1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
|
<Chapter Label="Higher level methods for pcp-groups">
<Heading>Higher level methods for pcp-groups</Heading>
This is a description of some higher level functions of the &Polycyclic;
package of GAP 4. Throughout this chapter we let <A>G</A> be a pc-presented group
and we consider algorithms for subgroups <A>U</A> and <A>V</A> of <A>G</A>. For background
and a description of the underlying algorithms we refer to <Cite Key="Eic01b"/>.
<P/>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Subgroup series in pcp-groups">
<Heading>Subgroup series in pcp-groups</Heading>
Many algorithm for pcp-groups work by induction using some series
through the group. In this section we provide a number of useful
series for pcp-groups. An <E>efa series</E> is a normal series with
elementary or free abelian factors. See <Cite Key="Eic00"/> for outlines on
the algorithms of a number of the available series.
<ManSection>
<Func Name="PcpSeries" Arg="U"/>
<Description>
returns the polycyclic series of <A>U</A> defined by an igs of <A>U</A>.
</Description>
</ManSection>
<ManSection>
<Attr Name="EfaSeries" Arg="U"/>
<Description>
returns a normal series of <A>U</A> with elementary or free abelian factors.
</Description>
</ManSection>
<ManSection>
<Attr Name="SemiSimpleEfaSeries" Arg="U"/>
<Description>
returns an efa series of <A>U</A> such that every factor in the series is
semisimple as a module for <A>U</A> over a finite field or over the rationals.
</Description>
</ManSection>
<ManSection>
<Meth Name="DerivedSeriesOfGroup" Arg="U"/>
<Description>
the derived series of <A>U</A>.
</Description>
</ManSection>
<ManSection>
<Func Name="RefinedDerivedSeries" Arg="U"/>
<Description>
the derived series of <A>U</A> refined to an efa series such that
in each abelian factor of the derived series the free abelian
factor is at the top.
</Description>
</ManSection>
<ManSection>
<Func Name="RefinedDerivedSeriesDown" Arg="U"/>
<Description>
the derived series of <A>U</A> refined to an efa series such that
in each abelian factor of the derived series the free abelian
factor is at the bottom.
</Description>
</ManSection>
<ManSection>
<Meth Name="LowerCentralSeriesOfGroup" Arg="U"/>
<Description>
the lower central series of <A>U</A>. If <A>U</A> does not have a
largest nilpotent quotient group, then this function may not
terminate.
</Description>
</ManSection>
<ManSection>
<Meth Name="UpperCentralSeriesOfGroup" Arg="U"/>
<Description>
the upper central series of <A>U</A>. This function always terminates,
but it may terminate at a proper subgroup of <A>U</A>.
</Description>
</ManSection>
<ManSection>
<Func Name="TorsionByPolyEFSeries" Arg="U"/>
<Description>
returns an efa series of <A>U</A> such that all torsion-free
factors are at the top and all finite factors are at the
bottom. Such a series might not exist for <A>U</A> and in this case
the function returns fail.
<Example><![CDATA[
gap> G := ExamplesOfSomePcpGroups(5);
Pcp-group with orders [ 2, 0, 0, 0 ]
gap> Igs(G);
[ g1, g2, g3, g4 ]
gap> PcpSeries(G);
[ Pcp-group with orders [ 2, 0, 0, 0 ],
Pcp-group with orders [ 0, 0, 0 ],
Pcp-group with orders [ 0, 0 ],
Pcp-group with orders [ 0 ],
Pcp-group with orders [ ] ]
gap> List( PcpSeries(G), Igs );
[ [ g1, g2, g3, g4 ], [ g2, g3, g4 ], [ g3, g4 ], [ g4 ], [ ] ]
]]></Example>
</Description>
</ManSection>
Algorithms for pcp-groups often use an efa series of <M>G</M> and work down
over the factors of this series. Usually, pcp's of the factors are
more useful than the actual factors. Hence we provide the following.
<ManSection>
<Func Name="PcpsBySeries" Arg="ser[, flag]"/>
<Description>
returns a list of pcp's corresponding to the factors of the series. If
the parameter <A>flag</A> is present and equals the string <Q>snf</Q>,
then each pcp corresponds to a decomposition of the abelian groups
into direct factors.
</Description>
</ManSection>
<ManSection>
<Attr Name="PcpsOfEfaSeries" Arg="U"/>
<Description>
returns a list of pcps corresponding to an efa series of <A>U</A>.
