igs );
[ [ g1, g2, g3, g4 ], [ g2, g3, g4 ], [ g3, g4 ], [ g4 ], [  ] ]
]]></Example>
</Description>
</ManSection>

Algorithms for pcp-groups often use an efa series of <M>G</M> and work down
over the factors of  this series. Usually,   pcp's of the factors  are
more useful than the actual factors. Hence we provide the following.

<ManSection>
<Func Name="PcpsBySeries" Arg="ser[, flag]"/>
<Description>
	returns a list of pcp's corresponding to the factors of the series. If
	the parameter <A>flag</A> is present and equals the string <Q>snf</Q>,
	then each pcp corresponds to a decomposition  of  the  abelian  groups
	into direct factors.
</Description>
</ManSection>

<ManSection>
<Attr Name="PcpsOfEfaSeries" Arg="U"/>
<Description>
	returns a list of pcps corresponding to an efa series of <A>U</A>.

<Example><![CDATA[
gap> G := ExamplesOfSomePcpGroups(5);
Pcp-group with orders [ 2, 0, 0, 0 ]

gap> PcpsBySeries( DerivedSeriesOfGroup(G));
[ Pcp [ g1, g2, g3, g4 ] with orders [ 2, 2, 2, 2 ],
  Pcp [ g2^-2, g3^-2, g4^2 ] with orders [ 0, 0, 4 ],
  Pcp [ g4^8 ] with orders [ 0 ] ]
gap> PcpsBySeries( RefinedDerivedSeries(G));
[ Pcp [ g1, g2, g3 ] with orders [ 2, 2, 2 ],
  Pcp [ g4 ] with orders [ 2 ],
  Pcp [ g2^2, g3^2 ] with orders [ 0, 0 ],
  Pcp [ g4^2 ] with orders [ 2 ],
  Pcp [ g4^4 ] with orders [ 2 ],
  Pcp [ g4^8 ] with orders [ 0 ] ]

gap> PcpsBySeries( DerivedSeriesOfGroup(G), "snf" );
[ Pcp [ g2, g3, g1 ] with orders [ 2, 2, 4 ],
  Pcp [ g4^2, g3^-2, g2^2*g4^2 ] with orders [ 4, 0, 0 ],
  Pcp [ g4^8 ] with orders [ 0 ] ]
gap> G.1^4 in DerivedSubgroup( G );
true
gap> G.1^2 = G.4;
true

gap>  PcpsOfEfaSeries( G );
[ Pcp [ g1 ] with orders [ 2 ],
  Pcp [ g2 ] with orders [ 0 ],
  Pcp [ g3 ] with orders [ 0 ],
  Pcp [ g4 ] with orders [ 0 ] ]
]]></Example>
</Description>
</ManSection>

</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Orbit stabilizer methods for pcp-groups">
<Heading>Orbit stabilizer methods for pcp-groups</Heading>

Let <A>U</A> be a pcp-group which acts on a set <M>\Omega</M>. One of the fundamental
problems in algorithmic group theory is the determination of orbits and
stabilizers of points in <M>\Omega</M> under the action of <A>U</A>. We distinguish
two cases: the case that all considered orbits are finite and the case that
there are infinite orbits. In the latter case, an orbit cannot be listed
and a description of the orbit and its corresponding stabilizer is much
harder to obtain.
<P/>
If the considered orbits are finite, then the following two functions can be
applied to compute the considered orbits and their corresponding stabilizers.

<ManSection>
<Func Name="PcpOrbitStabilizer" Arg="point, gens, acts, oper"/>
<Func Name="PcpOrbitsStabilizers" Arg="points, gens, acts, oper"/>
<Description>
	The input <A>gens</A> can be an igs or a pcp of a pcp-group <A>U</A>. The elements
	in the list <A>gens</A> act as the elements in the list <A>acts</A> via the function
	<A>oper</A> on the given points; that is, <A>oper( point, acts[i] )</A> applies the
	<M>i</M>th generator to a given point. Thus the group defined by <A>acts</A> must be
	a homomorphic image of the group defined by <A>gens</A>. The first function
	returns a record containing the orbit as component 'orbit' and and igs for
	the stabilizer as component 'stab'. The second function returns a list of
	records, each record contains 'repr' and 'stab'. Both of these functions
	run forever on infinite orbits.

