File: polycyclic.tex

package info (click to toggle)
gap-polycyclic 2.17-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 2,796 kB
  • sloc: xml: 3,018; javascript: 155; makefile: 124
file content (3717 lines) | stat: -rw-r--r-- 183,790 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
% generated by GAPDoc2LaTeX from XML source (Frank Luebeck)
\documentclass[a4paper,11pt]{report}

\usepackage[top=37mm,bottom=37mm,left=27mm,right=27mm]{geometry}
\sloppy
\pagestyle{myheadings}
\usepackage{amssymb}
\usepackage[utf8]{inputenc}
\usepackage{makeidx}
\makeindex
\usepackage{color}
\definecolor{FireBrick}{rgb}{0.5812,0.0074,0.0083}
\definecolor{RoyalBlue}{rgb}{0.0236,0.0894,0.6179}
\definecolor{RoyalGreen}{rgb}{0.0236,0.6179,0.0894}
\definecolor{RoyalRed}{rgb}{0.6179,0.0236,0.0894}
\definecolor{LightBlue}{rgb}{0.8544,0.9511,1.0000}
\definecolor{Black}{rgb}{0.0,0.0,0.0}

\definecolor{linkColor}{rgb}{0.0,0.0,0.554}
\definecolor{citeColor}{rgb}{0.0,0.0,0.554}
\definecolor{fileColor}{rgb}{0.0,0.0,0.554}
\definecolor{urlColor}{rgb}{0.0,0.0,0.554}
\definecolor{promptColor}{rgb}{0.0,0.0,0.589}
\definecolor{brkpromptColor}{rgb}{0.589,0.0,0.0}
\definecolor{gapinputColor}{rgb}{0.589,0.0,0.0}
\definecolor{gapoutputColor}{rgb}{0.0,0.0,0.0}

%%  for a long time these were red and blue by default,
%%  now black, but keep variables to overwrite
\definecolor{FuncColor}{rgb}{0.0,0.0,0.0}
%% strange name because of pdflatex bug:
\definecolor{Chapter }{rgb}{0.0,0.0,0.0}
\definecolor{DarkOlive}{rgb}{0.1047,0.2412,0.0064}


\usepackage{fancyvrb}

\usepackage{mathptmx,helvet}
\usepackage[T1]{fontenc}
\usepackage{textcomp}


\usepackage[
            pdftex=true,
            bookmarks=true,        
            a4paper=true,
            pdftitle={Written with GAPDoc},
            pdfcreator={LaTeX with hyperref package / GAPDoc},
            colorlinks=true,
            backref=page,
            breaklinks=true,
            linkcolor=linkColor,
            citecolor=citeColor,
            filecolor=fileColor,
            urlcolor=urlColor,
            pdfpagemode={UseNone}, 
           ]{hyperref}

\newcommand{\maintitlesize}{\fontsize{50}{55}\selectfont}

% write page numbers to a .pnr log file for online help
\newwrite\pagenrlog
\immediate\openout\pagenrlog =\jobname.pnr
\immediate\write\pagenrlog{PAGENRS := [}
\newcommand{\logpage}[1]{\protect\write\pagenrlog{#1, \thepage,}}
%% were never documented, give conflicts with some additional packages

\newcommand{\GAP}{\textsf{GAP}}

%% nicer description environments, allows long labels
\usepackage{enumitem}
\setdescription{style=nextline}

%% depth of toc
\setcounter{tocdepth}{1}





%% command for ColorPrompt style examples
\newcommand{\gapprompt}[1]{\color{promptColor}{\bfseries #1}}
\newcommand{\gapbrkprompt}[1]{\color{brkpromptColor}{\bfseries #1}}
\newcommand{\gapinput}[1]{\color{gapinputColor}{#1}}


\begin{document}

\logpage{[ 0, 0, 0 ]}
\begin{titlepage}
\mbox{}\vfill

\begin{center}{\maintitlesize \textbf{ Polycyclic \mbox{}}}\\
\vfill

\hypersetup{pdftitle= Polycyclic }
\markright{\scriptsize \mbox{}\hfill  Polycyclic  \hfill\mbox{}}
{\Huge \textbf{ Computation with polycyclic groups \mbox{}}}\\
\vfill

{\Huge  2.17 \mbox{}}\\[1cm]
{ 28 August 2025 \mbox{}}\\[1cm]
\mbox{}\\[2cm]
{\Large \textbf{ Bettina Eick\\
    \mbox{}}}\\
{\Large \textbf{ Werner Nickel\\
  \mbox{}}}\\
{\Large \textbf{ Max Horn\\
    \mbox{}}}\\
\hypersetup{pdfauthor= Bettina Eick\\
    ;  Werner Nickel\\
  ;  Max Horn\\
    }
\end{center}\vfill

\mbox{}\\
{\mbox{}\\
\small \noindent \textbf{ Bettina Eick\\
    }  Email: \href{mailto://beick@tu-bs.de} {\texttt{beick@tu\texttt{\symbol{45}}bs.de}}\\
  Homepage: \href{http://www.iaa.tu-bs.de/beick} {\texttt{http://www.iaa.tu\texttt{\symbol{45}}bs.de/beick}}\\
  Address: \begin{minipage}[t]{8cm}\noindent
 Institut Analysis und Algebra\\
 TU Braunschweig\\
 Universit{\"a}tsplatz 2\\
 D\texttt{\symbol{45}}38106 Braunschweig\\
 Germany\\
 \end{minipage}
}\\
{\mbox{}\\
\small \noindent \textbf{ Werner Nickel\\
  }\\
  Homepage: \href{http://www.mathematik.tu-darmstadt.de/~nickel/} {\texttt{http://www.mathematik.tu\texttt{\symbol{45}}darmstadt.de/\texttt{\symbol{126}}nickel/}}}\\
{\mbox{}\\
\small \noindent \textbf{ Max Horn\\
    }  Email: \href{mailto://mhorn@rptu.de} {\texttt{mhorn@rptu.de}}\\
  Homepage: \href{https://www.quendi.de/math} {\texttt{https://www.quendi.de/math}}\\
  Address: \begin{minipage}[t]{8cm}\noindent
 Fachbereich Mathematik\\
 RPTU Kaiserslautern\texttt{\symbol{45}}Landau\\
 Gottlieb\texttt{\symbol{45}}Daimler\texttt{\symbol{45}}Stra{\ss}e 48\\
 67663 Kaiserslautern\\
 Germany\\
 \end{minipage}
}\\
\end{titlepage}

\newpage\setcounter{page}{2}
{\small 
\section*{Copyright}
\logpage{[ 0, 0, 1 ]}
 \index{License} {\copyright} 2003\texttt{\symbol{45}}2018 by Bettina Eick, Max Horn and Werner
Nickel

 The \textsf{Polycyclic} package is free software; you can redistribute it and/or modify it under the
terms of the \href{http://www.fsf.org/licenses/gpl.html} {GNU General Public License} as published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version. \mbox{}}\\[1cm]
{\small 
\section*{Acknowledgements}
\logpage{[ 0, 0, 2 ]}
 We appreciate very much all past and future comments, suggestions and
contributions to this package and its documentation provided by \textsf{GAP} users and developers. \mbox{}}\\[1cm]
\newpage

\def\contentsname{Contents\logpage{[ 0, 0, 3 ]}}

\tableofcontents
\newpage

 
\chapter{\textcolor{Chapter }{Preface}}\label{Preface}
\logpage{[ 1, 0, 0 ]}
\hyperdef{L}{X874E1D45845007FE}{}
{
  A group $G$ is called \emph{polycyclic} if there exists a subnormal series in $G$ with cyclic factors. Every polycyclic group is soluble and every supersoluble
group is polycyclic. The class of polycyclic groups is closed with respect to
forming subgroups, factor groups and extensions. Polycyclic groups can also be
characterised as those soluble groups in which each subgroup is finitely
generated. 

 K. A. Hirsch has initiated the investigation of polycyclic groups in 1938, see \cite{Hir38a}, \cite{Hir38b}, \cite{Hir46}, \cite{Hir52}, \cite{Hir54}, and their central position in infinite group theory has been recognised
since. 

 A well\texttt{\symbol{45}}known result of Hirsch asserts that each polycyclic
group is finitely presented. In fact, a polycyclic group has a presentation
which exhibits its polycyclic structure: a \emph{pc\texttt{\symbol{45}}presentation} as defined in the Chapter \hyperref[Introduction to polycyclic presentations]{`Introduction to polycyclic presentations'}. Pc\texttt{\symbol{45}}presentations allow efficient computations with the
groups they define. In particular, the word problem is efficiently solvable in
a group given by a pc\texttt{\symbol{45}}presentation. Further, subgroups and
factor groups of groups given by a pc\texttt{\symbol{45}}presentation can be
handled effectively. 

 The \textsf{GAP} 4 package \textsf{Polycyclic} is designed for computations with polycyclic groups which are given by a
pc\texttt{\symbol{45}}presentation. The package contains methods to solve the
word problem in such groups and to handle subgroups and factor groups of
polycyclic groups. Based on these basic algorithms we present a collection of
methods to construct polycyclic groups and to investigate their structure. 

 In \cite{BCRS91} and \cite{Seg90} the theory of problems which are decidable in
polycyclic\texttt{\symbol{45}}by\texttt{\symbol{45}}finite groups has been
started. As a result of these investigation we know that a large number of
group theoretic problems are decidable by algorithms in polycyclic groups.
However, practical algorithms which are suitable for computer implementations
have not been obtained by this study. We have developed a new set of practical
methods for groups given by pc\texttt{\symbol{45}}presentations, see for
example \cite{Eic00}, and this package is a collection of implementations for these and other
methods. 

 We refer to \cite{Rob82}, page 147ff, and \cite{Seg83} for background on polycyclic groups. Further, in \cite{Sims94} a variation of the basic methods for groups with
pc\texttt{\symbol{45}}presentation is introduced. Finally, we note that the
main GAP library contains many practical algorithms to compute with finite
polycyclic groups. This is described in the Section on polycyclic groups in
the reference manual. }

 
\chapter{\textcolor{Chapter }{Introduction to polycyclic presentations}}\label{Introduction to polycyclic presentations}
\logpage{[ 2, 0, 0 ]}
\hyperdef{L}{X792561B378D95B23}{}
{
  Let $G$ be a polycyclic group and let $G = C_1 \rhd C_2 \ldots C_n\rhd C_{n+1} = 1$ be a \emph{polycyclic series}, that is, a subnormal series of $G$ with non\texttt{\symbol{45}}trivial cyclic factors. For $1 \leq i \leq n$ we choose $g_i \in C_i$ such that $C_i = \langle g_i, C_{i+1} \rangle$. Then the sequence $(g_1, \ldots, g_n)$ is called a \emph{polycyclic generating sequence of $G$}. Let $I$ be the set of those $i \in \{1, \ldots, n\}$ with $r_i := [C_i : C_{i+1}]$ finite. Each element of $G$ can be written \mbox{\texttt{\mdseries\slshape uniquely}} as $g_1^{e_1}\cdots g_n^{e_n}$ with $e_i\in {\ensuremath{\mathbb Z}}$ for $1\leq i\leq n$ and $0\leq e_i < r_i$ for $i\in I$. 

 Each polycyclic generating sequence of $G$ gives rise to a \emph{power\texttt{\symbol{45}}conjugate (pc\texttt{\symbol{45}}) presentation} for $G$ with the conjugate relations 
\[g_j^{g_i} = g_{i+1}^{e(i,j,i+1)} \cdots g_n^{e(i,j,n)} \hbox{ for } 1 \leq i <
j \leq n,\]
 
\[g_j^{g_i^{-1}} = g_{i+1}^{f(i,j,i+1)} \cdots g_n^{f(i,j,n)} \hbox{ for } 1
\leq i < j \leq n,\]
 and the power relations 
\[g_i^{r_i} = g_{i+1}^{l(i,i+1)} \cdots g_n^{l(i,n)} \hbox{ for } i \in I.\]
 

 Vice versa, we say that a group $G$ is defined by a pc\texttt{\symbol{45}}presentation if $G$ is given by a presentation of the form above on generators $g_1,\ldots,g_n$. These generators are the \emph{defining generators} of $G$. Here, $I$ is the set of $1\leq i\leq n$ such that $g_i$ has a power relation. The positive integer $r_i$ for $i\in I$ is called the \emph{relative order} of $g_i$. If $G$ is given by a pc\texttt{\symbol{45}}presentation, then $G$ is polycyclic. The subgroups $C_i = \langle g_i, \ldots, g_n \rangle$ form a subnormal series $G = C_1 \geq \ldots \geq C_{n+1} = 1$ with cyclic factors and we have that $g_i^{r_i}\in C_{i+1}$. However, some of the factors of this series may be smaller than $r_i$ for $i\in I$ or finite if $i\not\in I$. 

 If $G$ is defined by a pc\texttt{\symbol{45}}presentation, then each element of $G$ can be described by a word of the form $g_1^{e_1}\cdots g_n^{e_n}$ in the defining generators with $e_i\in {\ensuremath{\mathbb Z}}$ for $1\leq i\leq n$ and $0\leq e_i < r_i$ for $i\in I$. Such a word is said to be in \emph{collected form}. In general, an element of the group can be represented by more than one
collected word. If the pc\texttt{\symbol{45}}presentation has the property
that each element of $G$ has precisely one word in collected form, then the presentation is called \emph{confluent} or \emph{consistent}. If that is the case, the generators with a power relation correspond
precisely to the finite factors in the polycyclic series and $r_i$ is the order of $C_i/C_{i+1}$. 

 The \textsf{GAP} package \textsf{Polycyclic} is designed for computations with polycyclic groups which are given by
consistent pc\texttt{\symbol{45}}presentations. In particular, all the
functions described below assume that we compute with a group defined by a
consistent pc\texttt{\symbol{45}}presentation. See Chapter \hyperref[Collectors]{`Collectors'} for a routine that checks the consistency of a
pc\texttt{\symbol{45}}presentation. 

 A pc\texttt{\symbol{45}}presentation can be interpreted as a \emph{rewriting system} in the following way. One needs to add a new generator $G_i$ for each generator $g_i$ together with the relations $g_iG_i = 1$ and $G_ig_i = 1$. Any occurrence in a relation of an inverse generator $g_i^{-1}$ is replaced by $G_i$. In this way one obtains a monoid presentation for the group $G$. With respect to a particular ordering on the set of monoid words in the
generators $g_1,\ldots g_n,G_1,\ldots G_n$, the \emph{wreath product ordering}, this monoid presentation is a rewriting system. If the
pc\texttt{\symbol{45}}presentation is consistent, the rewriting system is
confluent. 

 In this package we do not address this aspect of
pc\texttt{\symbol{45}}presentations because it is of little relevance for the
algorithms implemented here. For the definition of rewriting systems and
confluence in this context as well as further details on the connections
between pc\texttt{\symbol{45}}presentations and rewriting systems we recommend
the book \cite{Sims94}. }

 
\chapter{\textcolor{Chapter }{Collectors}}\label{Collectors}
\logpage{[ 3, 0, 0 ]}
\hyperdef{L}{X792305CC81E8606A}{}
{
  Let $G$ be a group defined by a pc\texttt{\symbol{45}}presentation as described in the
Chapter \hyperref[Introduction to polycyclic presentations]{`Introduction to polycyclic presentations'}. 

 The process for computing the collected form for an arbitrary word in the
generators of $G$ is called \emph{collection}. The basic idea in collection is the following. Given a word in the defining
generators, one scans the word for occurrences of adjacent generators (or
their inverses) in the wrong order or occurrences of subwords $g_i^{e_i}$ with $i\in I$ and $e_i$ not in the range $0\ldots r_{i}-1$. In the first case, the appropriate conjugacy relation is used to move the
generator with the smaller index to the left. In the second case, one uses the
appropriate power relation to move the exponent of $g_i$ into the required range. These steps are repeated until a collected word is
obtained. 

 There exist a number of different strategies for collecting a given word to
collected form. The strategies implemented in this package are \emph{collection from the left} as described by \cite{LGS90} and \cite{Sims94} and \emph{combinatorial collection from the left} by \cite{MVL90}. In addition, the package provides access to Hall polynomials computed by
Deep Thought for the multiplication in a nilpotent group, see \cite{WWM97} and \cite{LGS98}. 

 The first step in defining a pc\texttt{\symbol{45}}presented group is setting
up a data structure that knows the pc\texttt{\symbol{45}}presentation and has
routines that perform the collection algorithm with words in the generators of
the presentation. Such a data structure is called \emph{a collector}. 

 To describe the right hand sides of the relations in a
pc\texttt{\symbol{45}}presentation we use \emph{generator exponent lists}; the word $g_{i_1}^{e_1}g_{i_2}^{e_2}\ldots g_{i_k}^{e_k}$ is represented by the generator exponent list $[i_1,e_1,i_2,e_2,\ldots,i_k,e_k]$. 

  
\section{\textcolor{Chapter }{Constructing a Collector}}\label{Constructing a Collector}
\logpage{[ 3, 1, 0 ]}
\hyperdef{L}{X800FD91386C08CD8}{}
{
  A collector for a group given by a pc\texttt{\symbol{45}}presentation starts
by setting up an empty data structure for the collector. Then the relative
orders, the power relations and the conjugate relations are added into the
data structure. The construction is finalised by calling a routine that
completes the data structure for the collector. The following functions
provide the necessary tools for setting up a collector. 

\subsection{\textcolor{Chapter }{FromTheLeftCollector}}
\logpage{[ 3, 1, 1 ]}\nobreak
\hyperdef{L}{X8382A4E78706DE65}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{FromTheLeftCollector({\mdseries\slshape n})\index{FromTheLeftCollector@\texttt{FromTheLeftCollector}}
\label{FromTheLeftCollector}
}\hfill{\scriptsize (operation)}}\\


 returns an empty data structure for a collector with \mbox{\texttt{\mdseries\slshape n}} generators. No generator has a relative order, no right hand sides of power
and conjugate relations are defined. Two generators for which no right hand
side of a conjugate relation is defined commute. Therefore, the collector
returned by this function can be used to define a free abelian group of rank \mbox{\texttt{\mdseries\slshape n}}. 
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
  !gapprompt@gap>| !gapinput@ftl := FromTheLeftCollector( 4 );|
  <<from the left collector with 4 generators>>
  !gapprompt@gap>| !gapinput@PcpGroupByCollector( ftl );|
  Pcp-group with orders [ 0, 0, 0, 0 ]
  !gapprompt@gap>| !gapinput@IsAbelian(last);|
  true
\end{Verbatim}
 If the relative order of a generators has been defined (see \texttt{SetRelativeOrder} (\ref{SetRelativeOrder})), but the right hand side of the corresponding power relation has not, then
the order and the relative order of the generator are the same. }

 

\subsection{\textcolor{Chapter }{SetRelativeOrder}}
\logpage{[ 3, 1, 2 ]}\nobreak
\hyperdef{L}{X79A308B28183493B}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{SetRelativeOrder({\mdseries\slshape coll, i, ro})\index{SetRelativeOrder@\texttt{SetRelativeOrder}}
\label{SetRelativeOrder}
}\hfill{\scriptsize (operation)}}\\
\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{SetRelativeOrderNC({\mdseries\slshape coll, i, ro})\index{SetRelativeOrderNC@\texttt{SetRelativeOrderNC}}
\label{SetRelativeOrderNC}
}\hfill{\scriptsize (operation)}}\\


 set the relative order in collector \mbox{\texttt{\mdseries\slshape coll}} for generator \mbox{\texttt{\mdseries\slshape i}} to \mbox{\texttt{\mdseries\slshape ro}}. The parameter \mbox{\texttt{\mdseries\slshape coll}} is a collector as returned by the function \texttt{FromTheLeftCollector} (\ref{FromTheLeftCollector}), \mbox{\texttt{\mdseries\slshape i}} is a generator number and \mbox{\texttt{\mdseries\slshape ro}} is a non\texttt{\symbol{45}}negative integer. The generator number \mbox{\texttt{\mdseries\slshape i}} is an integer in the range $1,\ldots,n$ where $n$ is the number of generators of the collector. 

 If \mbox{\texttt{\mdseries\slshape ro}} is $0,$ then the generator with number \mbox{\texttt{\mdseries\slshape i}} has infinite order and no power relation can be specified. As a side effect in
this case, a previously defined power relation is deleted. 

 If \mbox{\texttt{\mdseries\slshape ro}} is the relative order of a generator with number \mbox{\texttt{\mdseries\slshape i}} and no power relation is set for that generator, then \mbox{\texttt{\mdseries\slshape ro}} is the order of that generator. 

 The NC version of the function bypasses checks on the range of \mbox{\texttt{\mdseries\slshape i}}. 
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
  !gapprompt@gap>| !gapinput@ftl := FromTheLeftCollector( 4 );|
  <<from the left collector with 4 generators>>
  !gapprompt@gap>| !gapinput@for i in [1..4] do SetRelativeOrder( ftl, i, 3 ); od;|
  !gapprompt@gap>| !gapinput@G := PcpGroupByCollector( ftl );|
  Pcp-group with orders [ 3, 3, 3, 3 ]
  !gapprompt@gap>| !gapinput@IsElementaryAbelian( G );|
  true
\end{Verbatim}
 }

 

\subsection{\textcolor{Chapter }{SetPower}}
\logpage{[ 3, 1, 3 ]}\nobreak
\hyperdef{L}{X7BC319BA8698420C}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{SetPower({\mdseries\slshape coll, i, rhs})\index{SetPower@\texttt{SetPower}}
\label{SetPower}
}\hfill{\scriptsize (operation)}}\\
\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{SetPowerNC({\mdseries\slshape coll, i, rhs})\index{SetPowerNC@\texttt{SetPowerNC}}
\label{SetPowerNC}
}\hfill{\scriptsize (operation)}}\\


 set the right hand side of the power relation for generator \mbox{\texttt{\mdseries\slshape i}} in collector \mbox{\texttt{\mdseries\slshape coll}} to (a copy of) \mbox{\texttt{\mdseries\slshape rhs}}. An attempt to set the right hand side for a generator without a relative
order results in an error. 