<Example><![CDATA[
gap> G := ExamplesOfSomePcpGroups(5);
Pcp-group with orders [ 2, 0, 0, 0 ]
gap> PcpsBySeries( DerivedSeriesOfGroup(G));
[ Pcp [ g1, g2, g3, g4 ] with orders [ 2, 2, 2, 2 ],
Pcp [ g2^-2, g3^-2, g4^2 ] with orders [ 0, 0, 4 ],
Pcp [ g4^8 ] with orders [ 0 ] ]
gap> PcpsBySeries( RefinedDerivedSeries(G));
[ Pcp [ g1, g2, g3 ] with orders [ 2, 2, 2 ],
Pcp [ g4 ] with orders [ 2 ],
Pcp [ g2^2, g3^2 ] with orders [ 0, 0 ],
Pcp [ g4^2 ] with orders [ 2 ],
Pcp [ g4^4 ] with orders [ 2 ],
Pcp [ g4^8 ] with orders [ 0 ] ]
gap> PcpsBySeries( DerivedSeriesOfGroup(G), "snf" );
[ Pcp [ g2, g3, g1 ] with orders [ 2, 2, 4 ],
Pcp [ g4^2, g3^-2, g2^2*g4^2 ] with orders [ 4, 0, 0 ],
Pcp [ g4^8 ] with orders [ 0 ] ]
gap> G.1^4 in DerivedSubgroup( G );
true
gap> G.1^2 = G.4;
true
gap> PcpsOfEfaSeries( G );
[ Pcp [ g1 ] with orders [ 2 ],
Pcp [ g2 ] with orders [ 0 ],
Pcp [ g3 ] with orders [ 0 ],
Pcp [ g4 ] with orders [ 0 ] ]
]]></Example>
</Description>
</ManSection>
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Orbit stabilizer methods for pcp-groups">
<Heading>Orbit stabilizer methods for pcp-groups</Heading>
Let <A>U</A> be a pcp-group which acts on a set <M>\Omega</M>. One of the fundamental
problems in algorithmic group theory is the determination of orbits and
stabilizers of points in <M>\Omega</M> under the action of <A>U</A>. We distinguish
two cases: the case that all considered orbits are finite and the case that
there are infinite orbits. In the latter case, an orbit cannot be listed
and a description of the orbit and its corresponding stabilizer is much
harder to obtain.
<P/>
If the considered orbits are finite, then the following two functions can be
applied to compute the considered orbits and their corresponding stabilizers.
<ManSection>
<Func Name="PcpOrbitStabilizer" Arg="point, gens, acts, oper"/>
<Func Name="PcpOrbitsStabilizers" Arg="points, gens, acts, oper"/>
<Description>
The input <A>gens</A> can be an igs or a pcp of a pcp-group <A>U</A>. The elements
in the list <A>gens</A> act as the elements in the list <A>acts</A> via the function
<A>oper</A> on the given points; that is, <A>oper( point, acts[i] )</A> applies the
<M>i</M>th generator to a given point. Thus the group defined by <A>acts</A> must be
a homomorphic image of the group defined by <A>gens</A>. The first function
returns a record containing the orbit as component 'orbit' and and igs for
the stabilizer as component 'stab'. The second function returns a list of
records, each record contains 'repr' and 'stab'. Both of these functions
run forever on infinite orbits.
<Example><![CDATA[
gap> G := DihedralPcpGroup( 0 );
Pcp-group with orders [ 2, 0 ]
gap> mats := [ [[-1,0],[0,1]], [[1,1],[0,1]] ];;
gap> pcp := Pcp(G);
Pcp [ g1, g2 ] with orders [ 2, 0 ]
gap> PcpOrbitStabilizer( [0,1], pcp, mats, OnRight );
rec( orbit := [ [ 0, 1 ] ],
stab := [ g1, g2 ],
word := [ [ [ 1, 1 ] ], [ [ 2, 1 ] ] ] )
]]></Example>
If the considered orbits are infinite, then it may not always be possible
to determine a description of the orbits and their stabilizers. However,
as shown in <Cite Key="EOs01"/> and <Cite Key="Eic02"/>, it is possible to determine
stabilizers and check if two elements are contained in the same orbit if
the given action of the polycyclic group is a unimodular linear action on
a vector space. The following functions are available for this case.
</Description>
</ManSection>
<ManSection>
<Func Name="StabilizerIntegralAction" Arg="U, mats, v"/>
<Func Name="OrbitIntegralAction" Arg="U, mats , v, w"/>
<Description>
The first function computes the stabilizer in <A>U</A> of the vector <A>v</A> where
the pcp group <A>U</A> acts via <A>mats</A> on an integral space and <A>v</A> and <A>w</A> are
elements in this integral space. The second function checks whether <A>v</A> and
<A>w</A> are in the same orbit and the function returns either <A>false</A> or a
record containing an element in <A>U</A> mapping <A>v</A> to <A>w</A> and the stabilizer
of <A>v</A>.