<Example><![CDATA[
gap> G := DihedralPcpGroup( 0 );
Pcp-group with orders [ 2, 0 ]
gap> mats := [ [[-1,0],[0,1]], [[1,1],[0,1]] ];;
gap> pcp := Pcp(G);
Pcp [ g1, g2 ] with orders [ 2, 0 ]
gap> PcpOrbitStabilizer( [0,1], pcp, mats, OnRight );
rec( orbit := [ [ 0, 1 ] ],
     stab := [ g1, g2 ],
     word := [ [ [ 1, 1 ] ], [ [ 2, 1 ] ] ] )
]]></Example>
	If the considered orbits are infinite, then it may not always be possible
	to determine a description of the orbits and their stabilizers. However,
	as shown in <Cite Key="EOs01"/> and <Cite Key="Eic02"/>, it is possible to determine
	stabilizers and check if two elements are contained in the same orbit if
	the given action of the polycyclic group is a unimodular linear action on
	a vector space. The following functions are available for this case.
</Description>
</ManSection>

<ManSection>
<Func Name="StabilizerIntegralAction" Arg="U, mats, v"/>
<Func Name="OrbitIntegralAction" Arg="U, mats , v, w"/>
<Description>
	The first function computes the stabilizer in <A>U</A> of the vector <A>v</A> where
	the pcp group <A>U</A> acts via <A>mats</A> on an integral space and <A>v</A> and <A>w</A> are
	elements in this integral space. The second function checks whether <A>v</A> and
	<A>w</A> are in the same orbit and the function returns either <A>false</A> or a
	record containing an element in <A>U</A> mapping <A>v</A> to <A>w</A> and the stabilizer
	of <A>v</A>.
</Description>
</ManSection>

<ManSection>
<Func Name="NormalizerIntegralAction" Arg="U, mats, B"/>
<Func Name="ConjugacyIntegralAction" Arg="U, mats, B, C"/>
<Description>
	The first function computes the normalizer in <A>U</A> of the lattice with the
	basis <A>B</A>, where the pcp group <A>U</A> acts via <A>mats</A> on an integral space and
	<A>B</A> is a subspace of this integral space. The second functions checks whether
	the two lattices with the bases <A>B</A> and <A>C</A> are contained in the same orbit
	under <A>U</A>. The function returns either <A>false</A> or a record with an element
	in <A>U</A> mapping <A>B</A> to <A>C</A> and the stabilizer of <A>B</A>.

<Example><![CDATA[
# get a pcp group and a free abelian normal subgroup
gap> G := ExamplesOfSomePcpGroups(8);
Pcp-group with orders [ 0, 0, 0, 0, 0 ]
gap> efa := EfaSeries(G);
[ Pcp-group with orders [ 0, 0, 0, 0, 0 ],
  Pcp-group with orders [ 0, 0, 0, 0 ],
  Pcp-group with orders [ 0, 0, 0 ],
  Pcp-group with orders [  ] ]
gap> N := efa[3];
Pcp-group with orders [ 0, 0, 0 ]
gap> IsFreeAbelian(N);
true

# create conjugation action on N
gap> mats := LinearActionOnPcp(Igs(G), Pcp(N));
[ [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ],
  [ [ 0, 0, 1 ], [ 1, -1, 1 ], [ 0, 1, 0 ] ],
  [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ],
  [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ],
  [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ] ]

# take an arbitrary vector and compute its stabilizer
gap> StabilizerIntegralAction(G,mats, [2,3,4]);
Pcp-group with orders [ 0, 0, 0, 0 ]
gap> Igs(last);
[ g1, g3, g4, g5 ]

# check orbits with some other vectors
gap> OrbitIntegralAction(G,mats, [2,3,4],[3,1,5]);
rec( stab := Pcp-group with orders [ 0, 0, 0, 0 ], prei := g2 )

gap> OrbitIntegralAction(G,mats, [2,3,4], [4,6,8]);
false

# compute the orbit of a subgroup of Z^3 under the action of G
gap> NormalizerIntegralAction(G, mats, [[1,0,0],[0,1,0]]);
Pcp-group with orders [ 0, 0, 0, 0, 0 ]
gap> Igs(last);
[ g1, g2^2, g3, g4, g5 ]
]]></Example>
</Description>
</ManSection>

</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Centralizers, Normalizers and Intersections">
<Heading>Centralizers, Normalizers and Intersections</Heading>