 Right hand sides are by default assumed to be trivial. 

 The parameter \mbox{\texttt{\mdseries\slshape coll}} is a collector, \mbox{\texttt{\mdseries\slshape i}} is a generator number and \mbox{\texttt{\mdseries\slshape rhs}} is a generators exponent list or an element from a free group. 

 The no\texttt{\symbol{45}}check (NC) version of the function bypasses checks
on the range of \mbox{\texttt{\mdseries\slshape i}} and stores \mbox{\texttt{\mdseries\slshape rhs}} (instead of a copy) in the collector. }

 

\subsection{\textcolor{Chapter }{SetConjugate}}
\logpage{[ 3, 1, 4 ]}\nobreak
\hyperdef{L}{X86A08D887E049347}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{SetConjugate({\mdseries\slshape coll, j, i, rhs})\index{SetConjugate@\texttt{SetConjugate}}
\label{SetConjugate}
}\hfill{\scriptsize (operation)}}\\
\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{SetConjugateNC({\mdseries\slshape coll, j, i, rhs})\index{SetConjugateNC@\texttt{SetConjugateNC}}
\label{SetConjugateNC}
}\hfill{\scriptsize (operation)}}\\


 set the right hand side of the conjugate relation for the generators \mbox{\texttt{\mdseries\slshape j}} and \mbox{\texttt{\mdseries\slshape i}} with \mbox{\texttt{\mdseries\slshape j}} larger than \mbox{\texttt{\mdseries\slshape i}}. The parameter \mbox{\texttt{\mdseries\slshape coll}} is a collector, \mbox{\texttt{\mdseries\slshape j}} and \mbox{\texttt{\mdseries\slshape i}} are generator numbers and \mbox{\texttt{\mdseries\slshape rhs}} is a generator exponent list or an element from a free group. Conjugate
relations are by default assumed to be trivial. 

 The generator number \mbox{\texttt{\mdseries\slshape i}} can be negative in order to define conjugation by the inverse of a generator. 

 The no\texttt{\symbol{45}}check (NC) version of the function bypasses checks
on the range of \mbox{\texttt{\mdseries\slshape i}} and \mbox{\texttt{\mdseries\slshape j}} and stores \mbox{\texttt{\mdseries\slshape rhs}} (instead of a copy) in the collector. }

 

\subsection{\textcolor{Chapter }{SetCommutator}}
\logpage{[ 3, 1, 5 ]}\nobreak
\hyperdef{L}{X7B25997C7DF92B6D}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{SetCommutator({\mdseries\slshape coll, j, i, rhs})\index{SetCommutator@\texttt{SetCommutator}}
\label{SetCommutator}
}\hfill{\scriptsize (operation)}}\\


 set the right hand side of the conjugate relation for the generators \mbox{\texttt{\mdseries\slshape j}} and \mbox{\texttt{\mdseries\slshape i}} with \mbox{\texttt{\mdseries\slshape j}} larger than \mbox{\texttt{\mdseries\slshape i}} by specifying the commutator of \mbox{\texttt{\mdseries\slshape j}} and \mbox{\texttt{\mdseries\slshape i}}. The parameter \mbox{\texttt{\mdseries\slshape coll}} is a collector, \mbox{\texttt{\mdseries\slshape j}} and \mbox{\texttt{\mdseries\slshape i}} are generator numbers and \mbox{\texttt{\mdseries\slshape rhs}} is a generator exponent list or an element from a free group. 

 The generator number \mbox{\texttt{\mdseries\slshape i}} can be negative in order to define the right hand side of a commutator
relation with the second generator being the inverse of a generator. }

 

\subsection{\textcolor{Chapter }{UpdatePolycyclicCollector}}
\logpage{[ 3, 1, 6 ]}\nobreak
\hyperdef{L}{X7E9903F57BC5CC24}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{UpdatePolycyclicCollector({\mdseries\slshape coll})\index{UpdatePolycyclicCollector@\texttt{UpdatePolycyclicCollector}}
\label{UpdatePolycyclicCollector}
}\hfill{\scriptsize (operation)}}\\


 completes the data structures of a collector. This is usually the last step in
setting up a collector. Among the steps performed is the completion of the
conjugate relations. For each non\texttt{\symbol{45}}trivial conjugate
relation of a generator, the corresponding conjugate relation of the inverse
generator is calculated. 

 Note that \texttt{UpdatePolycyclicCollector} is automatically called by the function \texttt{PcpGroupByCollector} (see \texttt{PcpGroupByCollector} (\ref{PcpGroupByCollector})). }

 

\subsection{\textcolor{Chapter }{IsConfluent}}
\logpage{[ 3, 1, 7 ]}\nobreak
\hyperdef{L}{X8006790B86328CE8}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{IsConfluent({\mdseries\slshape coll})\index{IsConfluent@\texttt{IsConfluent}}
\label{IsConfluent}
}\hfill{\scriptsize (property)}}\\


 tests if the collector \mbox{\texttt{\mdseries\slshape coll}} is confluent. The function returns true or false accordingly. 

 Compare Chapter \ref{Introduction to polycyclic presentations} for a definition of confluence. 

 Note that confluence is automatically checked by the function \texttt{PcpGroupByCollector} (see \texttt{PcpGroupByCollector} (\ref{PcpGroupByCollector})). 

 The following example defines a collector for a semidirect product of the
cyclic group of order $3$ with the free abelian group of rank $2$. The action of the cyclic group on the free abelian group is given by the
matrix 
\[\pmatrix{ 0 & 1 \cr -1 & -1}.\]
 This leads to the following polycyclic presentation: 
\[\langle g_1,g_2,g_3 | g_1^3, g_2^{g_1}=g_3, g_3^{g_1}=g_2^{-1}g_3^{-1},
g_3^{g_2}=g_3\rangle.\]
 
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
  !gapprompt@gap>| !gapinput@ftl := FromTheLeftCollector( 3 );|
  <<from the left collector with 3 generators>>
  !gapprompt@gap>| !gapinput@SetRelativeOrder( ftl, 1, 3 );|
  !gapprompt@gap>| !gapinput@SetConjugate( ftl, 2, 1, [3,1] );|
  !gapprompt@gap>| !gapinput@SetConjugate( ftl, 3, 1, [2,-1,3,-1] );|
  !gapprompt@gap>| !gapinput@UpdatePolycyclicCollector( ftl );|
  !gapprompt@gap>| !gapinput@IsConfluent( ftl );|
  true
\end{Verbatim}
 The action of the inverse of $g_1$ on $\langle g_2,g_2\rangle$ is given by the matrix 
\[\pmatrix{ -1 & -1 \cr 1 & 0}.\]
 The corresponding conjugate relations are automatically computed by \texttt{UpdatePolycyclicCollector}. It is also possible to specify the conjugation by inverse generators. Note
that you need to run \texttt{UpdatePolycyclicCollector} after one of the set functions has been used. 
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
  !gapprompt@gap>| !gapinput@SetConjugate( ftl, 2, -1, [2,-1,3,-1] );|
  !gapprompt@gap>| !gapinput@SetConjugate( ftl, 3, -1, [2,1] );|
  !gapprompt@gap>| !gapinput@IsConfluent( ftl );|
  Error, Collector is out of date called from
  CollectWordOrFail( coll, ev1, [ j, 1, i, 1 ] ); called from
  <function>( <arguments> ) called from read-eval-loop
  Entering break read-eval-print loop ...
  you can 'quit;' to quit to outer loop, or
  you can 'return;' to continue
  !gapbrkprompt@brk>| !gapinput@|
  !gapprompt@gap>| !gapinput@UpdatePolycyclicCollector( ftl );|
  !gapprompt@gap>| !gapinput@IsConfluent( ftl );|
  true
\end{Verbatim}
 }

 }

  
\section{\textcolor{Chapter }{Accessing Parts of a Collector}}\label{Accessing Parts of a Collector}
\logpage{[ 3, 2, 0 ]}
\hyperdef{L}{X818484817C3BAAE6}{}
{
  

\subsection{\textcolor{Chapter }{RelativeOrders}}
\logpage{[ 3, 2, 1 ]}\nobreak
\hyperdef{L}{X7DD0DF677AC1CF10}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{RelativeOrders({\mdseries\slshape coll})\index{RelativeOrders@\texttt{RelativeOrders}}
\label{RelativeOrders}
}\hfill{\scriptsize (attribute)}}\\


 returns (a copy of) the list of relative order stored in the collector \mbox{\texttt{\mdseries\slshape coll}}. }

 

\subsection{\textcolor{Chapter }{GetPower}}
\logpage{[ 3, 2, 2 ]}\nobreak
\hyperdef{L}{X844C0A478735EF4B}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{GetPower({\mdseries\slshape coll, i})\index{GetPower@\texttt{GetPower}}
\label{GetPower}
}\hfill{\scriptsize (operation)}}\\
\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{GetPowerNC({\mdseries\slshape coll, i})\index{GetPowerNC@\texttt{GetPowerNC}}
\label{GetPowerNC}
}\hfill{\scriptsize (operation)}}\\


 returns a copy of the generator exponent list stored for the right hand side
of the power relation of the generator \mbox{\texttt{\mdseries\slshape i}} in the collector \mbox{\texttt{\mdseries\slshape coll}}. 

 The no\texttt{\symbol{45}}check (NC) version of the function bypasses checks
on the range of \mbox{\texttt{\mdseries\slshape i}} and does not create a copy before returning the right hand side of the power
relation. }

 

\subsection{\textcolor{Chapter }{GetConjugate}}
\logpage{[ 3, 2, 3 ]}\nobreak
\hyperdef{L}{X865160E07FA93E00}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{GetConjugate({\mdseries\slshape coll, j, i})\index{GetConjugate@\texttt{GetConjugate}}
\label{GetConjugate}
}\hfill{\scriptsize (operation)}}\\
\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{GetConjugateNC({\mdseries\slshape coll, j, i})\index{GetConjugateNC@\texttt{GetConjugateNC}}
\label{GetConjugateNC}
}\hfill{\scriptsize (operation)}}\\


 returns a copy of the right hand side of the conjugate relation stored for the
generators \mbox{\texttt{\mdseries\slshape j}} and \mbox{\texttt{\mdseries\slshape i}} in the collector \mbox{\texttt{\mdseries\slshape coll}} as generator exponent list. The generator \mbox{\texttt{\mdseries\slshape j}} must be larger than \mbox{\texttt{\mdseries\slshape i}}. 

 The no\texttt{\symbol{45}}check (NC) version of the function bypasses checks
on the range of \mbox{\texttt{\mdseries\slshape i}} and \mbox{\texttt{\mdseries\slshape j}} and does not create a copy before returning the right hand side of the power
relation. }

 

\subsection{\textcolor{Chapter }{NumberOfGenerators}}
\logpage{[ 3, 2, 4 ]}\nobreak
\hyperdef{L}{X7D6A26A4871FF51A}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{NumberOfGenerators({\mdseries\slshape coll})\index{NumberOfGenerators@\texttt{NumberOfGenerators}}
\label{NumberOfGenerators}
}\hfill{\scriptsize (operation)}}\\


 returns the number of generators of the collector \mbox{\texttt{\mdseries\slshape coll}}. }

 

\subsection{\textcolor{Chapter }{ObjByExponents}}
\logpage{[ 3, 2, 5 ]}\nobreak
\hyperdef{L}{X873ECF388503E5DE}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{ObjByExponents({\mdseries\slshape coll, expvec})\index{ObjByExponents@\texttt{ObjByExponents}}
\label{ObjByExponents}
}\hfill{\scriptsize (operation)}}\\


 returns a generator exponent list for the exponent vector \mbox{\texttt{\mdseries\slshape expvec}}. This is the inverse operation to \texttt{ExponentsByObj}. See \texttt{ExponentsByObj} (\ref{ExponentsByObj}) for an example. }

 

\subsection{\textcolor{Chapter }{ExponentsByObj}}
\logpage{[ 3, 2, 6 ]}\nobreak
\hyperdef{L}{X85BCB97B8021EAD6}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{ExponentsByObj({\mdseries\slshape coll, genexp})\index{ExponentsByObj@\texttt{ExponentsByObj}}
\label{ExponentsByObj}
}\hfill{\scriptsize (operation)}}\\


 returns an exponent vector for the generator exponent list \mbox{\texttt{\mdseries\slshape genexp}}. This is the inverse operation to \texttt{ObjByExponents}. The function assumes that the generators in \mbox{\texttt{\mdseries\slshape genexp}} are given in the right order and that the exponents are in the right range. 
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
  !gapprompt@gap>| !gapinput@G := UnitriangularPcpGroup( 4, 0 );|
  Pcp-group with orders [ 0, 0, 0, 0, 0, 0 ]
  !gapprompt@gap>| !gapinput@coll := Collector ( G );|
  <<from the left collector with 6 generators>>
  !gapprompt@gap>| !gapinput@ObjByExponents( coll, [6,-5,4,3,-2,1] );|
  [ 1, 6, 2, -5, 3, 4, 4, 3, 5, -2, 6, 1 ]
  !gapprompt@gap>| !gapinput@ExponentsByObj( coll, last );|
  [ 6, -5, 4, 3, -2, 1 ]
\end{Verbatim}
 }

 }

  
\section{\textcolor{Chapter }{Special Features}}\label{Special Features}
\logpage{[ 3, 3, 0 ]}
\hyperdef{L}{X79AEB3477800DC16}{}
{
  In this section we descibe collectors for nilpotent groups which make use of
the special structure of the given pc\texttt{\symbol{45}}presentation. 

\subsection{\textcolor{Chapter }{IsWeightedCollector}}
\logpage{[ 3, 3, 1 ]}\nobreak
\hyperdef{L}{X82EE2ACD7B8C178B}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{IsWeightedCollector({\mdseries\slshape coll})\index{IsWeightedCollector@\texttt{IsWeightedCollector}}
\label{IsWeightedCollector}
}\hfill{\scriptsize (property)}}\\


 checks if there is a function $w$ from the generators of the collector \mbox{\texttt{\mdseries\slshape coll}} into the positive integers such that $w(g) \geq w(x)+w(y)$ for all generators $x$, $y$ and all generators $g$ in (the normal of) $[x,y]$. If such a function does not exist, false is returned. If such a function
exists, it is computed and stored in the collector. In addition, the default
collection strategy for this collector is set to combinatorial collection. }

 

\subsection{\textcolor{Chapter }{AddHallPolynomials}}
\logpage{[ 3, 3, 2 ]}\nobreak
\hyperdef{L}{X7A1D7ED68334282C}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{AddHallPolynomials({\mdseries\slshape coll})\index{AddHallPolynomials@\texttt{AddHallPolynomials}}
\label{AddHallPolynomials}
}\hfill{\scriptsize (function)}}\\


 is applicable to a collector which passes \texttt{IsWeightedCollector} and computes the Hall multiplication polynomials for the presentation stored
in \mbox{\texttt{\mdseries\slshape coll}}. The default strategy for this collector is set to evaluating those
polynomial when multiplying two elements. }

 

\subsection{\textcolor{Chapter }{String}}
\logpage{[ 3, 3, 3 ]}\nobreak
\hyperdef{L}{X81FB5BE27903EC32}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{String({\mdseries\slshape coll})\index{String@\texttt{String}}
\label{String}
}\hfill{\scriptsize (attribute)}}\\


 converts a collector \mbox{\texttt{\mdseries\slshape coll}} into a string. }

 

\subsection{\textcolor{Chapter }{FTLCollectorPrintTo}}
\logpage{[ 3, 3, 4 ]}\nobreak
\hyperdef{L}{X7ED466B6807D16FE}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{FTLCollectorPrintTo({\mdseries\slshape file, name, coll})\index{FTLCollectorPrintTo@\texttt{FTLCollectorPrintTo}}
\label{FTLCollectorPrintTo}
}\hfill{\scriptsize (function)}}\\


 stores a collector \mbox{\texttt{\mdseries\slshape coll}} in the file \mbox{\texttt{\mdseries\slshape file}} such that the file can be read back using the function 'Read' into \textsf{GAP} and would then be stored in the variable \mbox{\texttt{\mdseries\slshape name}}. }

 

\subsection{\textcolor{Chapter }{FTLCollectorAppendTo}}
\logpage{[ 3, 3, 5 ]}\nobreak
\hyperdef{L}{X789D9EB37ECFA9D7}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{FTLCollectorAppendTo({\mdseries\slshape file, name, coll})\index{FTLCollectorAppendTo@\texttt{FTLCollectorAppendTo}}
\label{FTLCollectorAppendTo}
}\hfill{\scriptsize (function)}}\\


 appends a collector \mbox{\texttt{\mdseries\slshape coll}} in the file \mbox{\texttt{\mdseries\slshape file}} such that the file can be read back into \textsf{GAP} and would then be stored in the variable \mbox{\texttt{\mdseries\slshape name}}. }

 

\subsection{\textcolor{Chapter }{UseLibraryCollector}}
\logpage{[ 3, 3, 6 ]}\nobreak
\hyperdef{L}{X808A26FB873A354F}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{UseLibraryCollector\index{UseLibraryCollector@\texttt{UseLibraryCollector}}
\label{UseLibraryCollector}
}\hfill{\scriptsize (global variable)}}\\


 this property can be set to \texttt{true} for a collector to force a simple
from\texttt{\symbol{45}}the\texttt{\symbol{45}}left collection strategy
implemented in the \textsf{GAP} language to be used. Its main purpose is to help debug the collection
routines. }

 

\subsection{\textcolor{Chapter }{USE{\textunderscore}LIBRARY{\textunderscore}COLLECTOR}}
\logpage{[ 3, 3, 7 ]}\nobreak
\hyperdef{L}{X844E195C7D55F8BD}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{USE{\textunderscore}LIBRARY{\textunderscore}COLLECTOR\index{USE{\textunderscore}LIBRARY{\textunderscore}COLLECTOR@\texttt{USE{\textunderscore}}\-\texttt{L}\-\texttt{I}\-\texttt{B}\-\texttt{R}\-\texttt{A}\-\texttt{R}\-\texttt{Y{\textunderscore}}\-\texttt{C}\-\texttt{O}\-\texttt{L}\-\texttt{L}\-\texttt{E}\-\texttt{CTOR}}
\label{USEuScoreLIBRARYuScoreCOLLECTOR}
}\hfill{\scriptsize (global variable)}}\\


 this global variable can be set to \texttt{true} to force all collectors to use a simple
from\texttt{\symbol{45}}the\texttt{\symbol{45}}left collection strategy
implemented in the \textsf{GAP} language to be used. Its main purpose is to help debug the collection
routines. }

 

\subsection{\textcolor{Chapter }{DEBUG{\textunderscore}COMBINATORIAL{\textunderscore}COLLECTOR}}
\logpage{[ 3, 3, 8 ]}\nobreak
\hyperdef{L}{X7945C6B97BECCDA8}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{DEBUG{\textunderscore}COMBINATORIAL{\textunderscore}COLLECTOR\index{DEBUG{\textunderscore}COMBINATORIAL{\textunderscore}COLLECTOR@\texttt{DEB}\-\texttt{U}\-\texttt{G{\textunderscore}}\-\texttt{C}\-\texttt{O}\-\texttt{M}\-\texttt{B}\-\texttt{I}\-\texttt{N}\-\texttt{A}\-\texttt{T}\-\texttt{O}\-\texttt{R}\-\texttt{I}\-\texttt{A}\-\texttt{L{\textunderscore}}\-\texttt{C}\-\texttt{O}\-\texttt{L}\-\texttt{L}\-\texttt{E}\-\texttt{CTOR}}
\label{DEBUGuScoreCOMBINATORIALuScoreCOLLECTOR}
}\hfill{\scriptsize (global variable)}}\\


 this global variable can be set to \texttt{true} to force the comparison of results from the combinatorial collector with the
result of an identical collection performed by a simple
from\texttt{\symbol{45}}the\texttt{\symbol{45}}left collector. Its main
purpose is to help debug the collection routines. }

 

\subsection{\textcolor{Chapter }{USE{\textunderscore}COMBINATORIAL{\textunderscore}COLLECTOR}}
\logpage{[ 3, 3, 9 ]}\nobreak
\hyperdef{L}{X7BDFB55D7CB33543}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{USE{\textunderscore}COMBINATORIAL{\textunderscore}COLLECTOR\index{USE{\textunderscore}COMBINATORIAL{\textunderscore}COLLECTOR@\texttt{USE{\textunderscore}}\-\texttt{C}\-\texttt{O}\-\texttt{M}\-\texttt{B}\-\texttt{I}\-\texttt{N}\-\texttt{A}\-\texttt{T}\-\texttt{O}\-\texttt{R}\-\texttt{I}\-\texttt{A}\-\texttt{L{\textunderscore}}\-\texttt{C}\-\texttt{O}\-\texttt{L}\-\texttt{L}\-\texttt{E}\-\texttt{CTOR}}
\label{USEuScoreCOMBINATORIALuScoreCOLLECTOR}
}\hfill{\scriptsize (global variable)}}\\


 this global variable can be set to \texttt{false} in order to prevent the combinatorial collector to be used. }

 }

 }

 
\chapter{\textcolor{Chapter }{Pcp\texttt{\symbol{45}}groups \texttt{\symbol{45}} polycyclically presented
groups}}\label{Pcp-groups - polycyclically presented groups}
\logpage{[ 4, 0, 0 ]}
\hyperdef{L}{X7E2AF25881CF7307}{}
{
   
\section{\textcolor{Chapter }{Pcp\texttt{\symbol{45}}elements \texttt{\symbol{45}}\texttt{\symbol{45}}
elements of a pc\texttt{\symbol{45}}presented group}}\label{Pcp-elements -- elements of a pc-presented group}
\logpage{[ 4, 1, 0 ]}
\hyperdef{L}{X7882F0F57ABEB680}{}
{
  A \emph{pcp\texttt{\symbol{45}}element} is an element of a group defined by a consistent
pc\texttt{\symbol{45}}presentation given by a collector. Suppose that $g_1, \ldots, g_n$ are the defining generators of the collector. Recall that each element $g$ in this group can be written uniquely as a collected word $g_1^{e_1} \cdots g_n^{e_n}$ with $e_i \in {\ensuremath{\mathbb Z}}$ and $0 \leq e_i < r_i$ for $i \in I$. The integer vector $[e_1, \ldots, e_n]$ is called the \emph{exponent vector} of $g$. The following functions can be used to define
pcp\texttt{\symbol{45}}elements via their exponent vector or via an arbitrary
generator exponent word as introduced in Chapter \ref{Collectors}. 