</Description>
</ManSection>
<ManSection>
<Func Name="NormalizerIntegralAction" Arg="U, mats, B"/>
<Func Name="ConjugacyIntegralAction" Arg="U, mats, B, C"/>
<Description>
The first function computes the normalizer in <A>U</A> of the lattice with the
basis <A>B</A>, where the pcp group <A>U</A> acts via <A>mats</A> on an integral space and
<A>B</A> is a subspace of this integral space. The second functions checks whether
the two lattices with the bases <A>B</A> and <A>C</A> are contained in the same orbit
under <A>U</A>. The function returns either <A>false</A> or a record with an element
in <A>U</A> mapping <A>B</A> to <A>C</A> and the stabilizer of <A>B</A>.
<Example><![CDATA[
# get a pcp group and a free abelian normal subgroup
gap> G := ExamplesOfSomePcpGroups(8);
Pcp-group with orders [ 0, 0, 0, 0, 0 ]
gap> efa := EfaSeries(G);
[ Pcp-group with orders [ 0, 0, 0, 0, 0 ],
Pcp-group with orders [ 0, 0, 0, 0 ],
Pcp-group with orders [ 0, 0, 0 ],
Pcp-group with orders [ ] ]
gap> N := efa[3];
Pcp-group with orders [ 0, 0, 0 ]
gap> IsFreeAbelian(N);
true
# create conjugation action on N
gap> mats := LinearActionOnPcp(Igs(G), Pcp(N));
[ [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ],
[ [ 0, 0, 1 ], [ 1, -1, 1 ], [ 0, 1, 0 ] ],
[ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ],
[ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ],
[ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ] ]
# take an arbitrary vector and compute its stabilizer
gap> StabilizerIntegralAction(G,mats, [2,3,4]);
Pcp-group with orders [ 0, 0, 0, 0 ]
gap> Igs(last);
[ g1, g3, g4, g5 ]
# check orbits with some other vectors
gap> OrbitIntegralAction(G,mats, [2,3,4],[3,1,5]);
rec( stab := Pcp-group with orders [ 0, 0, 0, 0 ], prei := g2 )
gap> OrbitIntegralAction(G,mats, [2,3,4], [4,6,8]);
false
# compute the orbit of a subgroup of Z^3 under the action of G
gap> NormalizerIntegralAction(G, mats, [[1,0,0],[0,1,0]]);
Pcp-group with orders [ 0, 0, 0, 0, 0 ]
gap> Igs(last);
[ g1, g2^2, g3, g4, g5 ]
]]></Example>
</Description>
</ManSection>
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Centralizers, Normalizers and Intersections">
<Heading>Centralizers, Normalizers and Intersections</Heading>
In this section we list a number of operations for which there are methods
installed to compute the corresponding features in polycyclic groups.
<ManSection>
<Meth Name="Centralizer" Arg="U, g" Label="for an element"/>
<Meth Name="IsConjugate" Arg="U, g, h" Label="for elements"/>
<Description>
These functions solve the conjugacy problem for elements in pcp-groups and
they can be used to compute centralizers. The first method returns a
subgroup of the given group <A>U</A>, the second method either returns a
conjugating element or false if no such element exists.
<P/>
The methods are based on the orbit stabilizer algorithms described in
<Cite Key="EOs01"/>. For nilpotent groups, an algorithm to solve the conjugacy
problem for elements is described in <Cite Key="Sims94"/>.
</Description>
</ManSection>
<ManSection>
<Meth Name="Centralizer" Arg="U, V" Label="for a subgroup"/>
<Meth Name="Normalizer" Arg="U, V"/>
<Meth Name="IsConjugate" Arg="U, V, W" Label="for subgroups"/>
<Description>
These three functions solve the conjugacy problem for subgroups and compute
centralizers and normalizers of subgroups. The first two functions return
subgroups of the input group <A>U</A>, the third function returns a conjugating
element or false if no such element exists.
<P/>
The methods are based on the orbit stabilizer algorithms described in
<Cite Key="Eic02"/>. For nilpotent groups, an algorithm to solve the conjugacy
problems for subgroups is described in <Cite Key="Lo98"/>.
</Description>
</ManSection>
<ManSection>
<Func Name="Intersection" Arg="U, N"/>
<Description>
A general method to compute intersections of subgroups of a pcp-group is
described in <Cite Key="Eic01b"/>, but it is not yet implemented here. However,
intersections of subgroups <M>U, N \leq G</M> can be computed if <M>N</M> is
normalising <M>U</M>. See <Cite Key="Sims94"/> for an outline of the algorithm.
</Description>
</ManSection>
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Finite subgroups">
<Heading>Finite subgroups</Heading>
There are various finite subgroups of interest in polycyclic groups. See
<Cite Key="Eic00"/> for a description of the algorithms underlying the functions
in this section.
<ManSection>
<Attr Name="TorsionSubgroup" Arg="U"/>
<Description>
If the set of elements of finite order forms a subgroup, then we call
it the <E>torsion subgroup</E>. This function determines the torsion subgroup
of <A>U</A>, if it exists, and returns fail otherwise. Note that a torsion
subgroup does always exist if <A>U</A> is nilpotent.