In this section we list a number of operations for which there are methods
installed to compute the corresponding features in polycyclic groups.
<ManSection>
<Meth Name="Centralizer" Arg="U, g" Label="for an element"/>
<Meth Name="IsConjugate" Arg="U, g, h" Label="for elements"/>
<Description>
	These functions solve the conjugacy problem for elements in pcp-groups and
	they can be used to compute centralizers. The first method returns a
	subgroup of the given group <A>U</A>, the second method either returns a
	conjugating element or false if no such element exists.
	<P/>
	The methods are based on the orbit stabilizer algorithms described in
	<Cite Key="EOs01"/>. For nilpotent groups, an algorithm to solve the conjugacy
	problem for elements is described in <Cite Key="Sims94"/>.
</Description>
</ManSection>

<ManSection>
<Meth Name="Centralizer" Arg="U, V" Label="for a subgroup"/>
<Meth Name="Normalizer" Arg="U, V"/>
<Meth Name="IsConjugate" Arg="U, V, W" Label="for subgroups"/>
<Description>
	These three functions solve the conjugacy problem for subgroups and compute
	centralizers and normalizers of subgroups. The first two functions return
	subgroups of the input group <A>U</A>, the third function returns a conjugating
	element or false if no such element exists.
	<P/>
	The methods are based on the orbit stabilizer algorithms described in
	<Cite Key="Eic02"/>. For nilpotent groups, an algorithm to solve the conjugacy
	problems for subgroups is described in <Cite Key="Lo98"/>.
</Description>
</ManSection>

<ManSection>
<Func Name="Intersection" Arg="U, N"/>
<Description>
	A general method to compute intersections of subgroups of a pcp-group is
	described in <Cite Key="Eic01b"/>, but it is not yet implemented here. However,
	intersections of subgroups <M>U, N \leq G</M> can be computed if <M>N</M> is
	normalising <M>U</M>. See <Cite Key="Sims94"/> for an outline of the algorithm.
</Description>
</ManSection>

</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Finite subgroups">
<Heading>Finite subgroups</Heading>

There are various finite subgroups of interest in polycyclic groups. See
<Cite Key="Eic00"/> for a description of the algorithms underlying the functions
in this section.

<ManSection>
<Attr Name="TorsionSubgroup" Arg="U"/>
	<Description>
	If the set of elements of finite order forms a subgroup, then we call
	it the <E>torsion subgroup</E>. This function determines the torsion subgroup
	of <A>U</A>, if it exists, and returns fail otherwise. Note that a torsion
	subgroup does always exist if <A>U</A> is nilpotent.
</Description>
</ManSection>

<ManSection>
<Attr Name="NormalTorsionSubgroup" Arg="U"/>
<Description>
	Each polycyclic groups has a unique largest finite normal subgroup.
	This function computes it for <A>U</A>.
</Description>
</ManSection>

<ManSection>
<Prop Name="IsTorsionFree" Arg="U"/>
<Description>
	This function checks if <A>U</A> is torsion free. It returns true or false.
</Description>
</ManSection>

<ManSection>
<Attr Name="FiniteSubgroupClasses" Arg="U"/>
<Description>
	There exist only finitely many conjugacy classes of finite subgroups
	in a polycyclic group <A>U</A> and this function can be used to compute
	them. The algorithm underlying this function proceeds by working down
	a normal series of <A>U</A> with elementary or free abelian factors. The
	following function can be used to give the algorithm a specific series.
</Description>
</ManSection>

<ManSection>
<Func Name="FiniteSubgroupClassesBySeries" Arg="U, pcps"/>
<Description>
<Example><![CDATA[
gap> G := ExamplesOfSomePcpGroups(15);
Pcp-group with orders [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 4, 0 ]
gap> TorsionSubgroup(G);
Pcp-group with orders [ 5, 2 ]
gap> NormalTorsionSubgroup(G);
Pcp-group with orders [ 5, 2 ]
gap> IsTorsionFree(G);
false
gap> FiniteSubgroupClasses(G);
[ Pcp-group with orders [ 5, 2 ]^G,
  Pcp-group with orders [ 2 ]^G,
  Pcp-group with orders [ 5 ]^G,
  Pcp-group with orders [  ]^G ]

gap> G := DihedralPcpGroup( 0 );
Pcp-group with orders [ 2, 0 ]
gap> TorsionSubgroup(G);
fail
gap> NormalTorsionSubgroup(G);
Pcp-group with orders [  ]
gap> IsTorsionFree(G);
false
gap> FiniteSubgroupClasses(G);
[ Pcp-group with orders [ 2 ]^G,
  Pcp-group with orders [ 2 ]^G,
  Pcp-group with orders [  ]^G ]
]]></Example>
</Description>
</ManSection>

</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Subgroups of finite index and maximal subgroups">
<Heading>Subgroups of finite index and maximal subgroups</Heading>