\subsection{\textcolor{Chapter }{PcpElementByExponentsNC}}
\logpage{[ 4, 1, 1 ]}\nobreak
\hyperdef{L}{X786DB93F7862D903}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{PcpElementByExponentsNC({\mdseries\slshape coll, exp})\index{PcpElementByExponentsNC@\texttt{PcpElementByExponentsNC}}
\label{PcpElementByExponentsNC}
}\hfill{\scriptsize (function)}}\\
\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{PcpElementByExponents({\mdseries\slshape coll, exp})\index{PcpElementByExponents@\texttt{PcpElementByExponents}}
\label{PcpElementByExponents}
}\hfill{\scriptsize (function)}}\\


 returns the pcp\texttt{\symbol{45}}element with exponent vector \mbox{\texttt{\mdseries\slshape exp}}. The exponent vector is considered relative to the defining generators of the
pc\texttt{\symbol{45}}presentation. }

 

\subsection{\textcolor{Chapter }{PcpElementByGenExpListNC}}
\logpage{[ 4, 1, 2 ]}\nobreak
\hyperdef{L}{X7BBB358C7AA64135}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{PcpElementByGenExpListNC({\mdseries\slshape coll, word})\index{PcpElementByGenExpListNC@\texttt{PcpElementByGenExpListNC}}
\label{PcpElementByGenExpListNC}
}\hfill{\scriptsize (function)}}\\
\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{PcpElementByGenExpList({\mdseries\slshape coll, word})\index{PcpElementByGenExpList@\texttt{PcpElementByGenExpList}}
\label{PcpElementByGenExpList}
}\hfill{\scriptsize (function)}}\\


 returns the pcp\texttt{\symbol{45}}element with generators exponent list \mbox{\texttt{\mdseries\slshape word}}. This list \mbox{\texttt{\mdseries\slshape word}} consists of a sequence of generator numbers and their corresponding exponents
and is of the form $[i_1, e_{i_1}, i_2, e_{i_2}, \ldots, i_r, e_{i_r}]$. The generators exponent list is considered relative to the defining
generators of the pc\texttt{\symbol{45}}presentation. 

 These functions return pcp\texttt{\symbol{45}}elements in the category \texttt{IsPcpElement}. Presently, the only representation implemented for this category is \texttt{IsPcpElementRep}. (This allows us to be a little sloppy right now. The basic set of operations
for \texttt{IsPcpElement} has not been defined yet. This is going to happen in one of the next version,
certainly as soon as the need for different representations arises.) }

 

\subsection{\textcolor{Chapter }{IsPcpElement}}
\logpage{[ 4, 1, 3 ]}\nobreak
\hyperdef{L}{X86083E297D68733B}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{IsPcpElement({\mdseries\slshape obj})\index{IsPcpElement@\texttt{IsPcpElement}}
\label{IsPcpElement}
}\hfill{\scriptsize (Category)}}\\


 returns true if the object \mbox{\texttt{\mdseries\slshape obj}} is a pcp\texttt{\symbol{45}}element. }

 

\subsection{\textcolor{Chapter }{IsPcpElementCollection}}
\logpage{[ 4, 1, 4 ]}\nobreak
\hyperdef{L}{X8695069A7D5073B7}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{IsPcpElementCollection({\mdseries\slshape obj})\index{IsPcpElementCollection@\texttt{IsPcpElementCollection}}
\label{IsPcpElementCollection}
}\hfill{\scriptsize (Category)}}\\


 returns true if the object \mbox{\texttt{\mdseries\slshape obj}} is a collection of pcp\texttt{\symbol{45}}elements. }

 

\subsection{\textcolor{Chapter }{IsPcpElementRep}}
\logpage{[ 4, 1, 5 ]}\nobreak
\hyperdef{L}{X7F2C83AD862910B9}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{IsPcpElementRep({\mdseries\slshape obj})\index{IsPcpElementRep@\texttt{IsPcpElementRep}}
\label{IsPcpElementRep}
}\hfill{\scriptsize (Representation)}}\\


 returns true if the object \mbox{\texttt{\mdseries\slshape obj}} is represented as a pcp\texttt{\symbol{45}}element. }

 

\subsection{\textcolor{Chapter }{IsPcpGroup}}
\logpage{[ 4, 1, 6 ]}\nobreak
\hyperdef{L}{X8470284A78A6C41B}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{IsPcpGroup({\mdseries\slshape obj})\index{IsPcpGroup@\texttt{IsPcpGroup}}
\label{IsPcpGroup}
}\hfill{\scriptsize (Filter)}}\\


 returns true if the object \mbox{\texttt{\mdseries\slshape obj}} is a group and also a pcp\texttt{\symbol{45}}element collection. }

 }

  
\section{\textcolor{Chapter }{Methods for pcp\texttt{\symbol{45}}elements}}\label{Methods for pcp-elements}
\logpage{[ 4, 2, 0 ]}
\hyperdef{L}{X790471D07A953E12}{}
{
  Now we can describe attributes and functions for
pcp\texttt{\symbol{45}}elements. The four basic attributes of a
pcp\texttt{\symbol{45}}element, \texttt{Collector}, \texttt{Exponents}, \texttt{GenExpList} and \texttt{NameTag} are computed at the creation of the pcp\texttt{\symbol{45}}element. All other
attributes are determined at runtime. 

 Let \mbox{\texttt{\mdseries\slshape g}} be a pcp\texttt{\symbol{45}}element and $g_1, \ldots, g_n$ a polycyclic generating sequence of the underlying
pc\texttt{\symbol{45}}presented group. Let $C_1, \ldots, C_n$ be the polycyclic series defined by $g_1, \ldots, g_n$. 

 The \emph{depth} of a non\texttt{\symbol{45}}trivial element $g$ of a pcp\texttt{\symbol{45}}group (with respect to the defining generators) is
the integer $i$ such that $g \in C_i \setminus C_{i+1}$. The depth of the trivial element is defined to be $n+1$. If $g\not=1$ has depth $i$ and $g_i^{e_i} \cdots g_n^{e_n}$ is the collected word for $g$, then $e_i$ is the \emph{leading exponent} of $g$. 

 If $g$ has depth $i$, then we call $r_i = [C_i:C_{i+1}]$ the \emph{factor order} of $g$. If $r < \infty$, then the smallest positive integer $l$ with $g^l \in C_{i+1}$ is the called \emph{relative order} of $g$. If $r=\infty$, then the relative order of $g$ is defined to be $0$. The index $e$ of $\langle g,C_{i+1}\rangle$ in $C_i$ is called \emph{relative index} of $g$. We have that $r = el$. 

 We call a pcp\texttt{\symbol{45}}element \emph{normed}, if its leading exponent is equal to its relative index. For each
pcp\texttt{\symbol{45}}element $g$ there exists an integer $e$ such that $g^e$ is normed. 

\subsection{\textcolor{Chapter }{Collector}}
\logpage{[ 4, 2, 1 ]}\nobreak
\hyperdef{L}{X7E2D258B7DCE8AC9}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{Collector({\mdseries\slshape g})\index{Collector@\texttt{Collector}}
\label{Collector}
}\hfill{\scriptsize (operation)}}\\


 the collector to which the pcp\texttt{\symbol{45}}element \mbox{\texttt{\mdseries\slshape g}} belongs. }

 

\subsection{\textcolor{Chapter }{Exponents}}
\logpage{[ 4, 2, 2 ]}\nobreak
\hyperdef{L}{X85C672E78630C507}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{Exponents({\mdseries\slshape g})\index{Exponents@\texttt{Exponents}}
\label{Exponents}
}\hfill{\scriptsize (operation)}}\\


 returns the exponent vector of the pcp\texttt{\symbol{45}}element \mbox{\texttt{\mdseries\slshape g}} with respect to the defining generating set of the underlying collector. }

 

\subsection{\textcolor{Chapter }{GenExpList}}
\logpage{[ 4, 2, 3 ]}\nobreak
\hyperdef{L}{X8571F6FB7E74346C}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{GenExpList({\mdseries\slshape g})\index{GenExpList@\texttt{GenExpList}}
\label{GenExpList}
}\hfill{\scriptsize (operation)}}\\


 returns the generators exponent list of the pcp\texttt{\symbol{45}}element \mbox{\texttt{\mdseries\slshape g}} with respect to the defining generating set of the underlying collector. }

 

\subsection{\textcolor{Chapter }{NameTag}}
\logpage{[ 4, 2, 4 ]}\nobreak
\hyperdef{L}{X82252C5E7B011559}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{NameTag({\mdseries\slshape g})\index{NameTag@\texttt{NameTag}}
\label{NameTag}
}\hfill{\scriptsize (operation)}}\\


 the name used for printing the pcp\texttt{\symbol{45}}element \mbox{\texttt{\mdseries\slshape g}}. Printing is done by using the name tag and appending the generator number of \mbox{\texttt{\mdseries\slshape g}}. }

 

\subsection{\textcolor{Chapter }{Depth}}
\logpage{[ 4, 2, 5 ]}\nobreak
\hyperdef{L}{X840D32D9837E99F5}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{Depth({\mdseries\slshape g})\index{Depth@\texttt{Depth}}
\label{Depth}
}\hfill{\scriptsize (operation)}}\\


 returns the depth of the pcp\texttt{\symbol{45}}element \mbox{\texttt{\mdseries\slshape g}} relative to the defining generators. }

 

\subsection{\textcolor{Chapter }{LeadingExponent}}
\logpage{[ 4, 2, 6 ]}\nobreak
\hyperdef{L}{X874F1EC178721833}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{LeadingExponent({\mdseries\slshape g})\index{LeadingExponent@\texttt{LeadingExponent}}
\label{LeadingExponent}
}\hfill{\scriptsize (operation)}}\\


 returns the leading exponent of pcp\texttt{\symbol{45}}element \mbox{\texttt{\mdseries\slshape g}} relative to the defining generators. If \mbox{\texttt{\mdseries\slshape g}} is the identity element, the functions returns 'fail' }

 

\subsection{\textcolor{Chapter }{RelativeOrder}}
\logpage{[ 4, 2, 7 ]}\nobreak
\hyperdef{L}{X8008AB61823A76B7}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{RelativeOrder({\mdseries\slshape g})\index{RelativeOrder@\texttt{RelativeOrder}}
\label{RelativeOrder}
}\hfill{\scriptsize (attribute)}}\\


 returns the relative order of the pcp\texttt{\symbol{45}}element \mbox{\texttt{\mdseries\slshape g}} with respect to the defining generators. }

 

\subsection{\textcolor{Chapter }{RelativeIndex}}
\logpage{[ 4, 2, 8 ]}\nobreak
\hyperdef{L}{X875D04288577015B}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{RelativeIndex({\mdseries\slshape g})\index{RelativeIndex@\texttt{RelativeIndex}}
\label{RelativeIndex}
}\hfill{\scriptsize (attribute)}}\\


 returns the relative index of the pcp\texttt{\symbol{45}}element \mbox{\texttt{\mdseries\slshape g}} with respect to the defining generators. }

 

\subsection{\textcolor{Chapter }{FactorOrder}}
\logpage{[ 4, 2, 9 ]}\nobreak
\hyperdef{L}{X87E070747955F2C1}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{FactorOrder({\mdseries\slshape g})\index{FactorOrder@\texttt{FactorOrder}}
\label{FactorOrder}
}\hfill{\scriptsize (attribute)}}\\


 returns the factor order of the pcp\texttt{\symbol{45}}element \mbox{\texttt{\mdseries\slshape g}} with respect to the defining generators. }

 

\subsection{\textcolor{Chapter }{NormingExponent}}
\logpage{[ 4, 2, 10 ]}\nobreak
\hyperdef{L}{X79A247797F0A8583}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{NormingExponent({\mdseries\slshape g})\index{NormingExponent@\texttt{NormingExponent}}
\label{NormingExponent}
}\hfill{\scriptsize (function)}}\\


 returns a positive integer $e$ such that the pcp\texttt{\symbol{45}}element \mbox{\texttt{\mdseries\slshape g}} raised to the power of $e$ is normed. }

 

\subsection{\textcolor{Chapter }{NormedPcpElement}}
\logpage{[ 4, 2, 11 ]}\nobreak
\hyperdef{L}{X798BB22B80833441}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{NormedPcpElement({\mdseries\slshape g})\index{NormedPcpElement@\texttt{NormedPcpElement}}
\label{NormedPcpElement}
}\hfill{\scriptsize (function)}}\\


 returns the normed element corresponding to the pcp\texttt{\symbol{45}}element \mbox{\texttt{\mdseries\slshape g}}. }

 }

  
\section{\textcolor{Chapter }{Pcp\texttt{\symbol{45}}groups \texttt{\symbol{45}} groups of
pcp\texttt{\symbol{45}}elements}}\label{pcpgroup}
\logpage{[ 4, 3, 0 ]}
\hyperdef{L}{X7A4EF7C68151905A}{}
{
  A \emph{pcp\texttt{\symbol{45}}group} is a group consisting of pcp\texttt{\symbol{45}}elements such that all
pcp\texttt{\symbol{45}}elements in the group share the same collector. Thus
the group $G$ defined by a polycyclic presentation and all its subgroups are
pcp\texttt{\symbol{45}}groups. 

\subsection{\textcolor{Chapter }{PcpGroupByCollector}}
\logpage{[ 4, 3, 1 ]}\nobreak
\hyperdef{L}{X7C8FBCAB7F63FACB}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{PcpGroupByCollector({\mdseries\slshape coll})\index{PcpGroupByCollector@\texttt{PcpGroupByCollector}}
\label{PcpGroupByCollector}
}\hfill{\scriptsize (function)}}\\
\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{PcpGroupByCollectorNC({\mdseries\slshape coll})\index{PcpGroupByCollectorNC@\texttt{PcpGroupByCollectorNC}}
\label{PcpGroupByCollectorNC}
}\hfill{\scriptsize (function)}}\\


 returns a pcp\texttt{\symbol{45}}group build from the collector \mbox{\texttt{\mdseries\slshape coll}}. 

 The function calls \texttt{UpdatePolycyclicCollector} (\ref{UpdatePolycyclicCollector}) and checks the confluence (see \texttt{IsConfluent} (\ref{IsConfluent})) of the collector. 

 The non\texttt{\symbol{45}}check version bypasses these checks. }

 

\subsection{\textcolor{Chapter }{Group}}
\logpage{[ 4, 3, 2 ]}\nobreak
\hyperdef{L}{X7D7B075385435151}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{Group({\mdseries\slshape gens, id})\index{Group@\texttt{Group}}
\label{Group}
}\hfill{\scriptsize (function)}}\\


 returns the group generated by the pcp\texttt{\symbol{45}}elements \mbox{\texttt{\mdseries\slshape gens}} with identity \mbox{\texttt{\mdseries\slshape id}}. }

 

\subsection{\textcolor{Chapter }{Subgroup}}
\logpage{[ 4, 3, 3 ]}\nobreak
\hyperdef{L}{X7C82AA387A42DCA0}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{Subgroup({\mdseries\slshape G, gens})\index{Subgroup@\texttt{Subgroup}}
\label{Subgroup}
}\hfill{\scriptsize (function)}}\\


 returns a subgroup of the pcp\texttt{\symbol{45}}group \mbox{\texttt{\mdseries\slshape G}} generated by the list \mbox{\texttt{\mdseries\slshape gens}} of pcp\texttt{\symbol{45}}elements from \mbox{\texttt{\mdseries\slshape G}}. 
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
  !gapprompt@gap>| !gapinput@ ftl := FromTheLeftCollector( 2 );;|
  !gapprompt@gap>| !gapinput@ SetRelativeOrder( ftl, 1, 2 );|
  !gapprompt@gap>| !gapinput@ SetConjugate( ftl, 2, 1, [2,-1] );|
  !gapprompt@gap>| !gapinput@ UpdatePolycyclicCollector( ftl );|
  !gapprompt@gap>| !gapinput@ G:= PcpGroupByCollectorNC( ftl );|
  Pcp-group with orders [ 2, 0 ]
  !gapprompt@gap>| !gapinput@Subgroup( G, GeneratorsOfGroup(G){[2]} );|
  Pcp-group with orders [ 0 ]
\end{Verbatim}
 }

 }

 }

 
\chapter{\textcolor{Chapter }{Basic methods and functions for pcp\texttt{\symbol{45}}groups}}\label{Basic methods and functions for pcp-groups}
\logpage{[ 5, 0, 0 ]}
\hyperdef{L}{X7B9B85AE7C9B13EE}{}
{
  Pcp\texttt{\symbol{45}}groups are groups in the \textsf{GAP} sense and hence all generic \textsf{GAP} methods for groups can be applied for pcp\texttt{\symbol{45}}groups. However,
for a number of group theoretic questions \textsf{GAP} does not provide generic methods that can be applied to
pcp\texttt{\symbol{45}}groups. For some of these questions there are functions
provided in \textsf{Polycyclic}.  
\section{\textcolor{Chapter }{Elementary methods for pcp\texttt{\symbol{45}}groups}}\label{methods}
\logpage{[ 5, 1, 0 ]}
\hyperdef{L}{X821360107E355B88}{}
{
  In this chapter we describe some important basic functions which are available
for pcp\texttt{\symbol{45}}groups. A number of higher level functions are
outlined in later sections and chapters. 

 Let $U, V$ and $N$ be subgroups of a pcp\texttt{\symbol{45}}group. 