</Description>
</ManSection>
<ManSection>
<Attr Name="NormalTorsionSubgroup" Arg="U"/>
<Description>
Each polycyclic groups has a unique largest finite normal subgroup.
This function computes it for <A>U</A>.
</Description>
</ManSection>
<ManSection>
<Prop Name="IsTorsionFree" Arg="U"/>
<Description>
This function checks if <A>U</A> is torsion free. It returns true or false.
</Description>
</ManSection>
<ManSection>
<Attr Name="FiniteSubgroupClasses" Arg="U"/>
<Description>
There exist only finitely many conjugacy classes of finite subgroups
in a polycyclic group <A>U</A> and this function can be used to compute
them. The algorithm underlying this function proceeds by working down
a normal series of <A>U</A> with elementary or free abelian factors. The
following function can be used to give the algorithm a specific series.
</Description>
</ManSection>
<ManSection>
<Func Name="FiniteSubgroupClassesBySeries" Arg="U, pcps"/>
<Description>
<Example><![CDATA[
gap> G := ExamplesOfSomePcpGroups(15);
Pcp-group with orders [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 4, 0 ]
gap> TorsionSubgroup(G);
Pcp-group with orders [ 5, 2 ]
gap> NormalTorsionSubgroup(G);
Pcp-group with orders [ 5, 2 ]
gap> IsTorsionFree(G);
false
gap> FiniteSubgroupClasses(G);
[ Pcp-group with orders [ 5, 2 ]^G,
Pcp-group with orders [ 2 ]^G,
Pcp-group with orders [ 5 ]^G,
Pcp-group with orders [ ]^G ]
gap> G := DihedralPcpGroup( 0 );
Pcp-group with orders [ 2, 0 ]
gap> TorsionSubgroup(G);
fail
gap> NormalTorsionSubgroup(G);
Pcp-group with orders [ ]
gap> IsTorsionFree(G);
false
gap> FiniteSubgroupClasses(G);
[ Pcp-group with orders [ 2 ]^G,
Pcp-group with orders [ 2 ]^G,
Pcp-group with orders [ ]^G ]
]]></Example>
</Description>
</ManSection>
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Subgroups of finite index and maximal subgroups">
<Heading>Subgroups of finite index and maximal subgroups</Heading>
Here we outline functions to determine various types of subgroups of
finite index in polycyclic groups. Again, see <Cite Key="Eic00"/> for a
description of the algorithms underlying the functions in this section.
Also, we refer to <Cite Key="Lo99"/> for an alternative approach.
<ManSection>
<Oper Name="MaximalSubgroupClassesByIndex" Arg="U, p"/>
<Description>
Each maximal subgroup of a polycyclic group <A>U</A> has <A>p</A>-power index for
some prime <A>p</A>. This function can be used to determine the conjugacy
classes of all maximal subgroups of <A>p</A>-power index for a given prime <A>p</A>.
</Description>
</ManSection>
<ManSection>
<Oper Name="LowIndexSubgroupClasses" Arg="U, n"/>
<Description>
There are only finitely many subgroups of a given index in a polycyclic
group <A>U</A>. This function computes conjugacy classes of all subgroups of
index <A>n</A> in <A>U</A>.
</Description>
</ManSection>
<ManSection>
<Oper Name="LowIndexNormalSubgroups" Arg="U, n"/>
<Description>
This function computes the normal subgroups of index <A>n</A> in <A>U</A>.
</Description>
</ManSection>
<ManSection>
<Func Name="NilpotentByAbelianNormalSubgroup" Arg="U"/>
<Description>
This function returns a normal subgroup <A>N</A> of finite index in <A>U</A> such
that <A>N</A> is nilpotent-by-abelian. Such a subgroup exists in every polycyclic
group and this function computes such a subgroup using LowIndexNormal.
However, we note that this function is not very efficient and the function
NilpotentByAbelianByFiniteSeries may well be more efficient on this task.
<Example><![CDATA[
gap> G := ExamplesOfSomePcpGroups(2);
Pcp-group with orders [ 0, 0, 0, 0, 0, 0 ]
gap> MaximalSubgroupClassesByIndex( G, 61 );;
gap> max := List( last, Representative );;
gap> List( max, x -> Index( G, x ) );
[ 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61,
61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61,
61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61,
61, 61, 61, 61, 61, 61, 226981 ]
gap> LowIndexSubgroupClasses( G, 61 );;
gap> low := List( last, Representative );;
gap> List( low, x -> Index( G, x ) );
[ 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61,
61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61,
61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61,
61, 61, 61, 61, 61, 61 ]
]]></Example>
</Description>
</ManSection>
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Further attributes for pcp-groups based on the Fitting subgroup">
<Heading>Further attributes for pcp-groups based on the Fitting subgroup</Heading>
In this section we provide a variety of other attributes for pcp-groups. Most
of the methods below are based or related to the Fitting subgroup of the given
group. We refer to <Cite Key="Eic01"/> for a description of the underlying methods.