Here we outline functions to determine various types of subgroups of
finite index in polycyclic groups. Again, see <Cite Key="Eic00"/> for a
description of the algorithms underlying the functions in this section.
Also, we refer to <Cite Key="Lo99"/> for an alternative approach.
<ManSection>
<Oper Name="MaximalSubgroupClassesByIndex" Arg="U, p"/>
<Description>
	Each maximal subgroup of a polycyclic group <A>U</A> has <A>p</A>-power index for
	some prime <A>p</A>. This function can be used to determine the conjugacy
	classes of all maximal subgroups of <A>p</A>-power index for a given prime <A>p</A>.
</Description>
</ManSection>

<ManSection>
<Oper Name="LowIndexSubgroupClasses" Arg="U, n"/>
<Description>
	There are only finitely many subgroups of a given index in a polycyclic
	group <A>U</A>. This function computes conjugacy classes of all subgroups of
	index <A>n</A> in <A>U</A>.
</Description>
</ManSection>

<ManSection>
<Oper Name="LowIndexNormalSubgroups" Arg="U, n"/>
<Description>
	This function computes the normal subgroups of index <A>n</A> in <A>U</A>.
</Description>
</ManSection>

<ManSection>
<Func Name="NilpotentByAbelianNormalSubgroup" Arg="U"/>
<Description>
	This function returns a normal subgroup <A>N</A> of finite index in <A>U</A> such
	that <A>N</A> is nilpotent-by-abelian. Such a subgroup exists in every polycyclic
	group and this function computes such a subgroup using LowIndexNormal.
	However, we note that this function is not very efficient and the function
	NilpotentByAbelianByFiniteSeries may well be more efficient on this task.

<Example><![CDATA[
gap> G := ExamplesOfSomePcpGroups(2);
Pcp-group with orders [ 0, 0, 0, 0, 0, 0 ]

gap> MaximalSubgroupClassesByIndex( G, 61 );;
gap> max := List( last, Representative );;
gap> List( max, x -> Index( G, x ) );
[ 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61,
  61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61,
  61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61,
  61, 61, 61, 61, 61, 61, 226981 ]

gap> LowIndexSubgroupClasses( G, 61 );;
gap> low := List( last, Representative );;
gap> List( low, x -> Index( G, x ) );
[ 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61,
  61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61,
  61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61,
  61, 61, 61, 61, 61, 61 ]
]]></Example>
</Description>
</ManSection>

</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Further attributes for pcp-groups based on the Fitting subgroup">
<Heading>Further attributes for pcp-groups based on the Fitting subgroup</Heading>

In this section we provide a variety of other attributes for pcp-groups. Most
of the methods below are based or related to the Fitting subgroup of the given
group. We refer to <Cite Key="Eic01"/> for a description of the underlying methods.
<ManSection>
<Attr Name="FittingSubgroup" Arg="U"/>
<Description>
	returns the Fitting subgroup of <A>U</A>; that is, the largest nilpotent normal
	subgroup of <A>U</A>.
</Description>
</ManSection>

<ManSection>
<Prop Name="IsNilpotentByFinite" Arg="U"/>
<Description>
	checks whether the Fitting subgroup of <A>U</A> has finite index.
</Description>
</ManSection>

<ManSection>
<Meth Name="Centre" Arg="U"/>
<Description>
	returns the centre of <A>U</A>.
</Description>
</ManSection>

<ManSection>
<Meth Name="FCCentre" Arg="U"/>
<Description>
	returns the FC-centre of <A>U</A>; that is, the subgroup containing all elements
	having a finite conjugacy class in <A>U</A>.
</Description>
</ManSection>

<ManSection>
<Func Name="PolyZNormalSubgroup" Arg="U"/>
<Description>
	returns a normal subgroup <A>N</A> of finite index in <A>U</A>, such that <A>N</A> has a
	polycyclic series with infinite factors only.
</Description>
</ManSection>

<ManSection>
<Func Name="NilpotentByAbelianByFiniteSeries" Arg="U"/>
<Description>
	returns a normal series <M>1 \leq F \leq A \leq U</M> such that <M>F</M> is nilpotent,
	<M>A/F</M> is abelian and <M>U/A</M> is finite. This series is computed using the
	Fitting subgroup and the centre of the Fitting factor.
</Description>
</ManSection>

</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Functions for nilpotent groups">
<Heading>Functions for nilpotent groups</Heading>

There are (very few) functions which are available for nilpotent groups only.
First, there are the different central series. These are available for all
groups, but for nilpotent groups they terminate and provide series through
the full group. Secondly, the determination of a minimal generating set is
available for nilpotent groups only.