\subsection{\textcolor{Chapter }{\texttt{\symbol{92}}=}}
\logpage{[ 5, 1, 1 ]}\nobreak
\hyperdef{L}{X806A4814806A4814}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{\texttt{\symbol{92}}=({\mdseries\slshape U, V})\index{\texttt{\symbol{92}}=@\texttt{\texttt{\symbol{92}}=}}
\label{bSlash=}
}\hfill{\scriptsize (method)}}\\


 decides if \mbox{\texttt{\mdseries\slshape U}} and \mbox{\texttt{\mdseries\slshape V}} are equal as sets. }

 

\subsection{\textcolor{Chapter }{Size}}
\logpage{[ 5, 1, 2 ]}\nobreak
\hyperdef{L}{X858ADA3B7A684421}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{Size({\mdseries\slshape U})\index{Size@\texttt{Size}}
\label{Size}
}\hfill{\scriptsize (method)}}\\


 returns the size of \mbox{\texttt{\mdseries\slshape U}}. }

 

\subsection{\textcolor{Chapter }{Random}}
\logpage{[ 5, 1, 3 ]}\nobreak
\hyperdef{L}{X79730D657AB219DB}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{Random({\mdseries\slshape U})\index{Random@\texttt{Random}}
\label{Random}
}\hfill{\scriptsize (method)}}\\


 returns a random element of \mbox{\texttt{\mdseries\slshape U}}. }

 

\subsection{\textcolor{Chapter }{Index}}
\logpage{[ 5, 1, 4 ]}\nobreak
\hyperdef{L}{X83A0356F839C696F}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{Index({\mdseries\slshape U, V})\index{Index@\texttt{Index}}
\label{Index}
}\hfill{\scriptsize (method)}}\\


 returns the index of \mbox{\texttt{\mdseries\slshape V}} in \mbox{\texttt{\mdseries\slshape U}} if \mbox{\texttt{\mdseries\slshape V}} is a subgroup of \mbox{\texttt{\mdseries\slshape U}}. The function does not check if \mbox{\texttt{\mdseries\slshape V}} is a subgroup of \mbox{\texttt{\mdseries\slshape U}} and if it is not, the result is not meaningful. }

 

\subsection{\textcolor{Chapter }{\texttt{\symbol{92}}in}}
\logpage{[ 5, 1, 5 ]}\nobreak
\hyperdef{L}{X87BDB89B7AAFE8AD}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{\texttt{\symbol{92}}in({\mdseries\slshape g, U})\index{\texttt{\symbol{92}}in@\texttt{\texttt{\symbol{92}}in}}
\label{bSlashin}
}\hfill{\scriptsize (method)}}\\


 checks if \mbox{\texttt{\mdseries\slshape g}} is an element of \mbox{\texttt{\mdseries\slshape U}}. }

 

\subsection{\textcolor{Chapter }{Elements}}
\logpage{[ 5, 1, 6 ]}\nobreak
\hyperdef{L}{X79B130FC7906FB4C}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{Elements({\mdseries\slshape U})\index{Elements@\texttt{Elements}}
\label{Elements}
}\hfill{\scriptsize (method)}}\\


 returns a list containing all elements of \mbox{\texttt{\mdseries\slshape U}} if \mbox{\texttt{\mdseries\slshape U}} is finite and it returns the list [fail] otherwise. }

 

\subsection{\textcolor{Chapter }{ClosureGroup}}
\logpage{[ 5, 1, 7 ]}\nobreak
\hyperdef{L}{X7D13FC1F8576FFD8}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{ClosureGroup({\mdseries\slshape U, V})\index{ClosureGroup@\texttt{ClosureGroup}}
\label{ClosureGroup}
}\hfill{\scriptsize (method)}}\\


 returns the group generated by \mbox{\texttt{\mdseries\slshape U}} and \mbox{\texttt{\mdseries\slshape V}}. }

 

\subsection{\textcolor{Chapter }{NormalClosure}}
\logpage{[ 5, 1, 8 ]}\nobreak
\hyperdef{L}{X7BDEA0A98720D1BB}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{NormalClosure({\mdseries\slshape U, V})\index{NormalClosure@\texttt{NormalClosure}}
\label{NormalClosure}
}\hfill{\scriptsize (method)}}\\


 returns the normal closure of \mbox{\texttt{\mdseries\slshape V}} under action of \mbox{\texttt{\mdseries\slshape U}}. }

 

\subsection{\textcolor{Chapter }{HirschLength}}
\logpage{[ 5, 1, 9 ]}\nobreak
\hyperdef{L}{X839B42AE7A1DD544}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{HirschLength({\mdseries\slshape U})\index{HirschLength@\texttt{HirschLength}}
\label{HirschLength}
}\hfill{\scriptsize (method)}}\\


 returns the Hirsch length of \mbox{\texttt{\mdseries\slshape U}}. }

 

\subsection{\textcolor{Chapter }{CommutatorSubgroup}}
\logpage{[ 5, 1, 10 ]}\nobreak
\hyperdef{L}{X7A9A3D5578CE33A0}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{CommutatorSubgroup({\mdseries\slshape U, V})\index{CommutatorSubgroup@\texttt{CommutatorSubgroup}}
\label{CommutatorSubgroup}
}\hfill{\scriptsize (method)}}\\


 returns the group generated by all commutators $[u,v]$ with $u$ in \mbox{\texttt{\mdseries\slshape U}} and $v$ in \mbox{\texttt{\mdseries\slshape V}}. }

 

\subsection{\textcolor{Chapter }{PRump}}
\logpage{[ 5, 1, 11 ]}\nobreak
\hyperdef{L}{X796DA805853FAC90}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{PRump({\mdseries\slshape U, p})\index{PRump@\texttt{PRump}}
\label{PRump}
}\hfill{\scriptsize (method)}}\\


 returns the subgroup $U'U^p$ of \mbox{\texttt{\mdseries\slshape U}} where \mbox{\texttt{\mdseries\slshape p}} is a prime number. }

 

\subsection{\textcolor{Chapter }{SmallGeneratingSet}}
\logpage{[ 5, 1, 12 ]}\nobreak
\hyperdef{L}{X814DBABC878D5232}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{SmallGeneratingSet({\mdseries\slshape U})\index{SmallGeneratingSet@\texttt{SmallGeneratingSet}}
\label{SmallGeneratingSet}
}\hfill{\scriptsize (method)}}\\


 returns a small generating set for \mbox{\texttt{\mdseries\slshape U}}. }

 }

  
\section{\textcolor{Chapter }{Elementary properties of pcp\texttt{\symbol{45}}groups}}\label{Elementary properties of pcp-groups}
\logpage{[ 5, 2, 0 ]}
\hyperdef{L}{X80E88168866D54F3}{}
{
  

\subsection{\textcolor{Chapter }{IsSubgroup}}
\logpage{[ 5, 2, 1 ]}\nobreak
\hyperdef{L}{X7839D8927E778334}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{IsSubgroup({\mdseries\slshape U, V})\index{IsSubgroup@\texttt{IsSubgroup}}
\label{IsSubgroup}
}\hfill{\scriptsize (function)}}\\


 tests if \mbox{\texttt{\mdseries\slshape V}} is a subgroup of \mbox{\texttt{\mdseries\slshape U}}. }

 

\subsection{\textcolor{Chapter }{IsNormal}}
\logpage{[ 5, 2, 2 ]}\nobreak
\hyperdef{L}{X838186F9836F678C}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{IsNormal({\mdseries\slshape U, V})\index{IsNormal@\texttt{IsNormal}}
\label{IsNormal}
}\hfill{\scriptsize (function)}}\\


 tests if \mbox{\texttt{\mdseries\slshape V}} is normal in \mbox{\texttt{\mdseries\slshape U}}. }

 

\subsection{\textcolor{Chapter }{IsNilpotentGroup}}
\logpage{[ 5, 2, 3 ]}\nobreak
\hyperdef{L}{X87D062608719F2CD}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{IsNilpotentGroup({\mdseries\slshape U})\index{IsNilpotentGroup@\texttt{IsNilpotentGroup}}
\label{IsNilpotentGroup}
}\hfill{\scriptsize (method)}}\\


 checks whether \mbox{\texttt{\mdseries\slshape U}} is nilpotent. }

 

\subsection{\textcolor{Chapter }{IsAbelian}}
\logpage{[ 5, 2, 4 ]}\nobreak
\hyperdef{L}{X7C12AA7479A6C103}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{IsAbelian({\mdseries\slshape U})\index{IsAbelian@\texttt{IsAbelian}}
\label{IsAbelian}
}\hfill{\scriptsize (method)}}\\


 checks whether \mbox{\texttt{\mdseries\slshape U}} is abelian. }

 

\subsection{\textcolor{Chapter }{IsElementaryAbelian}}
\logpage{[ 5, 2, 5 ]}\nobreak
\hyperdef{L}{X813C952F80E775D4}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{IsElementaryAbelian({\mdseries\slshape U})\index{IsElementaryAbelian@\texttt{IsElementaryAbelian}}
\label{IsElementaryAbelian}
}\hfill{\scriptsize (method)}}\\


 checks whether \mbox{\texttt{\mdseries\slshape U}} is elementary abelian. }

 

\subsection{\textcolor{Chapter }{IsFreeAbelian}}
\logpage{[ 5, 2, 6 ]}\nobreak
\hyperdef{L}{X84FFC668832F9ED6}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{IsFreeAbelian({\mdseries\slshape U})\index{IsFreeAbelian@\texttt{IsFreeAbelian}}
\label{IsFreeAbelian}
}\hfill{\scriptsize (property)}}\\


 checks whether \mbox{\texttt{\mdseries\slshape U}} is free abelian. }

 }

  
\section{\textcolor{Chapter }{Subgroups of pcp\texttt{\symbol{45}}groups}}\label{Subgroups of pcp-groups}
\logpage{[ 5, 3, 0 ]}
\hyperdef{L}{X85A7E26C7E14AFBA}{}
{
  A subgroup of a pcp\texttt{\symbol{45}}group $G$ can be defined by a set of generators as described in Section \ref{pcpgroup}. However, many computations with a subgroup $U$ need an \emph{induced generating sequence} or \emph{igs} of $U$. An igs is a sequence of generators of $U$ whose list of exponent vectors form a matrix in upper triangular form. Note
that there may exist many igs of $U$. The first one calculated for $U$ is stored as an attribute. 

 An induced generating sequence of a subgroup of a pcp\texttt{\symbol{45}}group $G$ is a list of elements of $G$. An igs is called \emph{normed}, if each element in the list is normed. Moreover, it is \emph{canonical}, if the exponent vector matrix is in Hermite Normal Form. The following
functions can be used to compute induced generating sequence for a given
subgroup \mbox{\texttt{\mdseries\slshape U}} of \mbox{\texttt{\mdseries\slshape G}}. 

\subsection{\textcolor{Chapter }{Igs (for a subgroup)}}
\logpage{[ 5, 3, 1 ]}\nobreak
\hyperdef{L}{X815F756286701BE0}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{Igs({\mdseries\slshape U})\index{Igs@\texttt{Igs}!for a subgroup}
\label{Igs:for a subgroup}
}\hfill{\scriptsize (attribute)}}\\
\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{Igs({\mdseries\slshape gens})\index{Igs@\texttt{Igs}}
\label{Igs}
}\hfill{\scriptsize (function)}}\\
\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{IgsParallel({\mdseries\slshape gens, gens2})\index{IgsParallel@\texttt{IgsParallel}}
\label{IgsParallel}
}\hfill{\scriptsize (function)}}\\


 returns an induced generating sequence of the subgroup \mbox{\texttt{\mdseries\slshape U}} of a pcp\texttt{\symbol{45}}group. In the second form the subgroup is given
via a generating set \mbox{\texttt{\mdseries\slshape gens}}. The third form computes an igs for the subgroup generated by \mbox{\texttt{\mdseries\slshape gens}} carrying \mbox{\texttt{\mdseries\slshape gens2}} through as shadows. This means that each operation that is applied to the
first list is also applied to the second list. }

 

\subsection{\textcolor{Chapter }{Ngs (for a subgroup)}}
\logpage{[ 5, 3, 2 ]}\nobreak
\hyperdef{L}{X7F4D95C47F9652BA}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{Ngs({\mdseries\slshape U})\index{Ngs@\texttt{Ngs}!for a subgroup}
\label{Ngs:for a subgroup}
}\hfill{\scriptsize (attribute)}}\\
\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{Ngs({\mdseries\slshape igs})\index{Ngs@\texttt{Ngs}}
\label{Ngs}
}\hfill{\scriptsize (function)}}\\


 returns a normed induced generating sequence of the subgroup \mbox{\texttt{\mdseries\slshape U}} of a pcp\texttt{\symbol{45}}group. The second form takes an igs as input and
norms it. }

 

\subsection{\textcolor{Chapter }{Cgs (for a subgroup)}}
\logpage{[ 5, 3, 3 ]}\nobreak
\hyperdef{L}{X8077293A787D4571}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{Cgs({\mdseries\slshape U})\index{Cgs@\texttt{Cgs}!for a subgroup}
\label{Cgs:for a subgroup}
}\hfill{\scriptsize (attribute)}}\\
\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{Cgs({\mdseries\slshape igs})\index{Cgs@\texttt{Cgs}}
\label{Cgs}
}\hfill{\scriptsize (function)}}\\
\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{CgsParallel({\mdseries\slshape gens, gens2})\index{CgsParallel@\texttt{CgsParallel}}
\label{CgsParallel}
}\hfill{\scriptsize (function)}}\\


 returns a canonical generating sequence of the subgroup \mbox{\texttt{\mdseries\slshape U}} of a pcp\texttt{\symbol{45}}group. In the second form the function takes an
igs as input and returns a canonical generating sequence. The third version
takes a generating set and computes a canonical generating sequence carrying \mbox{\texttt{\mdseries\slshape gens2}} through as shadows. This means that each operation that is applied to the
first list is also applied to the second list. 

 For a large number of methods for pcp\texttt{\symbol{45}}groups \mbox{\texttt{\mdseries\slshape U}} we will first of all determine an \mbox{\texttt{\mdseries\slshape igs}} for \mbox{\texttt{\mdseries\slshape U}}. Hence it might speed up computations, if a known \mbox{\texttt{\mdseries\slshape igs}} for a group \mbox{\texttt{\mdseries\slshape U}} is set \emph{a priori}. The following functions can be used for this purpose. }

 

\subsection{\textcolor{Chapter }{SubgroupByIgs}}
\logpage{[ 5, 3, 4 ]}\nobreak
\hyperdef{L}{X83B92A2679EAB1EB}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{SubgroupByIgs({\mdseries\slshape G, igs})\index{SubgroupByIgs@\texttt{SubgroupByIgs}}
\label{SubgroupByIgs}
}\hfill{\scriptsize (function)}}\\
\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{SubgroupByIgs({\mdseries\slshape G, igs, gens})\index{SubgroupByIgs@\texttt{SubgroupByIgs}!with extra generators}
\label{SubgroupByIgs:with extra generators}
}\hfill{\scriptsize (function)}}\\


 returns the subgroup of the pcp\texttt{\symbol{45}}group \mbox{\texttt{\mdseries\slshape G}} generated by the elements of the induced generating sequence \mbox{\texttt{\mdseries\slshape igs}}. Note that \mbox{\texttt{\mdseries\slshape igs}} must be an induced generating sequence of the subgroup generated by the
elements of the \mbox{\texttt{\mdseries\slshape igs}}. In the second form \mbox{\texttt{\mdseries\slshape igs}} is a igs for a subgroup and \mbox{\texttt{\mdseries\slshape gens}} are some generators. The function returns the subgroup generated by \mbox{\texttt{\mdseries\slshape igs}} and \mbox{\texttt{\mdseries\slshape gens}}. }

 

\subsection{\textcolor{Chapter }{AddToIgs}}
\logpage{[ 5, 3, 5 ]}\nobreak
\hyperdef{L}{X78107DE78728B26B}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{AddToIgs({\mdseries\slshape igs, gens})\index{AddToIgs@\texttt{AddToIgs}}
\label{AddToIgs}
}\hfill{\scriptsize (function)}}\\
\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{AddToIgsParallel({\mdseries\slshape igs, gens, igs2, gens2})\index{AddToIgsParallel@\texttt{AddToIgsParallel}}
\label{AddToIgsParallel}
}\hfill{\scriptsize (function)}}\\
\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{AddIgsToIgs({\mdseries\slshape igs, igs2})\index{AddIgsToIgs@\texttt{AddIgsToIgs}}
\label{AddIgsToIgs}
}\hfill{\scriptsize (function)}}\\


 sifts the elements in the list $gens$ into $igs$. The second version has the same functionality and carries shadows. This
means that each operation that is applied to the first list and the element \mbox{\texttt{\mdseries\slshape gens}} is also applied to the second list and the element \mbox{\texttt{\mdseries\slshape gens2}}. The third version is available for efficiency reasons and assumes that the
second list \mbox{\texttt{\mdseries\slshape igs2}} is not only a generating set, but an igs. }

 }

  
\section{\textcolor{Chapter }{Polycyclic presentation sequences for subfactors}}\label{pcps}
\logpage{[ 5, 4, 0 ]}
\hyperdef{L}{X803D62BC86EF07D0}{}
{
  A subfactor of a pcp\texttt{\symbol{45}}group $G$ is again a polycyclic group for which a polycyclic presentation can be
computed. However, to compute a polycyclic presentation for a given subfactor
can be time\texttt{\symbol{45}}consuming. Hence we introduce \emph{polycyclic presentation sequences} or \emph{Pcp} to compute more efficiently with subfactors. (Note that a subgroup is also a
subfactor and thus can be handled by a pcp) 

 A pcp for a pcp\texttt{\symbol{45}}group $U$ or a subfactor $U / N$ can be created with one of the following functions. 

\subsection{\textcolor{Chapter }{Pcp}}
\logpage{[ 5, 4, 1 ]}\nobreak
\hyperdef{L}{X7DD931697DD93169}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{Pcp({\mdseries\slshape U[, flag]})\index{Pcp@\texttt{Pcp}}
\label{Pcp}
}\hfill{\scriptsize (function)}}\\
\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{Pcp({\mdseries\slshape U, N[, flag]})\index{Pcp@\texttt{Pcp}!for a factor}
\label{Pcp:for a factor}
}\hfill{\scriptsize (function)}}\\


 returns a polycyclic presentation sequence for the subgroup \mbox{\texttt{\mdseries\slshape U}} or the quotient group \mbox{\texttt{\mdseries\slshape U}} modulo \mbox{\texttt{\mdseries\slshape N}}. If the parameter \mbox{\texttt{\mdseries\slshape flag}} is present and equals the string ``snf'', the function can only be applied to an abelian subgroup \mbox{\texttt{\mdseries\slshape U}} or abelian subfactor \mbox{\texttt{\mdseries\slshape U}}/\mbox{\texttt{\mdseries\slshape N}}. The pcp returned will correspond to a decomposition of the abelian group
into a direct product of cyclic groups. }

 A pcp is a component object which behaves similar to a list representing an
igs of the subfactor in question. The basic functions to obtain the stored
values of this component object are as follows. Let $pcp$ be a pcp for a subfactor $U/N$ of the defining pcp\texttt{\symbol{45}}group $G$. 

\subsection{\textcolor{Chapter }{GeneratorsOfPcp}}
\logpage{[ 5, 4, 2 ]}\nobreak
\hyperdef{L}{X821FF77086E38B3A}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{GeneratorsOfPcp({\mdseries\slshape pcp})\index{GeneratorsOfPcp@\texttt{GeneratorsOfPcp}}
\label{GeneratorsOfPcp}
}\hfill{\scriptsize (function)}}\\


 this returns a list of elements of $U$ corresponding to an igs of $U/N$. }

 

\subsection{\textcolor{Chapter }{\texttt{\symbol{92}}[\texttt{\symbol{92}}]}}
\logpage{[ 5, 4, 3 ]}\nobreak
\hyperdef{L}{X8297BBCD79642BE6}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{\texttt{\symbol{92}}[\texttt{\symbol{92}}]({\mdseries\slshape pcp, i})\index{\texttt{\symbol{92}}[\texttt{\symbol{92}}]@\texttt{\texttt{\symbol{92}}[\texttt{\symbol{92}}]}}
\label{bSlash[bSlash]}
}\hfill{\scriptsize (method)}}\\


 returns the \mbox{\texttt{\mdseries\slshape i}}\texttt{\symbol{45}}th element of \mbox{\texttt{\mdseries\slshape pcp}}. }

 

\subsection{\textcolor{Chapter }{Length}}
\logpage{[ 5, 4, 4 ]}\nobreak
\hyperdef{L}{X780769238600AFD1}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{Length({\mdseries\slshape pcp})\index{Length@\texttt{Length}}
\label{Length}
}\hfill{\scriptsize (method)}}\\


 returns the number of generators in \mbox{\texttt{\mdseries\slshape pcp}}. }

 

\subsection{\textcolor{Chapter }{RelativeOrdersOfPcp}}
\logpage{[ 5, 4, 5 ]}\nobreak
\hyperdef{L}{X7ABCA7F2790E1673}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{RelativeOrdersOfPcp({\mdseries\slshape pcp})\index{RelativeOrdersOfPcp@\texttt{RelativeOrdersOfPcp}}
\label{RelativeOrdersOfPcp}
}\hfill{\scriptsize (function)}}\\


 the relative orders of the igs in \mbox{\texttt{\mdseries\slshape U/N}}. }

 

\subsection{\textcolor{Chapter }{DenominatorOfPcp}}
\logpage{[ 5, 4, 6 ]}\nobreak
\hyperdef{L}{X7D16C299825887AA}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{DenominatorOfPcp({\mdseries\slshape pcp})\index{DenominatorOfPcp@\texttt{DenominatorOfPcp}}
\label{DenominatorOfPcp}
}\hfill{\scriptsize (function)}}\\


 returns an igs of \mbox{\texttt{\mdseries\slshape N}}. }

 

\subsection{\textcolor{Chapter }{NumeratorOfPcp}}
\logpage{[ 5, 4, 7 ]}\nobreak
\hyperdef{L}{X803AED1A84FCBEE8}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{NumeratorOfPcp({\mdseries\slshape pcp})\index{NumeratorOfPcp@\texttt{NumeratorOfPcp}}
\label{NumeratorOfPcp}
}\hfill{\scriptsize (function)}}\\


 returns an igs of \mbox{\texttt{\mdseries\slshape U}}. }

 

\subsection{\textcolor{Chapter }{GroupOfPcp}}
\logpage{[ 5, 4, 8 ]}\nobreak
\hyperdef{L}{X80BCCF0B81344933}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{GroupOfPcp({\mdseries\slshape pcp})\index{GroupOfPcp@\texttt{GroupOfPcp}}
\label{GroupOfPcp}
}\hfill{\scriptsize (function)}}\\


 returns \mbox{\texttt{\mdseries\slshape U}}. }

 

\subsection{\textcolor{Chapter }{OneOfPcp}}
\logpage{[ 5, 4, 9 ]}\nobreak
\hyperdef{L}{X87F0BA5F7BA0F4B4}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{OneOfPcp({\mdseries\slshape pcp})\index{OneOfPcp@\texttt{OneOfPcp}}
\label{OneOfPcp}
}\hfill{\scriptsize (function)}}\\


 returns the identity element of \mbox{\texttt{\mdseries\slshape G}}. }

 The main feature of a pcp are the possibility to compute exponent vectors
without having to determine an explicit pcp\texttt{\symbol{45}}group
corresponding to the subfactor that is represented by the pcp. Nonetheless, it
is possible to determine this subfactor. 