<ManSection>
<Attr Name="FittingSubgroup" Arg="U"/>
<Description>
returns the Fitting subgroup of <A>U</A>; that is, the largest nilpotent normal
subgroup of <A>U</A>.
</Description>
</ManSection>
<ManSection>
<Prop Name="IsNilpotentByFinite" Arg="U"/>
<Description>
checks whether the Fitting subgroup of <A>U</A> has finite index.
</Description>
</ManSection>
<ManSection>
<Meth Name="Centre" Arg="U"/>
<Description>
returns the centre of <A>U</A>.
</Description>
</ManSection>
<ManSection>
<Meth Name="FCCentre" Arg="U"/>
<Description>
returns the FC-centre of <A>U</A>; that is, the subgroup containing all elements
having a finite conjugacy class in <A>U</A>.
</Description>
</ManSection>
<ManSection>
<Func Name="PolyZNormalSubgroup" Arg="U"/>
<Description>
returns a normal subgroup <A>N</A> of finite index in <A>U</A>, such that <A>N</A> has a
polycyclic series with infinite factors only.
</Description>
</ManSection>
<ManSection>
<Func Name="NilpotentByAbelianByFiniteSeries" Arg="U"/>
<Description>
returns a normal series <M>1 \leq F \leq A \leq U</M> such that <M>F</M> is nilpotent,
<M>A/F</M> is abelian and <M>U/A</M> is finite. This series is computed using the
Fitting subgroup and the centre of the Fitting factor.
</Description>
</ManSection>
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Functions for nilpotent groups">
<Heading>Functions for nilpotent groups</Heading>
There are (very few) functions which are available for nilpotent groups only.
First, there are the different central series. These are available for all
groups, but for nilpotent groups they terminate and provide series through
the full group. Secondly, the determination of a minimal generating set is
available for nilpotent groups only.
<ManSection>
<Meth Name="MinimalGeneratingSet" Arg="U"/>
<Description>
<Example><![CDATA[
gap> G := ExamplesOfSomePcpGroups(14);
Pcp-group with orders [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 4, 0, 5, 5, 4, 0, 6,
5, 5, 4, 0, 10, 6 ]
gap> IsNilpotent(G);
true
gap> PcpsBySeries( LowerCentralSeriesOfGroup(G));
[ Pcp [ g1, g2 ] with orders [ 0, 0 ],
Pcp [ g3 ] with orders [ 0 ],
Pcp [ g4 ] with orders [ 0 ],
Pcp [ g5 ] with orders [ 0 ],
Pcp [ g6, g7 ] with orders [ 0, 0 ],
Pcp [ g8 ] with orders [ 0 ],
Pcp [ g9, g10 ] with orders [ 0, 0 ],
Pcp [ g11, g12, g13 ] with orders [ 5, 4, 0 ],
Pcp [ g14, g15, g16, g17, g18 ] with orders [ 5, 5, 4, 0, 6 ],
Pcp [ g19, g20, g21, g22, g23, g24 ] with orders [ 5, 5, 4, 0, 10, 6 ] ]
gap> PcpsBySeries( UpperCentralSeriesOfGroup(G));
[ Pcp [ g1, g2 ] with orders [ 0, 0 ],
Pcp [ g3 ] with orders [ 0 ],
Pcp [ g4 ] with orders [ 0 ],
Pcp [ g5 ] with orders [ 0 ],
Pcp [ g6, g7 ] with orders [ 0, 0 ],
Pcp [ g8 ] with orders [ 0 ],
Pcp [ g9, g10 ] with orders [ 0, 0 ],
Pcp [ g11, g12, g13 ] with orders [ 5, 4, 0 ],
Pcp [ g14, g15, g16, g17, g18 ] with orders [ 5, 5, 4, 0, 6 ],
Pcp [ g19, g20, g21, g22, g23, g24 ] with orders [ 5, 5, 4, 0, 10, 6 ] ]
gap> MinimalGeneratingSet(G);
[ g1, g2 ]
]]></Example>
</Description>
</ManSection>
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Random methods for pcp-groups">
<Heading>Random methods for pcp-groups</Heading>
<!-- % TODO: The following text talks about orbits and stabilizers, -->
<!-- % but the functions that follow only deal with centralizers and -->
<!-- % normalizers. -->
Below we introduce a function which computes orbit and stabilizer using
a random method. This function tries to approximate the orbit and the
stabilizer, but the returned orbit or stabilizer may be incomplete.
This function is used in the random methods to compute normalizers and
centralizers. Note that deterministic methods for these purposes are also
available.