<ManSection>
<Meth Name="MinimalGeneratingSet" Arg="U"/>
<Description>
<Example><![CDATA[
gap> G := ExamplesOfSomePcpGroups(14);
Pcp-group with orders [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 4, 0, 5, 5, 4, 0, 6,
  5, 5, 4, 0, 10, 6 ]
gap> IsNilpotent(G);
true

gap> PcpsBySeries( LowerCentralSeriesOfGroup(G));
[ Pcp [ g1, g2 ] with orders [ 0, 0 ],
  Pcp [ g3 ] with orders [ 0 ],
  Pcp [ g4 ] with orders [ 0 ],
  Pcp [ g5 ] with orders [ 0 ],
  Pcp [ g6, g7 ] with orders [ 0, 0 ],
  Pcp [ g8 ] with orders [ 0 ],
  Pcp [ g9, g10 ] with orders [ 0, 0 ],
  Pcp [ g11, g12, g13 ] with orders [ 5, 4, 0 ],
  Pcp [ g14, g15, g16, g17, g18 ] with orders [ 5, 5, 4, 0, 6 ],
  Pcp [ g19, g20, g21, g22, g23, g24 ] with orders [ 5, 5, 4, 0, 10, 6 ] ]

gap> PcpsBySeries( UpperCentralSeriesOfGroup(G));
[ Pcp [ g1, g2 ] with orders [ 0, 0 ],
  Pcp [ g3 ] with orders [ 0 ],
  Pcp [ g4 ] with orders [ 0 ],
  Pcp [ g5 ] with orders [ 0 ],
  Pcp [ g6, g7 ] with orders [ 0, 0 ],
  Pcp [ g8 ] with orders [ 0 ],
  Pcp [ g9, g10 ] with orders [ 0, 0 ],
  Pcp [ g11, g12, g13 ] with orders [ 5, 4, 0 ],
  Pcp [ g14, g15, g16, g17, g18 ] with orders [ 5, 5, 4, 0, 6 ],
  Pcp [ g19, g20, g21, g22, g23, g24 ] with orders [ 5, 5, 4, 0, 10, 6 ] ]

gap> MinimalGeneratingSet(G);
[ g1, g2 ]
]]></Example>
</Description>
</ManSection>


</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Random methods for pcp-groups">
<Heading>Random methods for pcp-groups</Heading>

<!-- % TODO: The following text talks about orbits and stabilizers, -->
<!-- % but the functions that follow only deal with centralizers and -->
<!-- % normalizers. -->
Below we introduce a function which computes orbit and stabilizer using
a random method. This function tries to approximate the orbit and the
stabilizer, but the returned orbit or stabilizer may be incomplete.
This function is used in the random methods to compute normalizers and
centralizers. Note that deterministic methods for these purposes are also
available.
<P/>
<!-- % TODO: The following operation does not actually exist: -->
<!-- %\> RandomOrbitStabilizerPcpGroup( <A>U</A>, <A>point</A>, <A>oper</A> ) -->
<!-- % If desired, it could be (re?)added, using the internal -->
<!-- % function RandomPcpOrbitStabilizer -->
<ManSection>
<Func Name="RandomCentralizerPcpGroup" Arg="U, g" Label="for an element"/>
<Func Name="RandomCentralizerPcpGroup" Arg="U, V" Label="for a subgroup"/>
<Func Name="RandomNormalizerPcpGroup" Arg="U, V"/>
<Description>
<Example><![CDATA[
gap> G := DihedralPcpGroup(0);
Pcp-group with orders [ 2, 0 ]
gap> mats := [[[-1, 0],[0,1]], [[1,1],[0,1]]];
[ [ [ -1, 0 ], [ 0, 1 ] ], [ [ 1, 1 ], [ 0, 1 ] ] ]
gap> pcp := Pcp(G);
Pcp [ g1, g2 ] with orders [ 2, 0 ]

gap> RandomPcpOrbitStabilizer( [1,0], pcp, mats, OnRight ).stab;
#I  Orbit longer than limit: exiting.
[  ]

gap> g := Igs(G)[1];
g1
gap> RandomCentralizerPcpGroup( G, g );
#I  Stabilizer not increasing: exiting.
Pcp-group with orders [ 2 ]
gap> Igs(last);
[ g1 ]
]]></Example>
</Description>
</ManSection>

</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Non-abelian tensor product and Schur extensions">
<Heading>Non-abelian tensor product and Schur extensions</Heading>

<ManSection>
<Attr Name="SchurExtension" Arg="G"/>
<Description>
	Let <A>G</A> be a polycyclic group with a polycyclic generating sequence
	consisting of <M>n</M> elements.  This function computes the largest
	central extension <A>H</A> of  <A>G</A> such that <A>H</A> is generated by <M>n</M>
	elements.  If <M>F/R</M> is the underlying polycyclic presentation for <A>G</A>,
	then <A>H</A> is isomorphic to <M>F/[R,F]</M>.