\subsection{\textcolor{Chapter }{ExponentsByPcp}}
\logpage{[ 5, 4, 10 ]}\nobreak
\hyperdef{L}{X7A8C8BBC81581E09}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{ExponentsByPcp({\mdseries\slshape pcp, g})\index{ExponentsByPcp@\texttt{ExponentsByPcp}}
\label{ExponentsByPcp}
}\hfill{\scriptsize (function)}}\\


 returns the exponent vector of \mbox{\texttt{\mdseries\slshape g}} with respect to the generators of \mbox{\texttt{\mdseries\slshape pcp}}. This is the exponent vector of \mbox{\texttt{\mdseries\slshape g}}$N$ with respect to the igs of \mbox{\texttt{\mdseries\slshape U/N}}. }

 

\subsection{\textcolor{Chapter }{PcpGroupByPcp}}
\logpage{[ 5, 4, 11 ]}\nobreak
\hyperdef{L}{X87D75F7F86FEF203}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{PcpGroupByPcp({\mdseries\slshape pcp})\index{PcpGroupByPcp@\texttt{PcpGroupByPcp}}
\label{PcpGroupByPcp}
}\hfill{\scriptsize (function)}}\\


 let \mbox{\texttt{\mdseries\slshape pcp}} be a Pcp of a subgroup or a factor group of a pcp\texttt{\symbol{45}}group.
This function computes a new pcp\texttt{\symbol{45}}group whose defining
generators correspond to the generators in \mbox{\texttt{\mdseries\slshape pcp}}. 
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
  !gapprompt@gap>| !gapinput@ G := DihedralPcpGroup(0);|
  Pcp-group with orders [ 2, 0 ]
  !gapprompt@gap>| !gapinput@ pcp := Pcp(G);|
  Pcp [ g1, g2 ] with orders [ 2, 0 ]
  !gapprompt@gap>| !gapinput@ pcp[1];|
  g1
  !gapprompt@gap>| !gapinput@ Length(pcp);|
  2
  !gapprompt@gap>| !gapinput@ RelativeOrdersOfPcp(pcp);|
  [ 2, 0 ]
  !gapprompt@gap>| !gapinput@ DenominatorOfPcp(pcp);|
  [  ]
  !gapprompt@gap>| !gapinput@ NumeratorOfPcp(pcp);|
  [ g1, g2 ]
  !gapprompt@gap>| !gapinput@ GroupOfPcp(pcp);|
  Pcp-group with orders [ 2, 0 ]
  !gapprompt@gap>| !gapinput@OneOfPcp(pcp);|
  identity
\end{Verbatim}
 
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
  !gapprompt@gap>| !gapinput@G := ExamplesOfSomePcpGroups(5);|
  Pcp-group with orders [ 2, 0, 0, 0 ]
  !gapprompt@gap>| !gapinput@D := DerivedSubgroup( G );|
  Pcp-group with orders [ 0, 0, 0 ]
  !gapprompt@gap>| !gapinput@ GeneratorsOfGroup( G );|
  [ g1, g2, g3, g4 ]
  !gapprompt@gap>| !gapinput@ GeneratorsOfGroup( D );|
  [ g2^-2, g3^-2, g4^2 ]
  
  # an ordinary pcp for G / D
  !gapprompt@gap>| !gapinput@pcp1 := Pcp( G, D );|
  Pcp [ g1, g2, g3, g4 ] with orders [ 2, 2, 2, 2 ]
  
  # a pcp for G/D in independent generators
  !gapprompt@gap>| !gapinput@ pcp2 := Pcp( G, D, "snf" );|
  Pcp [ g2, g3, g1 ] with orders [ 2, 2, 4 ]
  
  !gapprompt@gap>| !gapinput@ g := Random( G );|
  g1*g2^-4*g3*g4^2
  
  # compute the exponent vector of g in G/D with respect to pcp1
  !gapprompt@gap>| !gapinput@ExponentsByPcp( pcp1, g );|
  [ 1, 0, 1, 0 ]
  
  # compute the exponent vector of g in G/D with respect to pcp2
  !gapprompt@gap>| !gapinput@ ExponentsByPcp( pcp2, g );|
  [ 0, 1, 1 ]
\end{Verbatim}
 }

 }

  
\section{\textcolor{Chapter }{Factor groups of pcp\texttt{\symbol{45}}groups}}\label{Factor groups of pcp-groups}
\logpage{[ 5, 5, 0 ]}
\hyperdef{L}{X845D29B478CA7656}{}
{
  Pcp's for subfactors of pcp\texttt{\symbol{45}}groups have already been
described above. These are usually used within algorithms to compute with
pcp\texttt{\symbol{45}}groups. However, it is also possible to explicitly
construct factor groups and their corresponding natural homomorphisms. 

\subsection{\textcolor{Chapter }{NaturalHomomorphismByNormalSubgroup}}
\logpage{[ 5, 5, 1 ]}\nobreak
\hyperdef{L}{X80FC390C7F38A13F}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{NaturalHomomorphismByNormalSubgroup({\mdseries\slshape G, N})\index{NaturalHomomorphismByNormalSubgroup@\texttt{NaturalHomomorphismByNormalSubgroup}}
\label{NaturalHomomorphismByNormalSubgroup}
}\hfill{\scriptsize (method)}}\\


 returns the natural homomorphism $G \to G/N$. Its image is the factor group $G/N$. }

 

\subsection{\textcolor{Chapter }{\texttt{\symbol{92}}/}}
\logpage{[ 5, 5, 2 ]}\nobreak
\hyperdef{L}{X7F51DF007F51DF00}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{\texttt{\symbol{92}}/({\mdseries\slshape G, N})\index{\texttt{\symbol{92}}/@\texttt{\texttt{\symbol{92}}/}}
\label{bSlash/}
}\hfill{\scriptsize (method)}}\\
\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{FactorGroup({\mdseries\slshape G, N})\index{FactorGroup@\texttt{FactorGroup}}
\label{FactorGroup}
}\hfill{\scriptsize (method)}}\\


 returns the desired factor as pcp\texttt{\symbol{45}}group without giving the
explicit homomorphism. This function is just a wrapper for \texttt{PcpGroupByPcp( Pcp( G, N ) )}. }

 }

  
\section{\textcolor{Chapter }{Homomorphisms for pcp\texttt{\symbol{45}}groups}}\label{Homomorphisms for pcp-groups}
\logpage{[ 5, 6, 0 ]}
\hyperdef{L}{X82E643F178E765EA}{}
{
  \textsf{Polycyclic} provides code for defining group homomorphisms by generators and images where
either the source or the range or both are pcp groups. All methods provided by
GAP for such group homomorphisms are supported, in particular the following: 

\subsection{\textcolor{Chapter }{GroupHomomorphismByImages}}
\logpage{[ 5, 6, 1 ]}\nobreak
\hyperdef{L}{X7F348F497C813BE0}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{GroupHomomorphismByImages({\mdseries\slshape G, H, gens, imgs})\index{GroupHomomorphismByImages@\texttt{GroupHomomorphismByImages}}
\label{GroupHomomorphismByImages}
}\hfill{\scriptsize (function)}}\\


 returns the homomorphism from the (pcp\texttt{\symbol{45}}) group \mbox{\texttt{\mdseries\slshape G}} to the pcp\texttt{\symbol{45}}group \mbox{\texttt{\mdseries\slshape H}} mapping the generators of \mbox{\texttt{\mdseries\slshape G}} in the list \mbox{\texttt{\mdseries\slshape gens}} to the corresponding images in the list \mbox{\texttt{\mdseries\slshape imgs}} of elements of \mbox{\texttt{\mdseries\slshape H}}. }

 

\subsection{\textcolor{Chapter }{Kernel}}
\logpage{[ 5, 6, 2 ]}\nobreak
\hyperdef{L}{X7DCD99628504B810}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{Kernel({\mdseries\slshape hom})\index{Kernel@\texttt{Kernel}}
\label{Kernel}
}\hfill{\scriptsize (function)}}\\


 returns the kernel of the homomorphism \mbox{\texttt{\mdseries\slshape hom}} from a pcp\texttt{\symbol{45}}group to a pcp\texttt{\symbol{45}}group. }

 

\subsection{\textcolor{Chapter }{Image (for a homomorphism)}}
\logpage{[ 5, 6, 3 ]}\nobreak
\hyperdef{L}{X847322667E6166C8}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{Image({\mdseries\slshape hom})\index{Image@\texttt{Image}!for a homomorphism}
\label{Image:for a homomorphism}
}\hfill{\scriptsize (operation)}}\\
\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{Image({\mdseries\slshape hom, U})\index{Image@\texttt{Image}!for a homomorphism and a subgroup}
\label{Image:for a homomorphism and a subgroup}
}\hfill{\scriptsize (function)}}\\
\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{Image({\mdseries\slshape hom, g})\index{Image@\texttt{Image}!for a homomorphism and an element}
\label{Image:for a homomorphism and an element}
}\hfill{\scriptsize (function)}}\\


 returns the image of the whole group, of \mbox{\texttt{\mdseries\slshape U}} and of \mbox{\texttt{\mdseries\slshape g}}, respectively, under the homomorphism \mbox{\texttt{\mdseries\slshape hom}}. }

 

\subsection{\textcolor{Chapter }{PreImage}}
\logpage{[ 5, 6, 4 ]}\nobreak
\hyperdef{L}{X836FAEAC78B55BF4}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{PreImage({\mdseries\slshape hom, U})\index{PreImage@\texttt{PreImage}}
\label{PreImage}
}\hfill{\scriptsize (function)}}\\


 returns the complete preimage of the subgroup \mbox{\texttt{\mdseries\slshape U}} under the homomorphism \mbox{\texttt{\mdseries\slshape hom}}. If the domain of \mbox{\texttt{\mdseries\slshape hom}} is not a pcp\texttt{\symbol{45}}group, then this function only works properly
if \mbox{\texttt{\mdseries\slshape hom}} is injective. }

 

\subsection{\textcolor{Chapter }{PreImagesRepresentative}}
\logpage{[ 5, 6, 5 ]}\nobreak
\hyperdef{L}{X7AE24A1586B7DE79}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{PreImagesRepresentative({\mdseries\slshape hom, g})\index{PreImagesRepresentative@\texttt{PreImagesRepresentative}}
\label{PreImagesRepresentative}
}\hfill{\scriptsize (method)}}\\


 returns a preimage of the element \mbox{\texttt{\mdseries\slshape g}} under the homomorphism \mbox{\texttt{\mdseries\slshape hom}}. }

 

\subsection{\textcolor{Chapter }{IsInjective}}
\logpage{[ 5, 6, 6 ]}\nobreak
\hyperdef{L}{X7F065FD7822C0A12}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{IsInjective({\mdseries\slshape hom})\index{IsInjective@\texttt{IsInjective}}
\label{IsInjective}
}\hfill{\scriptsize (method)}}\\


 checks if the homomorphism \mbox{\texttt{\mdseries\slshape hom}} is injective. }

 }

  
\section{\textcolor{Chapter }{Changing the defining pc\texttt{\symbol{45}}presentation}}\label{Changing the defining pc-presentation}
\logpage{[ 5, 7, 0 ]}
\hyperdef{L}{X7C873F807D4F3A3C}{}
{
  

\subsection{\textcolor{Chapter }{RefinedPcpGroup}}
\logpage{[ 5, 7, 1 ]}\nobreak
\hyperdef{L}{X80E9B60E853B2E05}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{RefinedPcpGroup({\mdseries\slshape G})\index{RefinedPcpGroup@\texttt{RefinedPcpGroup}}
\label{RefinedPcpGroup}
}\hfill{\scriptsize (function)}}\\


 returns a new pcp\texttt{\symbol{45}}group isomorphic to \mbox{\texttt{\mdseries\slshape G}} whose defining polycyclic presentation is refined; that is, the corresponding
polycyclic series has prime or infinite factors only. If $H$ is the new group, then $H!.bijection$ is the isomorphism $G \to H$. }

 

\subsection{\textcolor{Chapter }{PcpGroupBySeries}}
\logpage{[ 5, 7, 2 ]}\nobreak
\hyperdef{L}{X7F88F5548329E279}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{PcpGroupBySeries({\mdseries\slshape ser[, flag]})\index{PcpGroupBySeries@\texttt{PcpGroupBySeries}}
\label{PcpGroupBySeries}
}\hfill{\scriptsize (function)}}\\


 returns a new pcp\texttt{\symbol{45}}group isomorphic to the first subgroup $G$ of the given series \mbox{\texttt{\mdseries\slshape ser}} such that its defining pcp refines the given series. The series must be
subnormal and $H!.bijection$ is the isomorphism $G \to H$. If the parameter \mbox{\texttt{\mdseries\slshape flag}} is present and equals the string ``snf'', the series must have abelian factors. The pcp of the group returned
corresponds to a decomposition of each abelian factor into a direct product of
cyclic groups. 
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
  !gapprompt@gap>| !gapinput@G := DihedralPcpGroup(0);|
  Pcp-group with orders [ 2, 0 ]
  !gapprompt@gap>| !gapinput@ U := Subgroup( G, [Pcp(G)[2]^1440]);|
  Pcp-group with orders [ 0 ]
  !gapprompt@gap>| !gapinput@ F := G/U;|
  Pcp-group with orders [ 2, 1440 ]
  !gapprompt@gap>| !gapinput@RefinedPcpGroup(F);|
  Pcp-group with orders [ 2, 2, 2, 2, 2, 2, 3, 3, 5 ]
  
  !gapprompt@gap>| !gapinput@ser := [G, U, TrivialSubgroup(G)];|
  [ Pcp-group with orders [ 2, 0 ],
    Pcp-group with orders [ 0 ],
    Pcp-group with orders [  ] ]
  !gapprompt@gap>| !gapinput@ PcpGroupBySeries(ser);|
  Pcp-group with orders [ 2, 1440, 0 ]
\end{Verbatim}
 }

 }

  
\section{\textcolor{Chapter }{Printing a pc\texttt{\symbol{45}}presentation}}\label{Printing a pc-presentation}
\logpage{[ 5, 8, 0 ]}
\hyperdef{L}{X85E681027AF19B1E}{}
{
  By default, a pcp\texttt{\symbol{45}}group is printed using its relative
orders only. The following methods can be used to view the pcp presentation of
the group. 

\subsection{\textcolor{Chapter }{PrintPcpPresentation (for a group)}}
\logpage{[ 5, 8, 1 ]}\nobreak
\hyperdef{L}{X79D247127FD57FC8}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{PrintPcpPresentation({\mdseries\slshape G[, flag]})\index{PrintPcpPresentation@\texttt{PrintPcpPresentation}!for a group}
\label{PrintPcpPresentation:for a group}
}\hfill{\scriptsize (function)}}\\
\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{PrintPcpPresentation({\mdseries\slshape pcp[, flag]})\index{PrintPcpPresentation@\texttt{PrintPcpPresentation}!for a pcp}
\label{PrintPcpPresentation:for a pcp}
}\hfill{\scriptsize (function)}}\\


 prints the pcp presentation defined by the igs of \mbox{\texttt{\mdseries\slshape G}} or the pcp \mbox{\texttt{\mdseries\slshape pcp}}. By default, the trivial conjugator relations are omitted from this
presentation to shorten notation. Also, the relations obtained from
conjugating with inverse generators are included only if the conjugating
generator has infinite order. If this generator has finite order, then the
conjugation relation is a consequence of the remaining relations. If the
parameter \mbox{\texttt{\mdseries\slshape flag}} is present and equals the string ``all'', all conjugate relations are printed, including the trivial conjugate
relations as well as those involving conjugation with inverses. }

 }

  
\section{\textcolor{Chapter }{Converting to and from a presentation}}\label{Converting to and from a presentation}
\logpage{[ 5, 9, 0 ]}
\hyperdef{L}{X826ACBBB7A977206}{}
{
  

\subsection{\textcolor{Chapter }{IsomorphismPcpGroup}}
\logpage{[ 5, 9, 1 ]}\nobreak
\hyperdef{L}{X8771540F7A235763}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{IsomorphismPcpGroup({\mdseries\slshape G})\index{IsomorphismPcpGroup@\texttt{IsomorphismPcpGroup}}
\label{IsomorphismPcpGroup}
}\hfill{\scriptsize (attribute)}}\\


 returns an isomorphism from \mbox{\texttt{\mdseries\slshape G}} onto a pcp\texttt{\symbol{45}}group \mbox{\texttt{\mdseries\slshape H}}. There are various methods installed for this operation and some of these
methods are part of the \textsf{Polycyclic} package, while others may be part of other packages. 

 For example, \textsf{Polycyclic} contains methods for this function in the case that \mbox{\texttt{\mdseries\slshape G}} is a finite pc\texttt{\symbol{45}}group or a finite solvable permutation
group. 

 Other examples for methods for IsomorphismPcpGroup are the methods for the
case that \mbox{\texttt{\mdseries\slshape G}} is a crystallographic group (see \textsf{Cryst}) or the case that \mbox{\texttt{\mdseries\slshape G}} is an almost crystallographic group (see \textsf{AClib}). A method for the case that \mbox{\texttt{\mdseries\slshape G}} is a rational polycyclic matrix group is included in the \textsf{Polenta} package. }

 

\subsection{\textcolor{Chapter }{IsomorphismPcpGroupFromFpGroupWithPcPres}}
\logpage{[ 5, 9, 2 ]}\nobreak
\hyperdef{L}{X7F5EBF1C831B4BA9}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{IsomorphismPcpGroupFromFpGroupWithPcPres({\mdseries\slshape G})\index{IsomorphismPcpGroupFromFpGroupWithPcPres@\texttt{Isomorphism}\-\texttt{Pcp}\-\texttt{Group}\-\texttt{From}\-\texttt{Fp}\-\texttt{Group}\-\texttt{With}\-\texttt{Pc}\-\texttt{Pres}}
\label{IsomorphismPcpGroupFromFpGroupWithPcPres}
}\hfill{\scriptsize (function)}}\\


 This function can convert a finitely presented group with a polycyclic
presentation into a pcp group. }

 

\subsection{\textcolor{Chapter }{IsomorphismPcGroup}}
\logpage{[ 5, 9, 3 ]}\nobreak
\hyperdef{L}{X873CEB137BA1CD6E}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{IsomorphismPcGroup({\mdseries\slshape G})\index{IsomorphismPcGroup@\texttt{IsomorphismPcGroup}}
\label{IsomorphismPcGroup}
}\hfill{\scriptsize (method)}}\\


 pc\texttt{\symbol{45}}groups are a representation for finite polycyclic
groups. This function can convert finite pcp\texttt{\symbol{45}}groups to
pc\texttt{\symbol{45}}groups. }

 

\subsection{\textcolor{Chapter }{IsomorphismFpGroup}}
\logpage{[ 5, 9, 4 ]}\nobreak
\hyperdef{L}{X7F28268F850F454E}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{IsomorphismFpGroup({\mdseries\slshape G})\index{IsomorphismFpGroup@\texttt{IsomorphismFpGroup}}
\label{IsomorphismFpGroup}
}\hfill{\scriptsize (method)}}\\


 This function can convert pcp\texttt{\symbol{45}}groups to a finitely
presented group. }

 }

 }

 
\chapter{\textcolor{Chapter }{Libraries and examples of pcp\texttt{\symbol{45}}groups}}\label{Libraries and examples of pcp-groups}
\logpage{[ 6, 0, 0 ]}
\hyperdef{L}{X78CEF1F27ED8D7BB}{}
{
   
\section{\textcolor{Chapter }{Libraries of various types of polycyclic groups}}\label{Libraries of various types of polycyclic groups}
\logpage{[ 6, 1, 0 ]}
\hyperdef{L}{X84A48FAB83934263}{}
{
  There are the following generic pcp\texttt{\symbol{45}}groups available. 