<P/>
<!-- % TODO: The following operation does not actually exist: -->
<!-- %\> RandomOrbitStabilizerPcpGroup( <A>U</A>, <A>point</A>, <A>oper</A> ) -->
<!-- % If desired, it could be (re?)added, using the internal -->
<!-- % function RandomPcpOrbitStabilizer -->
<ManSection>
<Func Name="RandomCentralizerPcpGroup" Arg="U, g" Label="for an element"/>
<Func Name="RandomCentralizerPcpGroup" Arg="U, V" Label="for a subgroup"/>
<Func Name="RandomNormalizerPcpGroup" Arg="U, V"/>
<Description>
<Example><![CDATA[
gap> G := DihedralPcpGroup(0);
Pcp-group with orders [ 2, 0 ]
gap> mats := [[[-1, 0],[0,1]], [[1,1],[0,1]]];
[ [ [ -1, 0 ], [ 0, 1 ] ], [ [ 1, 1 ], [ 0, 1 ] ] ]
gap> pcp := Pcp(G);
Pcp [ g1, g2 ] with orders [ 2, 0 ]
gap> RandomPcpOrbitStabilizer( [1,0], pcp, mats, OnRight ).stab;
#I Orbit longer than limit: exiting.
[ ]
gap> g := Igs(G)[1];
g1
gap> RandomCentralizerPcpGroup( G, g );
#I Stabilizer not increasing: exiting.
Pcp-group with orders [ 2 ]
gap> Igs(last);
[ g1 ]
]]></Example>
</Description>
</ManSection>
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Non-abelian tensor product and Schur extensions">
<Heading>Non-abelian tensor product and Schur extensions</Heading>
<ManSection>
<Attr Name="SchurExtension" Arg="G"/>
<Description>
Let <A>G</A> be a polycyclic group with a polycyclic generating sequence
consisting of <M>n</M> elements. This function computes the largest
central extension <A>H</A> of <A>G</A> such that <A>H</A> is generated by <M>n</M>
elements. If <M>F/R</M> is the underlying polycyclic presentation for <A>G</A>,
then <A>H</A> is isomorphic to <M>F/[R,F]</M>.
<Example><![CDATA[
gap> G := DihedralPcpGroup( 0 );
Pcp-group with orders [ 2, 0 ]
gap> Centre( G );
Pcp-group with orders [ ]
gap> H := SchurExtension( G );
Pcp-group with orders [ 2, 0, 0, 0 ]
gap> Centre( H );
Pcp-group with orders [ 0, 0 ]
gap> H/Centre(H);
Pcp-group with orders [ 2, 0 ]
gap> Subgroup( H, [H.1,H.2] ) = H;
true
]]></Example>
</Description>
</ManSection>
<ManSection>
<Attr Name="SchurExtensionEpimorphism" Arg="G"/>
<Description>
returns the projection from the Schur extension <M>G^{*}</M> of <A>G</A> onto
<A>G</A>. See the function <C>SchurExtension</C>. The kernel of this
epimorphism is the direct product of the Schur multiplicator of <A>G</A>
and a direct product of <M>n</M> copies of <M>&ZZ;</M> where <M>n</M> is the number of
generators in the polycyclic presentation for <A>G</A>. The Schur
multiplicator is the intersection of the kernel and the derived group
of the source. See also the function <C>SchurCover</C>.
<Example><![CDATA[
gap> gl23 := Range( IsomorphismPcpGroup( GL(2,3) ) );
Pcp-group with orders [ 2, 3, 2, 2, 2 ]
gap> SchurExtensionEpimorphism( gl23 );
[ g1, g2, g3, g4, g5, g6, g7, g8, g9, g10 ] -> [ g1, g2, g3, g4, g5,
id, id, id, id, id ]
gap> Kernel( last );
Pcp-group with orders [ 0, 0, 0, 0, 0 ]
gap> AbelianInvariantsMultiplier( gl23 );
[ ]
gap> Intersection( Kernel(epi), DerivedSubgroup( Source(epi) ) );
[ ]
]]></Example>
There is a crossed pairing from <A>G</A> into <M>(G^{*})'</M> which can be
defined via this epimorphism:
<Example><![CDATA[
gap> G := DihedralPcpGroup(0);
Pcp-group with orders [ 2, 0 ]
gap> epi := SchurExtensionEpimorphism( G );
[ g1, g2, g3, g4 ] -> [ g1, g2, id, id ]
gap> PreImagesRepresentative( epi, G.1 );
g1
gap> PreImagesRepresentative( epi, G.2 );
g2
gap> Comm( last, last2 );
g2^-2*g4
]]></Example>
</Description>
</ManSection>
<ManSection>
<Func Name="SchurCover" Arg="G"/>
<Description>
computes a Schur covering group of the polycyclic group <A>G</A>. A Schur
covering is a largest central extension <A>H</A> of <A>G</A> such that the
kernel <A>M</A> of the projection of <A>H</A> onto <A>G</A> is contained in the
commutator subgroup of <A>H</A>.