<Example><![CDATA[
gap> G := DihedralPcpGroup( 0 );
Pcp-group with orders [ 2, 0 ]
gap> Centre( G );
Pcp-group with orders [  ]
gap> H := SchurExtension( G );
Pcp-group with orders [ 2, 0, 0, 0 ]
gap> Centre( H );
Pcp-group with orders [ 0, 0 ]
gap> H/Centre(H);
Pcp-group with orders [ 2, 0 ]
gap> Subgroup( H, [H.1,H.2] ) = H;
true
]]></Example>
</Description>
</ManSection>

<ManSection>
<Attr Name="SchurExtensionEpimorphism" Arg="G"/>
<Description>
	returns the  projection from the  Schur extension <M>G^{*}</M> of  <A>G</A> onto
	<A>G</A>.   See   the  function  <C>SchurExtension</C>.   The   kernel  of  this
	epimorphism is  the direct product  of the Schur multiplicator  of <A>G</A>
	and a direct product of <M>n</M> copies  of <M>&ZZ;</M> where <M>n</M> is the number of
	generators  in  the  polycyclic   presentation  for  <A>G</A>.   The  Schur
	multiplicator is the intersection of  the kernel and the derived group
	of the source.  See also the function <C>SchurCover</C>.

<Example><![CDATA[
gap> gl23 := Range( IsomorphismPcpGroup( GL(2,3) ) );
Pcp-group with orders [ 2, 3, 2, 2, 2 ]
gap> SchurExtensionEpimorphism( gl23 );
[ g1, g2, g3, g4, g5, g6, g7, g8, g9, g10 ] -> [ g1, g2, g3, g4, g5,
id, id, id, id, id ]
gap> Kernel( last );
Pcp-group with orders [ 0, 0, 0, 0, 0 ]
gap> AbelianInvariantsMultiplier( gl23 );
[  ]
gap> Intersection( Kernel(epi), DerivedSubgroup( Source(epi) ) );
[  ]
]]></Example>

	There  is a  crossed pairing  from <A>G</A>  into <M>(G^{*})'</M>  which  can be
	defined via this epimorphism:

<Example><![CDATA[
gap> G := DihedralPcpGroup(0);
Pcp-group with orders [ 2, 0 ]
gap> epi := SchurExtensionEpimorphism( G );
[ g1, g2, g3, g4 ] -> [ g1, g2, id, id ]
gap> PreImagesRepresentative( epi, G.1 );
g1
gap> PreImagesRepresentative( epi, G.2 );
g2
gap> Comm( last, last2 );
g2^-2*g4
]]></Example>
</Description>
</ManSection>

<ManSection>
<Func Name="SchurCover" Arg="G"/>
<Description>
	computes a Schur covering group  of the polycyclic group <A>G</A>.  A Schur
	covering  is a  largest central  extension <A>H</A>  of <A>G</A>  such  that the
	kernel  <A>M</A> of  the projection  of <A>H</A>  onto <A>G</A>  is contained  in the
	commutator subgroup of <A>H</A>.
	<P/>

	If <A>G</A> is given by a presentation <M>F/R</M>, then <A>M</A> is isomorphic to the
	subgroup <M>R \cap [F,F] / [R,F]</M>.  Let <M>C</M> be a complement to
	<M>R \cap [F,F] / [R,F]</M> in <M>R/[R,F]</M>.  Then <M>F/C</M> is isomorphic to <A>H</A>
	and <M>R/C</M> is isomorphic to <A>M</A>.

<Example><![CDATA[
gap> G := AbelianPcpGroup( 3 );
Pcp-group with orders [ 0, 0, 0 ]
gap> ext := SchurCover( G );
Pcp-group with orders [ 0, 0, 0, 0, 0, 0 ]
gap> Centre( ext );
Pcp-group with orders [ 0, 0, 0 ]
gap> IsSubgroup( DerivedSubgroup( ext ), last );
true
]]></Example>
</Description>
</ManSection>

<ManSection>
<Attr Name="AbelianInvariantsMultiplier" Arg="G"/>
<Description>
	returns a list of the abelian invariants of the Schur multiplier of G.
	<P/>

	Note that the Schur multiplicator  of a polycyclic group is a finitely
	generated abelian group.