\subsection{\textcolor{Chapter }{AbelianPcpGroup}}
\logpage{[ 6, 1, 1 ]}\nobreak
\hyperdef{L}{X7AEDE1BA82014B86}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{AbelianPcpGroup({\mdseries\slshape n[, rels]})\index{AbelianPcpGroup@\texttt{AbelianPcpGroup}}
\label{AbelianPcpGroup}
}\hfill{\scriptsize (function)}}\\
\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{AbelianPcpGroup({\mdseries\slshape rels})\index{AbelianPcpGroup@\texttt{AbelianPcpGroup}!rels only}
\label{AbelianPcpGroup:rels only}
}\hfill{\scriptsize (function)}}\\


 constructs the abelian group on \mbox{\texttt{\mdseries\slshape n}} generators such that generator $i$ has order $rels[i]$. If this order is infinite, then $rels[i]$ should be either unbound or 0 or infinity. If \mbox{\texttt{\mdseries\slshape n}} is not provided then the length of \mbox{\texttt{\mdseries\slshape rels}} is used. If \mbox{\texttt{\mdseries\slshape rels}} is omitted then all generators will have infinite order. }

 

\subsection{\textcolor{Chapter }{DihedralPcpGroup}}
\logpage{[ 6, 1, 2 ]}\nobreak
\hyperdef{L}{X7ACF57737D0F12DB}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{DihedralPcpGroup({\mdseries\slshape n})\index{DihedralPcpGroup@\texttt{DihedralPcpGroup}}
\label{DihedralPcpGroup}
}\hfill{\scriptsize (function)}}\\


 constructs the dihedral group of order \mbox{\texttt{\mdseries\slshape n}}. If \mbox{\texttt{\mdseries\slshape n}} is an odd integer, then 'fail' is returned. If \mbox{\texttt{\mdseries\slshape n}} is zero or not an integer, then the infinite dihedral group is returned. }

 

\subsection{\textcolor{Chapter }{UnitriangularPcpGroup}}
\logpage{[ 6, 1, 3 ]}\nobreak
\hyperdef{L}{X864CEDAB7911CC79}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{UnitriangularPcpGroup({\mdseries\slshape n, c})\index{UnitriangularPcpGroup@\texttt{UnitriangularPcpGroup}}
\label{UnitriangularPcpGroup}
}\hfill{\scriptsize (function)}}\\


 returns a pcp\texttt{\symbol{45}}group isomorphic to the group of upper
triangular in $GL(n, R)$ where $R = {\ensuremath{\mathbb Z}}$ if $c = 0$ and $R = \mathbb{F}_p$ if $c = p$. The natural unitriangular matrix representation of the returned
pcp\texttt{\symbol{45}}group $G$ can be obtained as $G!.isomorphism$. }

 

\subsection{\textcolor{Chapter }{SubgroupUnitriangularPcpGroup}}
\logpage{[ 6, 1, 4 ]}\nobreak
\hyperdef{L}{X812E35B17AADBCD5}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{SubgroupUnitriangularPcpGroup({\mdseries\slshape mats})\index{SubgroupUnitriangularPcpGroup@\texttt{SubgroupUnitriangularPcpGroup}}
\label{SubgroupUnitriangularPcpGroup}
}\hfill{\scriptsize (function)}}\\


 \mbox{\texttt{\mdseries\slshape mats}} should be a list of upper unitriangular $n \times n$ matrices over ${\ensuremath{\mathbb Z}}$ or over $\mathbb{F}_p$. This function returns the subgroup of the corresponding
'UnitriangularPcpGroup' generated by the matrices in \mbox{\texttt{\mdseries\slshape mats}}. }

 

\subsection{\textcolor{Chapter }{InfiniteMetacyclicPcpGroup}}
\logpage{[ 6, 1, 5 ]}\nobreak
\hyperdef{L}{X7A80F7F27FDA6810}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{InfiniteMetacyclicPcpGroup({\mdseries\slshape n, m, r})\index{InfiniteMetacyclicPcpGroup@\texttt{InfiniteMetacyclicPcpGroup}}
\label{InfiniteMetacyclicPcpGroup}
}\hfill{\scriptsize (function)}}\\


 Infinite metacyclic groups are classified in \cite{B-K00}. Every infinite metacyclic group $G$ is isomorphic to a finitely presented group $G(m,n,r)$ with two generators $a$ and $b$ and relations of the form $a^m = b^n = 1$ and $[a,b] = a^{1-r}$, where (differing from the conventions used by GAP) we have $[a,b] = a b a^-1 b^-1$, and $m,n,r$ are three non\texttt{\symbol{45}}negative integers with $mn=0$ and $r$ relatively prime to $m$. If $r \equiv -1$ mod $m$ then $n$ is even, and if $r \equiv 1$ mod $m$ then $m=0$. Also $m$ and $n$ must not be $1$. 

 Moreover, $G(m,n,r)\cong G(m',n',s)$ if and only if $m=m'$, $n=n'$, and either $r \equiv s$ or $r \equiv s^{-1}$ mod $m$. 

 This function returns the metacyclic group with parameters \mbox{\texttt{\mdseries\slshape n}}, \mbox{\texttt{\mdseries\slshape m}} and \mbox{\texttt{\mdseries\slshape r}} as a pcp\texttt{\symbol{45}}group with the pc\texttt{\symbol{45}}presentation $\langle x,y | x^n, y^m, y^x = y^r\rangle$. This presentation is easily transformed into the one above via the mapping $x \mapsto b^{-1}, y \mapsto a$. }

 

\subsection{\textcolor{Chapter }{HeisenbergPcpGroup}}
\logpage{[ 6, 1, 6 ]}\nobreak
\hyperdef{L}{X81BEC875827D1CC2}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{HeisenbergPcpGroup({\mdseries\slshape n})\index{HeisenbergPcpGroup@\texttt{HeisenbergPcpGroup}}
\label{HeisenbergPcpGroup}
}\hfill{\scriptsize (function)}}\\


 returns the Heisenberg group on $2\mbox{\texttt{\mdseries\slshape n}}+1$ generators as pcp\texttt{\symbol{45}}group. This gives a group of Hirsch
length $2\mbox{\texttt{\mdseries\slshape n}}+1$. }

 

\subsection{\textcolor{Chapter }{MaximalOrderByUnitsPcpGroup}}
\logpage{[ 6, 1, 7 ]}\nobreak
\hyperdef{L}{X87F9B9C9786430D7}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{MaximalOrderByUnitsPcpGroup({\mdseries\slshape f})\index{MaximalOrderByUnitsPcpGroup@\texttt{MaximalOrderByUnitsPcpGroup}}
\label{MaximalOrderByUnitsPcpGroup}
}\hfill{\scriptsize (function)}}\\


 takes as input a normed, irreducible polynomial over the integers. Thus \mbox{\texttt{\mdseries\slshape f}} defines a field extension \mbox{\texttt{\mdseries\slshape F}} over the rationals. This function returns the split extension of the maximal
order \mbox{\texttt{\mdseries\slshape O}} of \mbox{\texttt{\mdseries\slshape F}} by the unit group \mbox{\texttt{\mdseries\slshape U}} of \mbox{\texttt{\mdseries\slshape O}}, where \mbox{\texttt{\mdseries\slshape U}} acts by right multiplication on \mbox{\texttt{\mdseries\slshape O}}. }

 

\subsection{\textcolor{Chapter }{BurdeGrunewaldPcpGroup}}
\logpage{[ 6, 1, 8 ]}\nobreak
\hyperdef{L}{X852283A77A2C93DD}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{BurdeGrunewaldPcpGroup({\mdseries\slshape s, t})\index{BurdeGrunewaldPcpGroup@\texttt{BurdeGrunewaldPcpGroup}}
\label{BurdeGrunewaldPcpGroup}
}\hfill{\scriptsize (function)}}\\


 returns a nilpotent group of Hirsch length 11 which has been constructed by
Burde und Grunewald. If \mbox{\texttt{\mdseries\slshape s}} is not 0, then this group has no faithful 12\texttt{\symbol{45}}dimensional
linear representation. }

 }

  
\section{\textcolor{Chapter }{Some assorted example groups}}\label{Some asorted example groups}
\logpage{[ 6, 2, 0 ]}
\hyperdef{L}{X806FBA4A7CB8FB71}{}
{
  The functions in this section provide some more example groups to play with.
They come with no further description and their investigation is left to the
interested user. 

\subsection{\textcolor{Chapter }{ExampleOfMetabelianPcpGroup}}
\logpage{[ 6, 2, 1 ]}\nobreak
\hyperdef{L}{X86293081865CDFC3}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{ExampleOfMetabelianPcpGroup({\mdseries\slshape a, k})\index{ExampleOfMetabelianPcpGroup@\texttt{ExampleOfMetabelianPcpGroup}}
\label{ExampleOfMetabelianPcpGroup}
}\hfill{\scriptsize (function)}}\\


 returns an example of a metabelian group. The input parameters must be two
positive integers greater than 1. }

 

\subsection{\textcolor{Chapter }{ExamplesOfSomePcpGroups}}
\logpage{[ 6, 2, 2 ]}\nobreak
\hyperdef{L}{X83A74A6E7E232FD6}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{ExamplesOfSomePcpGroups({\mdseries\slshape n})\index{ExamplesOfSomePcpGroups@\texttt{ExamplesOfSomePcpGroups}}
\label{ExamplesOfSomePcpGroups}
}\hfill{\scriptsize (function)}}\\


 this function takes values \mbox{\texttt{\mdseries\slshape n}} in 1 up to 16 and returns for each input an example of a
pcp\texttt{\symbol{45}}group. The groups in this example list have been used
as test groups for the functions in this package. }

 }

 }

 
\chapter{\textcolor{Chapter }{Higher level methods for pcp\texttt{\symbol{45}}groups}}\label{Higher level methods for pcp-groups}
\logpage{[ 7, 0, 0 ]}
\hyperdef{L}{X85BB6FE078679DAF}{}
{
  This is a description of some higher level functions of the \textsf{Polycyclic} package of GAP 4. Throughout this chapter we let \mbox{\texttt{\mdseries\slshape G}} be a pc\texttt{\symbol{45}}presented group and we consider algorithms for
subgroups \mbox{\texttt{\mdseries\slshape U}} and \mbox{\texttt{\mdseries\slshape V}} of \mbox{\texttt{\mdseries\slshape G}}. For background and a description of the underlying algorithms we refer to \cite{Eic01b}. 

  
\section{\textcolor{Chapter }{Subgroup series in pcp\texttt{\symbol{45}}groups}}\label{Subgroup series in pcp-groups}
\logpage{[ 7, 1, 0 ]}
\hyperdef{L}{X8266A0A2821D98A1}{}
{
  Many algorithm for pcp\texttt{\symbol{45}}groups work by induction using some
series through the group. In this section we provide a number of useful series
for pcp\texttt{\symbol{45}}groups. An \emph{efa series} is a normal series with elementary or free abelian factors. See \cite{Eic00} for outlines on the algorithms of a number of the available series. 

\subsection{\textcolor{Chapter }{PcpSeries}}
\logpage{[ 7, 1, 1 ]}\nobreak
\hyperdef{L}{X8037DAD77A19D9B2}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{PcpSeries({\mdseries\slshape U})\index{PcpSeries@\texttt{PcpSeries}}
\label{PcpSeries}
}\hfill{\scriptsize (function)}}\\


 returns the polycyclic series of \mbox{\texttt{\mdseries\slshape U}} defined by an igs of \mbox{\texttt{\mdseries\slshape U}}. }

 

\subsection{\textcolor{Chapter }{EfaSeries}}
\logpage{[ 7, 1, 2 ]}\nobreak
\hyperdef{L}{X86C633357ACD342C}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{EfaSeries({\mdseries\slshape U})\index{EfaSeries@\texttt{EfaSeries}}
\label{EfaSeries}
}\hfill{\scriptsize (attribute)}}\\


 returns a normal series of \mbox{\texttt{\mdseries\slshape U}} with elementary or free abelian factors. }

 

\subsection{\textcolor{Chapter }{SemiSimpleEfaSeries}}
\logpage{[ 7, 1, 3 ]}\nobreak
\hyperdef{L}{X80ED4F8380DC477E}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{SemiSimpleEfaSeries({\mdseries\slshape U})\index{SemiSimpleEfaSeries@\texttt{SemiSimpleEfaSeries}}
\label{SemiSimpleEfaSeries}
}\hfill{\scriptsize (attribute)}}\\


 returns an efa series of \mbox{\texttt{\mdseries\slshape U}} such that every factor in the series is semisimple as a module for \mbox{\texttt{\mdseries\slshape U}} over a finite field or over the rationals. }

 

\subsection{\textcolor{Chapter }{DerivedSeriesOfGroup}}
\logpage{[ 7, 1, 4 ]}\nobreak
\hyperdef{L}{X7A879948834BD889}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{DerivedSeriesOfGroup({\mdseries\slshape U})\index{DerivedSeriesOfGroup@\texttt{DerivedSeriesOfGroup}}
\label{DerivedSeriesOfGroup}
}\hfill{\scriptsize (method)}}\\


 the derived series of \mbox{\texttt{\mdseries\slshape U}}. }

 

\subsection{\textcolor{Chapter }{RefinedDerivedSeries}}
\logpage{[ 7, 1, 5 ]}\nobreak
\hyperdef{L}{X866D4C5C79F26611}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{RefinedDerivedSeries({\mdseries\slshape U})\index{RefinedDerivedSeries@\texttt{RefinedDerivedSeries}}
\label{RefinedDerivedSeries}
}\hfill{\scriptsize (function)}}\\


 the derived series of \mbox{\texttt{\mdseries\slshape U}} refined to an efa series such that in each abelian factor of the derived
series the free abelian factor is at the top. }

 

\subsection{\textcolor{Chapter }{RefinedDerivedSeriesDown}}
\logpage{[ 7, 1, 6 ]}\nobreak
\hyperdef{L}{X86F7DE927DE3B5CD}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{RefinedDerivedSeriesDown({\mdseries\slshape U})\index{RefinedDerivedSeriesDown@\texttt{RefinedDerivedSeriesDown}}
\label{RefinedDerivedSeriesDown}
}\hfill{\scriptsize (function)}}\\


 the derived series of \mbox{\texttt{\mdseries\slshape U}} refined to an efa series such that in each abelian factor of the derived
series the free abelian factor is at the bottom. }

 

\subsection{\textcolor{Chapter }{LowerCentralSeriesOfGroup}}
\logpage{[ 7, 1, 7 ]}\nobreak
\hyperdef{L}{X879D55A67DB42676}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{LowerCentralSeriesOfGroup({\mdseries\slshape U})\index{LowerCentralSeriesOfGroup@\texttt{LowerCentralSeriesOfGroup}}
\label{LowerCentralSeriesOfGroup}
}\hfill{\scriptsize (method)}}\\


 the lower central series of \mbox{\texttt{\mdseries\slshape U}}. If \mbox{\texttt{\mdseries\slshape U}} does not have a largest nilpotent quotient group, then this function may not
terminate. }

 

\subsection{\textcolor{Chapter }{UpperCentralSeriesOfGroup}}
\logpage{[ 7, 1, 8 ]}\nobreak
\hyperdef{L}{X8428592E8773CD7B}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{UpperCentralSeriesOfGroup({\mdseries\slshape U})\index{UpperCentralSeriesOfGroup@\texttt{UpperCentralSeriesOfGroup}}
\label{UpperCentralSeriesOfGroup}
}\hfill{\scriptsize (method)}}\\


 the upper central series of \mbox{\texttt{\mdseries\slshape U}}. This function always terminates, but it may terminate at a proper subgroup
of \mbox{\texttt{\mdseries\slshape U}}. }

 

\subsection{\textcolor{Chapter }{TorsionByPolyEFSeries}}
\logpage{[ 7, 1, 9 ]}\nobreak
\hyperdef{L}{X83CA5DE785AE3F2C}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{TorsionByPolyEFSeries({\mdseries\slshape U})\index{TorsionByPolyEFSeries@\texttt{TorsionByPolyEFSeries}}
\label{TorsionByPolyEFSeries}
}\hfill{\scriptsize (function)}}\\


 returns an efa series of \mbox{\texttt{\mdseries\slshape U}} such that all torsion\texttt{\symbol{45}}free factors are at the top and all
finite factors are at the bottom. Such a series might not exist for \mbox{\texttt{\mdseries\slshape U}} and in this case the function returns fail. 
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
  !gapprompt@gap>| !gapinput@G := ExamplesOfSomePcpGroups(5);|
  Pcp-group with orders [ 2, 0, 0, 0 ]
  !gapprompt@gap>| !gapinput@Igs(G);|
  [ g1, g2, g3, g4 ]
  
  !gapprompt@gap>| !gapinput@PcpSeries(G);|
  [ Pcp-group with orders [ 2, 0, 0, 0 ],
    Pcp-group with orders [ 0, 0, 0 ],
    Pcp-group with orders [ 0, 0 ],
    Pcp-group with orders [ 0 ],
    Pcp-group with orders [  ] ]
  
  !gapprompt@gap>| !gapinput@List( PcpSeries(G), Igs );|
  [ [ g1, g2, g3, g4 ], [ g2, g3, g4 ], [ g3, g4 ], [ g4 ], [  ] ]
\end{Verbatim}
 }

 Algorithms for pcp\texttt{\symbol{45}}groups often use an efa series of $G$ and work down over the factors of this series. Usually, pcp's of the factors
are more useful than the actual factors. Hence we provide the following. 

\subsection{\textcolor{Chapter }{PcpsBySeries}}
\logpage{[ 7, 1, 10 ]}\nobreak
\hyperdef{L}{X7E39431286969377}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{PcpsBySeries({\mdseries\slshape ser[, flag]})\index{PcpsBySeries@\texttt{PcpsBySeries}}
\label{PcpsBySeries}
}\hfill{\scriptsize (function)}}\\


 returns a list of pcp's corresponding to the factors of the series. If the
parameter \mbox{\texttt{\mdseries\slshape flag}} is present and equals the string ``snf'', then each pcp corresponds to a decomposition of the abelian groups into
direct factors. }

 

\subsection{\textcolor{Chapter }{PcpsOfEfaSeries}}
\logpage{[ 7, 1, 11 ]}\nobreak
\hyperdef{L}{X79789A1C82139854}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{PcpsOfEfaSeries({\mdseries\slshape U})\index{PcpsOfEfaSeries@\texttt{PcpsOfEfaSeries}}
\label{PcpsOfEfaSeries}
}\hfill{\scriptsize (attribute)}}\\


 returns a list of pcps corresponding to an efa series of \mbox{\texttt{\mdseries\slshape U}}. 
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
  !gapprompt@gap>| !gapinput@G := ExamplesOfSomePcpGroups(5);|
  Pcp-group with orders [ 2, 0, 0, 0 ]
  
  !gapprompt@gap>| !gapinput@PcpsBySeries( DerivedSeriesOfGroup(G));|
  [ Pcp [ g1, g2, g3, g4 ] with orders [ 2, 2, 2, 2 ],
    Pcp [ g2^-2, g3^-2, g4^2 ] with orders [ 0, 0, 4 ],
    Pcp [ g4^8 ] with orders [ 0 ] ]
  !gapprompt@gap>| !gapinput@PcpsBySeries( RefinedDerivedSeries(G));|
  [ Pcp [ g1, g2, g3 ] with orders [ 2, 2, 2 ],
    Pcp [ g4 ] with orders [ 2 ],
    Pcp [ g2^2, g3^2 ] with orders [ 0, 0 ],
    Pcp [ g4^2 ] with orders [ 2 ],
    Pcp [ g4^4 ] with orders [ 2 ],
    Pcp [ g4^8 ] with orders [ 0 ] ]
  
  !gapprompt@gap>| !gapinput@PcpsBySeries( DerivedSeriesOfGroup(G), "snf" );|
  [ Pcp [ g2, g3, g1 ] with orders [ 2, 2, 4 ],
    Pcp [ g4^2, g3^-2, g2^2*g4^2 ] with orders [ 4, 0, 0 ],
    Pcp [ g4^8 ] with orders [ 0 ] ]
  !gapprompt@gap>| !gapinput@G.1^4 in DerivedSubgroup( G );|
  true
  !gapprompt@gap>| !gapinput@G.1^2 = G.4;|
  true
  
  !gapprompt@gap>| !gapinput@ PcpsOfEfaSeries( G );|
  [ Pcp [ g1 ] with orders [ 2 ],
    Pcp [ g2 ] with orders [ 0 ],
    Pcp [ g3 ] with orders [ 0 ],
    Pcp [ g4 ] with orders [ 0 ] ]
\end{Verbatim}
 }

 }

  
\section{\textcolor{Chapter }{Orbit stabilizer methods for pcp\texttt{\symbol{45}}groups}}\label{Orbit stabilizer methods for pcp-groups}
\logpage{[ 7, 2, 0 ]}
\hyperdef{L}{X7CE2DA437FD2B383}{}
{
  Let \mbox{\texttt{\mdseries\slshape U}} be a pcp\texttt{\symbol{45}}group which acts on a set $\Omega$. One of the fundamental problems in algorithmic group theory is the
determination of orbits and stabilizers of points in $\Omega$ under the action of \mbox{\texttt{\mdseries\slshape U}}. We distinguish two cases: the case that all considered orbits are finite and
the case that there are infinite orbits. In the latter case, an orbit cannot
be listed and a description of the orbit and its corresponding stabilizer is
much harder to obtain. 

 If the considered orbits are finite, then the following two functions can be
applied to compute the considered orbits and their corresponding stabilizers. 