<P/>
If <A>G</A> is given by a presentation <M>F/R</M>, then <A>M</A> is isomorphic to the
subgroup <M>R \cap [F,F] / [R,F]</M>. Let <M>C</M> be a complement to
<M>R \cap [F,F] / [R,F]</M> in <M>R/[R,F]</M>. Then <M>F/C</M> is isomorphic to <A>H</A>
and <M>R/C</M> is isomorphic to <A>M</A>.
<Example><![CDATA[
gap> G := AbelianPcpGroup( 3 );
Pcp-group with orders [ 0, 0, 0 ]
gap> ext := SchurCover( G );
Pcp-group with orders [ 0, 0, 0, 0, 0, 0 ]
gap> Centre( ext );
Pcp-group with orders [ 0, 0, 0 ]
gap> IsSubgroup( DerivedSubgroup( ext ), last );
true
]]></Example>
</Description>
</ManSection>
<ManSection>
<Attr Name="AbelianInvariantsMultiplier" Arg="G"/>
<Description>
returns a list of the abelian invariants of the Schur multiplier of G.
<P/>
Note that the Schur multiplicator of a polycyclic group is a finitely
generated abelian group.
<Example><![CDATA[
gap> G := DihedralPcpGroup( 0 );
Pcp-group with orders [ 2, 0 ]
gap> DirectProduct( G, AbelianPcpGroup( 2 ) );
Pcp-group with orders [ 0, 0, 2, 0 ]
gap> AbelianInvariantsMultiplier( last );
[ 0, 2, 2, 2, 2 ]
]]></Example>
</Description>
</ManSection>
<ManSection>
<Func Name="NonAbelianExteriorSquareEpimorphism" Arg="G"/>
<Description>
returns the epimorphism of the non-abelian exterior square of a
polycyclic group <A>G</A> onto the derived group of <A>G</A>. The non-abelian
exterior square can be defined as the derived subgroup of a Schur
cover of <A>G</A>. The isomorphism type of the non-abelian exterior square
is unique despite the fact that the isomorphism type of a Schur cover
of a polycyclic groups need not be unique. The derived group of a
Schur cover has a natural projection onto the derived group of <A>G</A>
which is what the function returns.
<P/>
The kernel of the epimorphism is isomorphic to the Schur multiplicator
of <A>G</A>.
<Example><![CDATA[
gap> G := ExamplesOfSomePcpGroups( 3 );
Pcp-group with orders [ 0, 0 ]
gap> G := DirectProduct( G,G );
Pcp-group with orders [ 0, 0, 0, 0 ]
gap> AbelianInvariantsMultiplier( G );
[ [ 0, 1 ], [ 2, 3 ] ]
gap> epi := NonAbelianExteriorSquareEpimorphism( G );
[ g2^-2*g5, g4^-2*g10, g6, g7, g8, g9 ] -> [ g2^-2, g4^-2, id, id, id, id ]
gap> Kernel( epi );
Pcp-group with orders [ 0, 2, 2, 2 ]
gap> Collected( AbelianInvariants( last ) );
[ [ 0, 1 ], [ 2, 3 ] ]
]]></Example>
</Description>
</ManSection>
<ManSection>
<Attr Name="NonAbelianExteriorSquare" Arg="G"/>
<Description>
computes the non-abelian exterior square of a polycyclic group <A>G</A>.
See the explanation for <C>NonAbelianExteriorSquareEpimorphism</C>. The
natural projection of the non-abelian exterior square onto the derived
group of <A>G</A> is stored in the component <C>!.epimorphism</C>.
<P/>
There is a crossed pairing from <M>G\times G</M> into <M>G\wedge G</M>. See the
function <C>SchurExtensionEpimorphism</C> for details. The crossed pairing
is stored in the component <C>!.crossedPairing</C>. This is the crossed
pairing <M>\lambda</M> in <Cite Key="EickNickel07"/>.
<Example><![CDATA[
gap> G := DihedralPcpGroup(0);
Pcp-group with orders [ 2, 0 ]
gap> GwG := NonAbelianExteriorSquare( G );
Pcp-group with orders [ 0 ]
gap> lambda := GwG!.crossedPairing;
function( g, h ) ... end
gap> lambda( G.1, G.2 );
g2^2*g4^-1
]]></Example>
</Description>
</ManSection>
<ManSection>
<Func Name="NonAbelianTensorSquareEpimorphism" Arg="G"/>
<Description>
returns for a polycyclic group <A>G</A> the projection of the non-abelian
tensor square <M>G\otimes G</M> onto the non-abelian exterior square
<M>G\wedge G</M>. The range of that epimorphism has the component
<C>!.epimorphism</C> set to the projection of the non-abelian exterior
square onto the derived group of <A>G</A>. See also the function
<C>NonAbelianExteriorSquare</C>.