<Example><![CDATA[
gap> G := DihedralPcpGroup( 0 );
Pcp-group with orders [ 2, 0 ]
gap> DirectProduct( G, AbelianPcpGroup( 2 ) );
Pcp-group with orders [ 0, 0, 2, 0 ]
gap> AbelianInvariantsMultiplier( last );
[ 0, 2, 2, 2, 2 ]
]]></Example>
</Description>
</ManSection>

<ManSection>
<Func Name="NonAbelianExteriorSquareEpimorphism" Arg="G"/>
<Description>
	returns  the  epimorphism of  the  non-abelian  exterior  square of  a
	polycyclic group  <A>G</A> onto the  derived group of <A>G</A>.   The non-abelian
	exterior  square can be  defined as  the derived  subgroup of  a Schur
	cover of <A>G</A>.  The isomorphism type of the non-abelian exterior square
	is unique despite the fact that  the isomorphism type of a Schur cover
	of a  polycyclic groups need  not be unique.   The derived group  of a
	Schur cover  has a  natural projection onto  the derived group  of <A>G</A>
	which is what the function returns.
	<P/>

	The kernel of the epimorphism is isomorphic to the Schur multiplicator
	of <A>G</A>.

<Example><![CDATA[
gap> G := ExamplesOfSomePcpGroups( 3 );
Pcp-group with orders [ 0, 0 ]
gap> G := DirectProduct( G,G );
Pcp-group with orders [ 0, 0, 0, 0 ]
gap> AbelianInvariantsMultiplier( G );
[ [ 0, 1 ], [ 2, 3 ] ]
gap> epi := NonAbelianExteriorSquareEpimorphism( G );
[ g2^-2*g5, g4^-2*g10, g6, g7, g8, g9 ] -> [ g2^-2, g4^-2, id, id, id, id ]
gap> Kernel( epi );
Pcp-group with orders [ 0, 2, 2, 2 ]
gap> Collected( AbelianInvariants( last ) );
[ [ 0, 1 ], [ 2, 3 ] ]
]]></Example>
</Description>
</ManSection>

<ManSection>
<Attr Name="NonAbelianExteriorSquare" Arg="G"/>
<Description>
	computes the  non-abelian exterior  square of a  polycyclic group  <A>G</A>.
	See  the explanation  for  <C>NonAbelianExteriorSquareEpimorphism</C>.  The
	natural projection of the non-abelian exterior square onto the derived
	group of <A>G</A> is stored in the component <C>!.epimorphism</C>.
	<P/>

	There  is  a crossed  pairing  from <M>G\times  G</M> into  <M>G\wedge  G</M>.  See  the
	function <C>SchurExtensionEpimorphism</C> for details.  The crossed pairing
	is stored  in the component  <C>!.crossedPairing</C>.  This is  the crossed
	pairing <M>\lambda</M> in <Cite Key="EickNickel07"/>.

<Example><![CDATA[
gap> G := DihedralPcpGroup(0);
Pcp-group with orders [ 2, 0 ]
gap> GwG := NonAbelianExteriorSquare( G );
Pcp-group with orders [ 0 ]
gap> lambda := GwG!.crossedPairing;
function( g, h ) ... end
gap> lambda( G.1, G.2 );
g2^2*g4^-1
]]></Example>
</Description>
</ManSection>

<ManSection>
<Func Name="NonAbelianTensorSquareEpimorphism" Arg="G"/>
<Description>
	returns for a  polycyclic group <A>G</A> the projection  of the non-abelian
	tensor  square  <M>G\otimes  G</M>  onto the  non-abelian  exterior  square
	<M>G\wedge  G</M>.   The  range  of  that  epimorphism  has  the  component
	<C>!.epimorphism</C>  set to  the  projection of  the non-abelian  exterior
	square  onto  the  derived  group  of  <A>G</A>.   See  also  the  function
	<C>NonAbelianExteriorSquare</C>.
	<P/>

	With the  result of this  function one can  compute the groups  in the
	commutative diagram at the beginning of the paper <Cite Key="EickNickel07"/>.
	The kernel of  the returned epimorphism is the  group <M>\nabla(G)</M>. The
	kernel of  the composition of  this epimorphism and the  above mention
	projection onto <M>G'</M> is the group <M>J(G)</M>.