\subsection{\textcolor{Chapter }{PcpOrbitStabilizer}}
\logpage{[ 7, 2, 1 ]}\nobreak
\hyperdef{L}{X83E17DB483B33AB5}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{PcpOrbitStabilizer({\mdseries\slshape point, gens, acts, oper})\index{PcpOrbitStabilizer@\texttt{PcpOrbitStabilizer}}
\label{PcpOrbitStabilizer}
}\hfill{\scriptsize (function)}}\\
\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{PcpOrbitsStabilizers({\mdseries\slshape points, gens, acts, oper})\index{PcpOrbitsStabilizers@\texttt{PcpOrbitsStabilizers}}
\label{PcpOrbitsStabilizers}
}\hfill{\scriptsize (function)}}\\


 The input \mbox{\texttt{\mdseries\slshape gens}} can be an igs or a pcp of a pcp\texttt{\symbol{45}}group \mbox{\texttt{\mdseries\slshape U}}. The elements in the list \mbox{\texttt{\mdseries\slshape gens}} act as the elements in the list \mbox{\texttt{\mdseries\slshape acts}} via the function \mbox{\texttt{\mdseries\slshape oper}} on the given points; that is, \mbox{\texttt{\mdseries\slshape oper( point, acts[i] )}} applies the $i$th generator to a given point. Thus the group defined by \mbox{\texttt{\mdseries\slshape acts}} must be a homomorphic image of the group defined by \mbox{\texttt{\mdseries\slshape gens}}. The first function returns a record containing the orbit as component
'orbit' and and igs for the stabilizer as component 'stab'. The second
function returns a list of records, each record contains 'repr' and 'stab'.
Both of these functions run forever on infinite orbits. 
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
  !gapprompt@gap>| !gapinput@G := DihedralPcpGroup( 0 );|
  Pcp-group with orders [ 2, 0 ]
  !gapprompt@gap>| !gapinput@mats := [ [[-1,0],[0,1]], [[1,1],[0,1]] ];;|
  !gapprompt@gap>| !gapinput@pcp := Pcp(G);|
  Pcp [ g1, g2 ] with orders [ 2, 0 ]
  !gapprompt@gap>| !gapinput@PcpOrbitStabilizer( [0,1], pcp, mats, OnRight );|
  rec( orbit := [ [ 0, 1 ] ],
       stab := [ g1, g2 ],
       word := [ [ [ 1, 1 ] ], [ [ 2, 1 ] ] ] )
\end{Verbatim}
 If the considered orbits are infinite, then it may not always be possible to
determine a description of the orbits and their stabilizers. However, as shown
in \cite{EOs01} and \cite{Eic02}, it is possible to determine stabilizers and check if two elements are
contained in the same orbit if the given action of the polycyclic group is a
unimodular linear action on a vector space. The following functions are
available for this case. }

 

\subsection{\textcolor{Chapter }{StabilizerIntegralAction}}
\logpage{[ 7, 2, 2 ]}\nobreak
\hyperdef{L}{X80694BA480F69A0E}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{StabilizerIntegralAction({\mdseries\slshape U, mats, v})\index{StabilizerIntegralAction@\texttt{StabilizerIntegralAction}}
\label{StabilizerIntegralAction}
}\hfill{\scriptsize (function)}}\\
\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{OrbitIntegralAction({\mdseries\slshape U, mats, v, w})\index{OrbitIntegralAction@\texttt{OrbitIntegralAction}}
\label{OrbitIntegralAction}
}\hfill{\scriptsize (function)}}\\


 The first function computes the stabilizer in \mbox{\texttt{\mdseries\slshape U}} of the vector \mbox{\texttt{\mdseries\slshape v}} where the pcp group \mbox{\texttt{\mdseries\slshape U}} acts via \mbox{\texttt{\mdseries\slshape mats}} on an integral space and \mbox{\texttt{\mdseries\slshape v}} and \mbox{\texttt{\mdseries\slshape w}} are elements in this integral space. The second function checks whether \mbox{\texttt{\mdseries\slshape v}} and \mbox{\texttt{\mdseries\slshape w}} are in the same orbit and the function returns either \mbox{\texttt{\mdseries\slshape false}} or a record containing an element in \mbox{\texttt{\mdseries\slshape U}} mapping \mbox{\texttt{\mdseries\slshape v}} to \mbox{\texttt{\mdseries\slshape w}} and the stabilizer of \mbox{\texttt{\mdseries\slshape v}}. }

 

\subsection{\textcolor{Chapter }{NormalizerIntegralAction}}
\logpage{[ 7, 2, 3 ]}\nobreak
\hyperdef{L}{X875BE4077B32A411}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{NormalizerIntegralAction({\mdseries\slshape U, mats, B})\index{NormalizerIntegralAction@\texttt{NormalizerIntegralAction}}
\label{NormalizerIntegralAction}
}\hfill{\scriptsize (function)}}\\
\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{ConjugacyIntegralAction({\mdseries\slshape U, mats, B, C})\index{ConjugacyIntegralAction@\texttt{ConjugacyIntegralAction}}
\label{ConjugacyIntegralAction}
}\hfill{\scriptsize (function)}}\\


 The first function computes the normalizer in \mbox{\texttt{\mdseries\slshape U}} of the lattice with the basis \mbox{\texttt{\mdseries\slshape B}}, where the pcp group \mbox{\texttt{\mdseries\slshape U}} acts via \mbox{\texttt{\mdseries\slshape mats}} on an integral space and \mbox{\texttt{\mdseries\slshape B}} is a subspace of this integral space. The second functions checks whether the
two lattices with the bases \mbox{\texttt{\mdseries\slshape B}} and \mbox{\texttt{\mdseries\slshape C}} are contained in the same orbit under \mbox{\texttt{\mdseries\slshape U}}. The function returns either \mbox{\texttt{\mdseries\slshape false}} or a record with an element in \mbox{\texttt{\mdseries\slshape U}} mapping \mbox{\texttt{\mdseries\slshape B}} to \mbox{\texttt{\mdseries\slshape C}} and the stabilizer of \mbox{\texttt{\mdseries\slshape B}}. 
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
  # get a pcp group and a free abelian normal subgroup
  !gapprompt@gap>| !gapinput@G := ExamplesOfSomePcpGroups(8);|
  Pcp-group with orders [ 0, 0, 0, 0, 0 ]
  !gapprompt@gap>| !gapinput@efa := EfaSeries(G);|
  [ Pcp-group with orders [ 0, 0, 0, 0, 0 ],
    Pcp-group with orders [ 0, 0, 0, 0 ],
    Pcp-group with orders [ 0, 0, 0 ],
    Pcp-group with orders [  ] ]
  !gapprompt@gap>| !gapinput@N := efa[3];|
  Pcp-group with orders [ 0, 0, 0 ]
  !gapprompt@gap>| !gapinput@IsFreeAbelian(N);|
  true
  
  # create conjugation action on N
  !gapprompt@gap>| !gapinput@mats := LinearActionOnPcp(Igs(G), Pcp(N));|
  [ [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ],
    [ [ 0, 0, 1 ], [ 1, -1, 1 ], [ 0, 1, 0 ] ],
    [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ],
    [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ],
    [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ] ]
  
  # take an arbitrary vector and compute its stabilizer
  !gapprompt@gap>| !gapinput@StabilizerIntegralAction(G,mats, [2,3,4]);|
  Pcp-group with orders [ 0, 0, 0, 0 ]
  !gapprompt@gap>| !gapinput@Igs(last);|
  [ g1, g3, g4, g5 ]
  
  # check orbits with some other vectors
  !gapprompt@gap>| !gapinput@OrbitIntegralAction(G,mats, [2,3,4],[3,1,5]);|
  rec( stab := Pcp-group with orders [ 0, 0, 0, 0 ], prei := g2 )
  
  !gapprompt@gap>| !gapinput@OrbitIntegralAction(G,mats, [2,3,4], [4,6,8]);|
  false
  
  # compute the orbit of a subgroup of Z^3 under the action of G
  !gapprompt@gap>| !gapinput@NormalizerIntegralAction(G, mats, [[1,0,0],[0,1,0]]);|
  Pcp-group with orders [ 0, 0, 0, 0, 0 ]
  !gapprompt@gap>| !gapinput@Igs(last);|
  [ g1, g2^2, g3, g4, g5 ]
\end{Verbatim}
 }

 }

  
\section{\textcolor{Chapter }{Centralizers, Normalizers and Intersections}}\label{Centralizers, Normalizers and Intersections}
\logpage{[ 7, 3, 0 ]}
\hyperdef{L}{X80E3B42E792532B3}{}
{
  In this section we list a number of operations for which there are methods
installed to compute the corresponding features in polycyclic groups. 

\subsection{\textcolor{Chapter }{Centralizer (for an element)}}
\logpage{[ 7, 3, 1 ]}\nobreak
\hyperdef{L}{X808EE8AD7EE3ECE1}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{Centralizer({\mdseries\slshape U, g})\index{Centralizer@\texttt{Centralizer}!for an element}
\label{Centralizer:for an element}
}\hfill{\scriptsize (method)}}\\
\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{IsConjugate({\mdseries\slshape U, g, h})\index{IsConjugate@\texttt{IsConjugate}!for elements}
\label{IsConjugate:for elements}
}\hfill{\scriptsize (method)}}\\


 These functions solve the conjugacy problem for elements in
pcp\texttt{\symbol{45}}groups and they can be used to compute centralizers.
The first method returns a subgroup of the given group \mbox{\texttt{\mdseries\slshape U}}, the second method either returns a conjugating element or false if no such
element exists. 

 The methods are based on the orbit stabilizer algorithms described in \cite{EOs01}. For nilpotent groups, an algorithm to solve the conjugacy problem for
elements is described in \cite{Sims94}. }

 

\subsection{\textcolor{Chapter }{Centralizer (for a subgroup)}}
\logpage{[ 7, 3, 2 ]}\nobreak
\hyperdef{L}{X849B5C527BAFAAA4}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{Centralizer({\mdseries\slshape U, V})\index{Centralizer@\texttt{Centralizer}!for a subgroup}
\label{Centralizer:for a subgroup}
}\hfill{\scriptsize (method)}}\\
\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{Normalizer({\mdseries\slshape U, V})\index{Normalizer@\texttt{Normalizer}}
\label{Normalizer}
}\hfill{\scriptsize (method)}}\\
\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{IsConjugate({\mdseries\slshape U, V, W})\index{IsConjugate@\texttt{IsConjugate}!for subgroups}
\label{IsConjugate:for subgroups}
}\hfill{\scriptsize (method)}}\\


 These three functions solve the conjugacy problem for subgroups and compute
centralizers and normalizers of subgroups. The first two functions return
subgroups of the input group \mbox{\texttt{\mdseries\slshape U}}, the third function returns a conjugating element or false if no such element
exists. 

 The methods are based on the orbit stabilizer algorithms described in \cite{Eic02}. For nilpotent groups, an algorithm to solve the conjugacy problems for
subgroups is described in \cite{Lo98}. }

 

\subsection{\textcolor{Chapter }{Intersection}}
\logpage{[ 7, 3, 3 ]}\nobreak
\hyperdef{L}{X851069107CACF98E}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{Intersection({\mdseries\slshape U, N})\index{Intersection@\texttt{Intersection}}
\label{Intersection}
}\hfill{\scriptsize (function)}}\\


 A general method to compute intersections of subgroups of a
pcp\texttt{\symbol{45}}group is described in \cite{Eic01b}, but it is not yet implemented here. However, intersections of subgroups $U, N \leq G$ can be computed if $N$ is normalising $U$. See \cite{Sims94} for an outline of the algorithm. }

 }

  
\section{\textcolor{Chapter }{Finite subgroups}}\label{Finite subgroups}
\logpage{[ 7, 4, 0 ]}
\hyperdef{L}{X7CF015E87A2B2388}{}
{
  There are various finite subgroups of interest in polycyclic groups. See \cite{Eic00} for a description of the algorithms underlying the functions in this section. 

\subsection{\textcolor{Chapter }{TorsionSubgroup}}
\logpage{[ 7, 4, 1 ]}\nobreak
\hyperdef{L}{X8036FA507A170DC4}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{TorsionSubgroup({\mdseries\slshape U})\index{TorsionSubgroup@\texttt{TorsionSubgroup}}
\label{TorsionSubgroup}
}\hfill{\scriptsize (attribute)}}\\


 If the set of elements of finite order forms a subgroup, then we call it the \emph{torsion subgroup}. This function determines the torsion subgroup of \mbox{\texttt{\mdseries\slshape U}}, if it exists, and returns fail otherwise. Note that a torsion subgroup does
always exist if \mbox{\texttt{\mdseries\slshape U}} is nilpotent. }

 

\subsection{\textcolor{Chapter }{NormalTorsionSubgroup}}
\logpage{[ 7, 4, 2 ]}\nobreak
\hyperdef{L}{X8082CD337972DC63}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{NormalTorsionSubgroup({\mdseries\slshape U})\index{NormalTorsionSubgroup@\texttt{NormalTorsionSubgroup}}
\label{NormalTorsionSubgroup}
}\hfill{\scriptsize (attribute)}}\\


 Each polycyclic groups has a unique largest finite normal subgroup. This
function computes it for \mbox{\texttt{\mdseries\slshape U}}. }

 

\subsection{\textcolor{Chapter }{IsTorsionFree}}
\logpage{[ 7, 4, 3 ]}\nobreak
\hyperdef{L}{X86D92DA17DCE22DD}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{IsTorsionFree({\mdseries\slshape U})\index{IsTorsionFree@\texttt{IsTorsionFree}}
\label{IsTorsionFree}
}\hfill{\scriptsize (property)}}\\


 This function checks if \mbox{\texttt{\mdseries\slshape U}} is torsion free. It returns true or false. }

 

\subsection{\textcolor{Chapter }{FiniteSubgroupClasses}}
\logpage{[ 7, 4, 4 ]}\nobreak
\hyperdef{L}{X819058217B4F3DC0}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{FiniteSubgroupClasses({\mdseries\slshape U})\index{FiniteSubgroupClasses@\texttt{FiniteSubgroupClasses}}
\label{FiniteSubgroupClasses}
}\hfill{\scriptsize (attribute)}}\\


 There exist only finitely many conjugacy classes of finite subgroups in a
polycyclic group \mbox{\texttt{\mdseries\slshape U}} and this function can be used to compute them. The algorithm underlying this
function proceeds by working down a normal series of \mbox{\texttt{\mdseries\slshape U}} with elementary or free abelian factors. The following function can be used to
give the algorithm a specific series. }

 

\subsection{\textcolor{Chapter }{FiniteSubgroupClassesBySeries}}
\logpage{[ 7, 4, 5 ]}\nobreak
\hyperdef{L}{X7E7C32EA81A297B6}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{FiniteSubgroupClassesBySeries({\mdseries\slshape U, pcps})\index{FiniteSubgroupClassesBySeries@\texttt{FiniteSubgroupClassesBySeries}}
\label{FiniteSubgroupClassesBySeries}
}\hfill{\scriptsize (function)}}\\


 
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
  !gapprompt@gap>| !gapinput@G := ExamplesOfSomePcpGroups(15);|
  Pcp-group with orders [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 4, 0 ]
  !gapprompt@gap>| !gapinput@TorsionSubgroup(G);|
  Pcp-group with orders [ 5, 2 ]
  !gapprompt@gap>| !gapinput@NormalTorsionSubgroup(G);|
  Pcp-group with orders [ 5, 2 ]
  !gapprompt@gap>| !gapinput@IsTorsionFree(G);|
  false
  !gapprompt@gap>| !gapinput@FiniteSubgroupClasses(G);|
  [ Pcp-group with orders [ 5, 2 ]^G,
    Pcp-group with orders [ 2 ]^G,
    Pcp-group with orders [ 5 ]^G,
    Pcp-group with orders [  ]^G ]
  
  !gapprompt@gap>| !gapinput@G := DihedralPcpGroup( 0 );|
  Pcp-group with orders [ 2, 0 ]
  !gapprompt@gap>| !gapinput@TorsionSubgroup(G);|
  fail
  !gapprompt@gap>| !gapinput@NormalTorsionSubgroup(G);|
  Pcp-group with orders [  ]
  !gapprompt@gap>| !gapinput@IsTorsionFree(G);|
  false
  !gapprompt@gap>| !gapinput@FiniteSubgroupClasses(G);|
  [ Pcp-group with orders [ 2 ]^G,
    Pcp-group with orders [ 2 ]^G,
    Pcp-group with orders [  ]^G ]
\end{Verbatim}
 }

 }

  
\section{\textcolor{Chapter }{Subgroups of finite index and maximal subgroups}}\label{Subgroups of finite index and maximal subgroups}
\logpage{[ 7, 5, 0 ]}
\hyperdef{L}{X7D9F737F80F6E396}{}
{
  Here we outline functions to determine various types of subgroups of finite
index in polycyclic groups. Again, see \cite{Eic00} for a description of the algorithms underlying the functions in this section.
Also, we refer to \cite{Lo99} for an alternative approach. 

\subsection{\textcolor{Chapter }{MaximalSubgroupClassesByIndex}}
\logpage{[ 7, 5, 1 ]}\nobreak
\hyperdef{L}{X87D62D497A8715FB}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{MaximalSubgroupClassesByIndex({\mdseries\slshape U, p})\index{MaximalSubgroupClassesByIndex@\texttt{MaximalSubgroupClassesByIndex}}
\label{MaximalSubgroupClassesByIndex}
}\hfill{\scriptsize (operation)}}\\


 Each maximal subgroup of a polycyclic group \mbox{\texttt{\mdseries\slshape U}} has \mbox{\texttt{\mdseries\slshape p}}\texttt{\symbol{45}}power index for some prime \mbox{\texttt{\mdseries\slshape p}}. This function can be used to determine the conjugacy classes of all maximal
subgroups of \mbox{\texttt{\mdseries\slshape p}}\texttt{\symbol{45}}power index for a given prime \mbox{\texttt{\mdseries\slshape p}}. }

 

\subsection{\textcolor{Chapter }{LowIndexSubgroupClasses}}
\logpage{[ 7, 5, 2 ]}\nobreak
\hyperdef{L}{X7800133F81BC7674}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{LowIndexSubgroupClasses({\mdseries\slshape U, n})\index{LowIndexSubgroupClasses@\texttt{LowIndexSubgroupClasses}}
\label{LowIndexSubgroupClasses}
}\hfill{\scriptsize (operation)}}\\


 There are only finitely many subgroups of a given index in a polycyclic group \mbox{\texttt{\mdseries\slshape U}}. This function computes conjugacy classes of all subgroups of index \mbox{\texttt{\mdseries\slshape n}} in \mbox{\texttt{\mdseries\slshape U}}. }

 

\subsection{\textcolor{Chapter }{LowIndexNormalSubgroups}}
\logpage{[ 7, 5, 3 ]}\nobreak
\hyperdef{L}{X7F7067C77F2DC32C}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{LowIndexNormalSubgroups({\mdseries\slshape U, n})\index{LowIndexNormalSubgroups@\texttt{LowIndexNormalSubgroups}}
\label{LowIndexNormalSubgroups}
}\hfill{\scriptsize (operation)}}\\


 This function computes the normal subgroups of index \mbox{\texttt{\mdseries\slshape n}} in \mbox{\texttt{\mdseries\slshape U}}. }

 

\subsection{\textcolor{Chapter }{NilpotentByAbelianNormalSubgroup}}
\logpage{[ 7, 5, 4 ]}\nobreak
\hyperdef{L}{X85A5BC447D83175F}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{NilpotentByAbelianNormalSubgroup({\mdseries\slshape U})\index{NilpotentByAbelianNormalSubgroup@\texttt{NilpotentByAbelianNormalSubgroup}}
\label{NilpotentByAbelianNormalSubgroup}
}\hfill{\scriptsize (function)}}\\


 This function returns a normal subgroup \mbox{\texttt{\mdseries\slshape N}} of finite index in \mbox{\texttt{\mdseries\slshape U}} such that \mbox{\texttt{\mdseries\slshape N}} is nilpotent\texttt{\symbol{45}}by\texttt{\symbol{45}}abelian. Such a subgroup
exists in every polycyclic group and this function computes such a subgroup
using LowIndexNormal. However, we note that this function is not very
efficient and the function NilpotentByAbelianByFiniteSeries may well be more
efficient on this task. 
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
  !gapprompt@gap>| !gapinput@G := ExamplesOfSomePcpGroups(2);|
  Pcp-group with orders [ 0, 0, 0, 0, 0, 0 ]
  
  !gapprompt@gap>| !gapinput@MaximalSubgroupClassesByIndex( G, 61 );;|
  !gapprompt@gap>| !gapinput@max := List( last, Representative );;|
  !gapprompt@gap>| !gapinput@List( max, x -> Index( G, x ) );|
  [ 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61,
    61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61,
    61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61,
    61, 61, 61, 61, 61, 61, 226981 ]
  
  !gapprompt@gap>| !gapinput@LowIndexSubgroupClasses( G, 61 );;|
  !gapprompt@gap>| !gapinput@low := List( last, Representative );;|
  !gapprompt@gap>| !gapinput@List( low, x -> Index( G, x ) );|
  [ 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61,
    61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61,
    61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61,
    61, 61, 61, 61, 61, 61 ]
\end{Verbatim}
 }

 }

  
\section{\textcolor{Chapter }{Further attributes for pcp\texttt{\symbol{45}}groups based on the Fitting
subgroup}}\label{Further attributes for pcp-groups based on the Fitting subgroup}
\logpage{[ 7, 6, 0 ]}
\hyperdef{L}{X785E0E877AB1D549}{}
{
  In this section we provide a variety of other attributes for
pcp\texttt{\symbol{45}}groups. Most of the methods below are based or related
to the Fitting subgroup of the given group. We refer to \cite{Eic01} for a description of the underlying methods. 