<P/>
With the result of this function one can compute the groups in the
commutative diagram at the beginning of the paper <Cite Key="EickNickel07"/>.
The kernel of the returned epimorphism is the group <M>\nabla(G)</M>. The
kernel of the composition of this epimorphism and the above mention
projection onto <M>G'</M> is the group <M>J(G)</M>.
<Example><![CDATA[
gap> G := DihedralPcpGroup(0);
Pcp-group with orders [ 2, 0 ]
gap> G := DirectProduct(G,G);
Pcp-group with orders [ 2, 0, 2, 0 ]
gap> alpha := NonAbelianTensorSquareEpimorphism( G );
[ g9*g25^-1, g10*g26^-1, g11*g27, g12*g28, g13*g29, g14*g30, g15, g16,
g17,
g18, g19, g20, g21, g22, g23, g24 ] -> [ g2^-2*g6, g4^-2*g12, g8,
g9, g10,
g11, id, id, id, id, id, id, id, id, id, id ]
gap> gamma := Range( alpha )!.epimorphism;
[ g2^-2*g6, g4^-2*g12, g8, g9, g10, g11 ] -> [ g2^-2, g4^-2, id, id,
id, id ]
gap> JG := Kernel( alpha * gamma );
Pcp-group with orders [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
gap> Image( alpha, JG );
Pcp-group with orders [ 2, 2, 2, 2 ]
gap> AbelianInvariantsMultiplier( G );
[ [ 2, 4 ] ]
]]></Example>
</Description>
</ManSection>
<ManSection>
<Attr Name="NonAbelianTensorSquare" Arg="G"/>
<Description>
computes for a polycyclic group <A>G</A> the non-abelian tensor square
<M>G\otimes G</M>.
<Example><![CDATA[
gap> G := AlternatingGroup( IsPcGroup, 4 );
<pc group of size 12 with 3 generators>
gap> PcGroupToPcpGroup( G );
Pcp-group with orders [ 3, 2, 2 ]
gap> NonAbelianTensorSquare( last );
Pcp-group with orders [ 2, 2, 2, 3 ]
gap> PcpGroupToPcGroup( last );
<pc group of size 24 with 4 generators>
gap> DirectFactorsOfGroup( last );
[ Group([ f1, f2, f3 ]), Group([ f4 ]) ]
gap> List( last, Size );
[ 8, 3 ]
gap> IdGroup( last2[1] );
[ 8, 4 ] # the quaternion group of Order 8
gap> G := DihedralPcpGroup( 0 );
Pcp-group with orders [ 2, 0 ]
gap> ten := NonAbelianTensorSquare( G );
Pcp-group with orders [ 0, 2, 2, 2 ]
gap> IsAbelian( ten );
true
]]></Example>
</Description>
</ManSection>
<ManSection>
<Func Name="NonAbelianExteriorSquarePlusEmbedding" Arg="G"/>
<Description>
returns an embedding from the non-abelian exterior square <M>G\wedge G</M>
into an extensions of <M>G\wedge G</M> by <M>G\times G</M>. For the
significance of the group see the paper <Cite Key="EickNickel07"/>. The
range of the epimorphism is the group <M>\tau(G)</M> in that paper.
</Description>
</ManSection>
<ManSection>
<Func Name="NonAbelianTensorSquarePlusEpimorphism" Arg="G"/>
<Description>
returns an epimorphisms of <M>\nu(G)</M> onto <M>\tau(G)</M>. The group
<M>\nu(G)</M> is an extension of the non-abelian tensor square <M>G\otimes G</M>
of <M>G</M> by <M>G\times G</M>. The group <M>\tau(G)</M> is an extension of the
non-abelian exterior square <M>G\wedge G</M> by <M>G\times G</M>. For details
see <Cite Key="EickNickel07"/>.
</Description>
</ManSection>
<ManSection>
<Func Name="NonAbelianTensorSquarePlus" Arg="G"/>
<Description>
returns the group <M>\nu(G)</M> in <Cite Key="EickNickel07"/>.
</Description>
</ManSection>
<ManSection>
<Func Name="WhiteheadQuadraticFunctor" Arg="G"/>
<Description>
returns Whitehead's universal quadratic functor of <M>G</M>, see
<Cite Key="EickNickel07"/> for a description.
</Description>
</ManSection>
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Schur covers">
<Heading>Schur covers</Heading>
This section contains a function to determine the Schur covers of a finite
<M>p</M>-group up to isomorphism.
<ManSection>
<Func Name="SchurCovers" Arg="G"/>
<Description>
Let <A>G</A> be a finite <M>p</M>-group defined as a pcp group. This function
returns a complete and irredundant set of isomorphism types of Schur
covers of <A>G</A>. The algorithm implements a method of Nickel's Phd Thesis.
</Description>
</ManSection>
</Section>
</Chapter>
|