<Example><![CDATA[
gap> G := DihedralPcpGroup(0);
Pcp-group with orders [ 2, 0 ]
gap> G := DirectProduct(G,G);
Pcp-group with orders [ 2, 0, 2, 0 ]
gap> alpha := NonAbelianTensorSquareEpimorphism( G );
[ g9*g25^-1, g10*g26^-1, g11*g27, g12*g28, g13*g29, g14*g30, g15, g16,
g17,
  g18, g19, g20, g21, g22, g23, g24 ] -> [ g2^-2*g6, g4^-2*g12, g8,
  g9, g10,
  g11, id, id, id, id, id, id, id, id, id, id ]
gap> gamma := Range( alpha )!.epimorphism;
[ g2^-2*g6, g4^-2*g12, g8, g9, g10, g11 ] -> [ g2^-2, g4^-2, id, id,
id, id ]
gap> JG := Kernel( alpha * gamma );
Pcp-group with orders [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
gap> Image( alpha, JG );
Pcp-group with orders [ 2, 2, 2, 2 ]
gap> AbelianInvariantsMultiplier( G );
[ [ 2, 4 ] ]
]]></Example>
</Description>
</ManSection>


<ManSection>
<Attr Name="NonAbelianTensorSquare" Arg="G"/>
<Description>
	computes  for a  polycyclic group  <A>G</A> the  non-abelian  tensor square
	<M>G\otimes G</M>.

<Example><![CDATA[
gap> G := AlternatingGroup( IsPcGroup, 4 );
<pc group of size 12 with 3 generators>
gap> PcGroupToPcpGroup( G );
Pcp-group with orders [ 3, 2, 2 ]
gap> NonAbelianTensorSquare( last );
Pcp-group with orders [ 2, 2, 2, 3 ]
gap> PcpGroupToPcGroup( last );
<pc group of size 24 with 4 generators>
gap> DirectFactorsOfGroup( last );
[ Group([ f1, f2, f3 ]), Group([ f4 ]) ]
gap> List( last, Size );
[ 8, 3 ]
gap> IdGroup( last2[1] );
[ 8, 4 ]       # the quaternion group of Order 8

gap> G := DihedralPcpGroup( 0 );
Pcp-group with orders [ 2, 0 ]
gap> ten := NonAbelianTensorSquare( G );
Pcp-group with orders [ 0, 2, 2, 2 ]
gap> IsAbelian( ten );
true
]]></Example>
</Description>
</ManSection>

<ManSection>
<Func Name="NonAbelianExteriorSquarePlusEmbedding" Arg="G"/>
<Description>
	returns an embedding from  the non-abelian exterior square <M>G\wedge G</M>
	into  an  extensions   of  <M>G\wedge  G</M>  by  <M>G\times   G</M>.   For  the
	significance  of the  group  see the  paper <Cite Key="EickNickel07"/>.   The
	range of the epimorphism is the group <M>\tau(G)</M> in that paper.
</Description>
</ManSection>

<ManSection>
<Func Name="NonAbelianTensorSquarePlusEpimorphism" Arg="G"/>
<Description>
	returns  an  epimorphisms  of  <M>\nu(G)</M>  onto  <M>\tau(G)</M>.   The  group
	<M>\nu(G)</M> is an extension of the non-abelian tensor square <M>G\otimes G</M>
	of <M>G</M>  by <M>G\times G</M>.   The group <M>\tau(G)</M>  is an extension  of the
	non-abelian exterior  square <M>G\wedge G</M> by <M>G\times  G</M>.  For details
	see <Cite Key="EickNickel07"/>.
</Description>
</ManSection>

<ManSection>
<Func Name="NonAbelianTensorSquarePlus" Arg="G"/>
<Description>
	returns the group <M>\nu(G)</M> in <Cite Key="EickNickel07"/>.
</Description>
</ManSection>

<ManSection>
<Func Name="WhiteheadQuadraticFunctor" Arg="G"/>
<Description>
	returns Whitehead's universal quadratic functor of <M>G</M>, see
	<Cite Key="EickNickel07"/> for a description.
</Description>
</ManSection>

</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Schur covers">
<Heading>Schur covers</Heading>

This section contains a function to determine the Schur covers of a finite
<M>p</M>-group up to isomorphism.

<ManSection>
<Func Name="SchurCovers" Arg="G"/>
<Description>
	Let <A>G</A> be a finite <M>p</M>-group defined as a pcp group. This function
	returns a complete and irredundant set of isomorphism types of Schur
	covers of <A>G</A>. The algorithm implements a method of Nickel's Phd Thesis.
</Description>
</ManSection>

</Section>
</Chapter>