\subsection{\textcolor{Chapter }{FittingSubgroup}}
\logpage{[ 7, 6, 1 ]}\nobreak
\hyperdef{L}{X780552B57C30DD8F}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{FittingSubgroup({\mdseries\slshape U})\index{FittingSubgroup@\texttt{FittingSubgroup}}
\label{FittingSubgroup}
}\hfill{\scriptsize (attribute)}}\\


 returns the Fitting subgroup of \mbox{\texttt{\mdseries\slshape U}}; that is, the largest nilpotent normal subgroup of \mbox{\texttt{\mdseries\slshape U}}. }

 

\subsection{\textcolor{Chapter }{IsNilpotentByFinite}}
\logpage{[ 7, 6, 2 ]}\nobreak
\hyperdef{L}{X86BD63DC844731DF}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{IsNilpotentByFinite({\mdseries\slshape U})\index{IsNilpotentByFinite@\texttt{IsNilpotentByFinite}}
\label{IsNilpotentByFinite}
}\hfill{\scriptsize (property)}}\\


 checks whether the Fitting subgroup of \mbox{\texttt{\mdseries\slshape U}} has finite index. }

 

\subsection{\textcolor{Chapter }{Centre}}
\logpage{[ 7, 6, 3 ]}\nobreak
\hyperdef{L}{X847ABE6F781C7FE8}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{Centre({\mdseries\slshape U})\index{Centre@\texttt{Centre}}
\label{Centre}
}\hfill{\scriptsize (method)}}\\


 returns the centre of \mbox{\texttt{\mdseries\slshape U}}. }

 

\subsection{\textcolor{Chapter }{FCCentre}}
\logpage{[ 7, 6, 4 ]}\nobreak
\hyperdef{L}{X861C36368435EB09}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{FCCentre({\mdseries\slshape U})\index{FCCentre@\texttt{FCCentre}}
\label{FCCentre}
}\hfill{\scriptsize (method)}}\\


 returns the FC\texttt{\symbol{45}}centre of \mbox{\texttt{\mdseries\slshape U}}; that is, the subgroup containing all elements having a finite conjugacy
class in \mbox{\texttt{\mdseries\slshape U}}. }

 

\subsection{\textcolor{Chapter }{PolyZNormalSubgroup}}
\logpage{[ 7, 6, 5 ]}\nobreak
\hyperdef{L}{X7E75E2BC806746AC}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{PolyZNormalSubgroup({\mdseries\slshape U})\index{PolyZNormalSubgroup@\texttt{PolyZNormalSubgroup}}
\label{PolyZNormalSubgroup}
}\hfill{\scriptsize (function)}}\\


 returns a normal subgroup \mbox{\texttt{\mdseries\slshape N}} of finite index in \mbox{\texttt{\mdseries\slshape U}}, such that \mbox{\texttt{\mdseries\slshape N}} has a polycyclic series with infinite factors only. }

 

\subsection{\textcolor{Chapter }{NilpotentByAbelianByFiniteSeries}}
\logpage{[ 7, 6, 6 ]}\nobreak
\hyperdef{L}{X86800BF783E30D4A}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{NilpotentByAbelianByFiniteSeries({\mdseries\slshape U})\index{NilpotentByAbelianByFiniteSeries@\texttt{NilpotentByAbelianByFiniteSeries}}
\label{NilpotentByAbelianByFiniteSeries}
}\hfill{\scriptsize (function)}}\\


 returns a normal series $1 \leq F \leq A \leq U$ such that $F$ is nilpotent, $A/F$ is abelian and $U/A$ is finite. This series is computed using the Fitting subgroup and the centre
of the Fitting factor. }

 }

  
\section{\textcolor{Chapter }{Functions for nilpotent groups}}\label{Functions for nilpotent groups}
\logpage{[ 7, 7, 0 ]}
\hyperdef{L}{X878DBDC77CCA4F7E}{}
{
  There are (very few) functions which are available for nilpotent groups only.
First, there are the different central series. These are available for all
groups, but for nilpotent groups they terminate and provide series through the
full group. Secondly, the determination of a minimal generating set is
available for nilpotent groups only. 

\subsection{\textcolor{Chapter }{MinimalGeneratingSet}}
\logpage{[ 7, 7, 1 ]}\nobreak
\hyperdef{L}{X81D15723804771E2}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{MinimalGeneratingSet({\mdseries\slshape U})\index{MinimalGeneratingSet@\texttt{MinimalGeneratingSet}}
\label{MinimalGeneratingSet}
}\hfill{\scriptsize (method)}}\\


 
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
  !gapprompt@gap>| !gapinput@G := ExamplesOfSomePcpGroups(14);|
  Pcp-group with orders [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 4, 0, 5, 5, 4, 0, 6,
    5, 5, 4, 0, 10, 6 ]
  !gapprompt@gap>| !gapinput@IsNilpotent(G);|
  true
  
  !gapprompt@gap>| !gapinput@PcpsBySeries( LowerCentralSeriesOfGroup(G));|
  [ Pcp [ g1, g2 ] with orders [ 0, 0 ],
    Pcp [ g3 ] with orders [ 0 ],
    Pcp [ g4 ] with orders [ 0 ],
    Pcp [ g5 ] with orders [ 0 ],
    Pcp [ g6, g7 ] with orders [ 0, 0 ],
    Pcp [ g8 ] with orders [ 0 ],
    Pcp [ g9, g10 ] with orders [ 0, 0 ],
    Pcp [ g11, g12, g13 ] with orders [ 5, 4, 0 ],
    Pcp [ g14, g15, g16, g17, g18 ] with orders [ 5, 5, 4, 0, 6 ],
    Pcp [ g19, g20, g21, g22, g23, g24 ] with orders [ 5, 5, 4, 0, 10, 6 ] ]
  
  !gapprompt@gap>| !gapinput@PcpsBySeries( UpperCentralSeriesOfGroup(G));|
  [ Pcp [ g1, g2 ] with orders [ 0, 0 ],
    Pcp [ g3 ] with orders [ 0 ],
    Pcp [ g4 ] with orders [ 0 ],
    Pcp [ g5 ] with orders [ 0 ],
    Pcp [ g6, g7 ] with orders [ 0, 0 ],
    Pcp [ g8 ] with orders [ 0 ],
    Pcp [ g9, g10 ] with orders [ 0, 0 ],
    Pcp [ g11, g12, g13 ] with orders [ 5, 4, 0 ],
    Pcp [ g14, g15, g16, g17, g18 ] with orders [ 5, 5, 4, 0, 6 ],
    Pcp [ g19, g20, g21, g22, g23, g24 ] with orders [ 5, 5, 4, 0, 10, 6 ] ]
  
  !gapprompt@gap>| !gapinput@MinimalGeneratingSet(G);|
  [ g1, g2 ]
\end{Verbatim}
 }

 }

  
\section{\textcolor{Chapter }{Random methods for pcp\texttt{\symbol{45}}groups}}\label{Random methods for pcp-groups}
\logpage{[ 7, 8, 0 ]}
\hyperdef{L}{X8640F9D47A1F7434}{}
{
     Below we introduce a function which computes orbit and stabilizer using a
random method. This function tries to approximate the orbit and the
stabilizer, but the returned orbit or stabilizer may be incomplete. This
function is used in the random methods to compute normalizers and
centralizers. Note that deterministic methods for these purposes are also
available. 

     

\subsection{\textcolor{Chapter }{RandomCentralizerPcpGroup (for an element)}}
\logpage{[ 7, 8, 1 ]}\nobreak
\hyperdef{L}{X80AEE73E7D639699}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{RandomCentralizerPcpGroup({\mdseries\slshape U, g})\index{RandomCentralizerPcpGroup@\texttt{RandomCentralizerPcpGroup}!for an element}
\label{RandomCentralizerPcpGroup:for an element}
}\hfill{\scriptsize (function)}}\\
\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{RandomCentralizerPcpGroup({\mdseries\slshape U, V})\index{RandomCentralizerPcpGroup@\texttt{RandomCentralizerPcpGroup}!for a subgroup}
\label{RandomCentralizerPcpGroup:for a subgroup}
}\hfill{\scriptsize (function)}}\\
\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{RandomNormalizerPcpGroup({\mdseries\slshape U, V})\index{RandomNormalizerPcpGroup@\texttt{RandomNormalizerPcpGroup}}
\label{RandomNormalizerPcpGroup}
}\hfill{\scriptsize (function)}}\\


 
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
  !gapprompt@gap>| !gapinput@G := DihedralPcpGroup(0);|
  Pcp-group with orders [ 2, 0 ]
  !gapprompt@gap>| !gapinput@mats := [[[-1, 0],[0,1]], [[1,1],[0,1]]];|
  [ [ [ -1, 0 ], [ 0, 1 ] ], [ [ 1, 1 ], [ 0, 1 ] ] ]
  !gapprompt@gap>| !gapinput@pcp := Pcp(G);|
  Pcp [ g1, g2 ] with orders [ 2, 0 ]
  
  !gapprompt@gap>| !gapinput@RandomPcpOrbitStabilizer( [1,0], pcp, mats, OnRight ).stab;|
  #I  Orbit longer than limit: exiting.
  [  ]
  
  !gapprompt@gap>| !gapinput@g := Igs(G)[1];|
  g1
  !gapprompt@gap>| !gapinput@RandomCentralizerPcpGroup( G, g );|
  #I  Stabilizer not increasing: exiting.
  Pcp-group with orders [ 2 ]
  !gapprompt@gap>| !gapinput@Igs(last);|
  [ g1 ]
\end{Verbatim}
 }

 }

  
\section{\textcolor{Chapter }{Non\texttt{\symbol{45}}abelian tensor product and Schur extensions}}\label{Non-abelian tensor product and Schur extensions}
\logpage{[ 7, 9, 0 ]}
\hyperdef{L}{X824142B784453DB9}{}
{
  

\subsection{\textcolor{Chapter }{SchurExtension}}
\logpage{[ 7, 9, 1 ]}\nobreak
\hyperdef{L}{X79EF28D9845878C9}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{SchurExtension({\mdseries\slshape G})\index{SchurExtension@\texttt{SchurExtension}}
\label{SchurExtension}
}\hfill{\scriptsize (attribute)}}\\


 Let \mbox{\texttt{\mdseries\slshape G}} be a polycyclic group with a polycyclic generating sequence consisting of $n$ elements. This function computes the largest central extension \mbox{\texttt{\mdseries\slshape H}} of \mbox{\texttt{\mdseries\slshape G}} such that \mbox{\texttt{\mdseries\slshape H}} is generated by $n$ elements. If $F/R$ is the underlying polycyclic presentation for \mbox{\texttt{\mdseries\slshape G}}, then \mbox{\texttt{\mdseries\slshape H}} is isomorphic to $F/[R,F]$. 
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
  !gapprompt@gap>| !gapinput@G := DihedralPcpGroup( 0 );|
  Pcp-group with orders [ 2, 0 ]
  !gapprompt@gap>| !gapinput@Centre( G );|
  Pcp-group with orders [  ]
  !gapprompt@gap>| !gapinput@H := SchurExtension( G );|
  Pcp-group with orders [ 2, 0, 0, 0 ]
  !gapprompt@gap>| !gapinput@Centre( H );|
  Pcp-group with orders [ 0, 0 ]
  !gapprompt@gap>| !gapinput@H/Centre(H);|
  Pcp-group with orders [ 2, 0 ]
  !gapprompt@gap>| !gapinput@Subgroup( H, [H.1,H.2] ) = H;|
  true
\end{Verbatim}
 }

 

\subsection{\textcolor{Chapter }{SchurExtensionEpimorphism}}
\logpage{[ 7, 9, 2 ]}\nobreak
\hyperdef{L}{X84B60EC978A9A05E}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{SchurExtensionEpimorphism({\mdseries\slshape G})\index{SchurExtensionEpimorphism@\texttt{SchurExtensionEpimorphism}}
\label{SchurExtensionEpimorphism}
}\hfill{\scriptsize (attribute)}}\\


 returns the projection from the Schur extension $G^{*}$ of \mbox{\texttt{\mdseries\slshape G}} onto \mbox{\texttt{\mdseries\slshape G}}. See the function \texttt{SchurExtension}. The kernel of this epimorphism is the direct product of the Schur
multiplicator of \mbox{\texttt{\mdseries\slshape G}} and a direct product of $n$ copies of ${\ensuremath{\mathbb Z}}$ where $n$ is the number of generators in the polycyclic presentation for \mbox{\texttt{\mdseries\slshape G}}. The Schur multiplicator is the intersection of the kernel and the derived
group of the source. See also the function \texttt{SchurCover}. 
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
  !gapprompt@gap>| !gapinput@gl23 := Range( IsomorphismPcpGroup( GL(2,3) ) );|
  Pcp-group with orders [ 2, 3, 2, 2, 2 ]
  !gapprompt@gap>| !gapinput@SchurExtensionEpimorphism( gl23 );|
  [ g1, g2, g3, g4, g5, g6, g7, g8, g9, g10 ] -> [ g1, g2, g3, g4, g5,
  id, id, id, id, id ]
  !gapprompt@gap>| !gapinput@Kernel( last );|
  Pcp-group with orders [ 0, 0, 0, 0, 0 ]
  !gapprompt@gap>| !gapinput@AbelianInvariantsMultiplier( gl23 );|
  [  ]
  !gapprompt@gap>| !gapinput@Intersection( Kernel(epi), DerivedSubgroup( Source(epi) ) );|
  [  ]
\end{Verbatim}
 There is a crossed pairing from \mbox{\texttt{\mdseries\slshape G}} into $(G^{*})'$ which can be defined via this epimorphism: 
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
  !gapprompt@gap>| !gapinput@G := DihedralPcpGroup(0);|
  Pcp-group with orders [ 2, 0 ]
  !gapprompt@gap>| !gapinput@epi := SchurExtensionEpimorphism( G );|
  [ g1, g2, g3, g4 ] -> [ g1, g2, id, id ]
  !gapprompt@gap>| !gapinput@PreImagesRepresentative( epi, G.1 );|
  g1
  !gapprompt@gap>| !gapinput@PreImagesRepresentative( epi, G.2 );|
  g2
  !gapprompt@gap>| !gapinput@Comm( last, last2 );|
  g2^-2*g4
\end{Verbatim}
 }

 

\subsection{\textcolor{Chapter }{SchurCover}}
\logpage{[ 7, 9, 3 ]}\nobreak
\hyperdef{L}{X7DD1E37987612042}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{SchurCover({\mdseries\slshape G})\index{SchurCover@\texttt{SchurCover}}
\label{SchurCover}
}\hfill{\scriptsize (function)}}\\


 computes a Schur covering group of the polycyclic group \mbox{\texttt{\mdseries\slshape G}}. A Schur covering is a largest central extension \mbox{\texttt{\mdseries\slshape H}} of \mbox{\texttt{\mdseries\slshape G}} such that the kernel \mbox{\texttt{\mdseries\slshape M}} of the projection of \mbox{\texttt{\mdseries\slshape H}} onto \mbox{\texttt{\mdseries\slshape G}} is contained in the commutator subgroup of \mbox{\texttt{\mdseries\slshape H}}. 

 If \mbox{\texttt{\mdseries\slshape G}} is given by a presentation $F/R$, then \mbox{\texttt{\mdseries\slshape M}} is isomorphic to the subgroup $R \cap [F,F] / [R,F]$. Let $C$ be a complement to $R \cap [F,F] / [R,F]$ in $R/[R,F]$. Then $F/C$ is isomorphic to \mbox{\texttt{\mdseries\slshape H}} and $R/C$ is isomorphic to \mbox{\texttt{\mdseries\slshape M}}. 
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
  !gapprompt@gap>| !gapinput@G := AbelianPcpGroup( 3 );|
  Pcp-group with orders [ 0, 0, 0 ]
  !gapprompt@gap>| !gapinput@ext := SchurCover( G );|
  Pcp-group with orders [ 0, 0, 0, 0, 0, 0 ]
  !gapprompt@gap>| !gapinput@Centre( ext );|
  Pcp-group with orders [ 0, 0, 0 ]
  !gapprompt@gap>| !gapinput@IsSubgroup( DerivedSubgroup( ext ), last );|
  true
\end{Verbatim}
 }

 

\subsection{\textcolor{Chapter }{AbelianInvariantsMultiplier}}
\logpage{[ 7, 9, 4 ]}\nobreak
\hyperdef{L}{X792BC39D7CEB1D27}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{AbelianInvariantsMultiplier({\mdseries\slshape G})\index{AbelianInvariantsMultiplier@\texttt{AbelianInvariantsMultiplier}}
\label{AbelianInvariantsMultiplier}
}\hfill{\scriptsize (attribute)}}\\


 returns a list of the abelian invariants of the Schur multiplier of G. 

 Note that the Schur multiplicator of a polycyclic group is a finitely
generated abelian group. 
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
  !gapprompt@gap>| !gapinput@G := DihedralPcpGroup( 0 );|
  Pcp-group with orders [ 2, 0 ]
  !gapprompt@gap>| !gapinput@DirectProduct( G, AbelianPcpGroup( 2 ) );|
  Pcp-group with orders [ 0, 0, 2, 0 ]
  !gapprompt@gap>| !gapinput@AbelianInvariantsMultiplier( last );|
  [ 0, 2, 2, 2, 2 ]
\end{Verbatim}
 }

 

\subsection{\textcolor{Chapter }{NonAbelianExteriorSquareEpimorphism}}
\logpage{[ 7, 9, 5 ]}\nobreak
\hyperdef{L}{X822ED5978647C93B}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{NonAbelianExteriorSquareEpimorphism({\mdseries\slshape G})\index{NonAbelianExteriorSquareEpimorphism@\texttt{NonAbelianExteriorSquareEpimorphism}}
\label{NonAbelianExteriorSquareEpimorphism}
}\hfill{\scriptsize (function)}}\\


 returns the epimorphism of the non\texttt{\symbol{45}}abelian exterior square
of a polycyclic group \mbox{\texttt{\mdseries\slshape G}} onto the derived group of \mbox{\texttt{\mdseries\slshape G}}. The non\texttt{\symbol{45}}abelian exterior square can be defined as the
derived subgroup of a Schur cover of \mbox{\texttt{\mdseries\slshape G}}. The isomorphism type of the non\texttt{\symbol{45}}abelian exterior square
is unique despite the fact that the isomorphism type of a Schur cover of a
polycyclic groups need not be unique. The derived group of a Schur cover has a
natural projection onto the derived group of \mbox{\texttt{\mdseries\slshape G}} which is what the function returns. 

 The kernel of the epimorphism is isomorphic to the Schur multiplicator of \mbox{\texttt{\mdseries\slshape G}}. 
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
  !gapprompt@gap>| !gapinput@G := ExamplesOfSomePcpGroups( 3 );|
  Pcp-group with orders [ 0, 0 ]
  !gapprompt@gap>| !gapinput@G := DirectProduct( G,G );|
  Pcp-group with orders [ 0, 0, 0, 0 ]
  !gapprompt@gap>| !gapinput@AbelianInvariantsMultiplier( G );|
  [ [ 0, 1 ], [ 2, 3 ] ]
  !gapprompt@gap>| !gapinput@epi := NonAbelianExteriorSquareEpimorphism( G );|
  [ g2^-2*g5, g4^-2*g10, g6, g7, g8, g9 ] -> [ g2^-2, g4^-2, id, id, id, id ]
  !gapprompt@gap>| !gapinput@Kernel( epi );|
  Pcp-group with orders [ 0, 2, 2, 2 ]
  !gapprompt@gap>| !gapinput@Collected( AbelianInvariants( last ) );|
  [ [ 0, 1 ], [ 2, 3 ] ]
\end{Verbatim}
 }

 

\subsection{\textcolor{Chapter }{NonAbelianExteriorSquare}}
\logpage{[ 7, 9, 6 ]}\nobreak
\hyperdef{L}{X8739CD4686301A0E}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{NonAbelianExteriorSquare({\mdseries\slshape G})\index{NonAbelianExteriorSquare@\texttt{NonAbelianExteriorSquare}}
\label{NonAbelianExteriorSquare}
}\hfill{\scriptsize (attribute)}}\\


 computes the non\texttt{\symbol{45}}abelian exterior square of a polycyclic
group \mbox{\texttt{\mdseries\slshape G}}. See the explanation for \texttt{NonAbelianExteriorSquareEpimorphism}. The natural projection of the non\texttt{\symbol{45}}abelian exterior square
onto the derived group of \mbox{\texttt{\mdseries\slshape G}} is stored in the component \texttt{!.epimorphism}. 

 There is a crossed pairing from $G\times G$ into $G\wedge G$. See the function \texttt{SchurExtensionEpimorphism} for details. The crossed pairing is stored in the component \texttt{!.crossedPairing}. This is the crossed pairing $\lambda$ in \cite{EickNickel07}. 
\begin{Verbatim}[commandchars=@|B,fontsize=\small,frame=single,label=Example]
  @gapprompt|gap>B @gapinput|G := DihedralPcpGroup(0);B
  Pcp-group with orders [ 2, 0 ]
  @gapprompt|gap>B @gapinput|GwG := NonAbelianExteriorSquare( G );B
  Pcp-group with orders [ 0 ]
  @gapprompt|gap>B @gapinput|lambda := GwG!.crossedPairing;B
  function( g, h ) ... end
  @gapprompt|gap>B @gapinput|lambda( G.1, G.2 );B
  g2^2*g4^-1
\end{Verbatim}
 }

 

\subsection{\textcolor{Chapter }{NonAbelianTensorSquareEpimorphism}}
\logpage{[ 7, 9, 7 ]}\nobreak
\hyperdef{L}{X86553D7B7DABF38F}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{NonAbelianTensorSquareEpimorphism({\mdseries\slshape G})\index{NonAbelianTensorSquareEpimorphism@\texttt{NonAbelianTensorSquareEpimorphism}}
\label{NonAbelianTensorSquareEpimorphism}
}\hfill{\scriptsize (function)}}\\


 returns for a polycyclic group \mbox{\texttt{\mdseries\slshape G}} the projection of the non\texttt{\symbol{45}}abelian tensor square $G\otimes G$ onto the non\texttt{\symbol{45}}abelian exterior square $G\wedge G$. The range of that epimorphism has the component \texttt{!.epimorphism} set to the projection of the non\texttt{\symbol{45}}abelian exterior square
onto the derived group of \mbox{\texttt{\mdseries\slshape G}}. See also the function \texttt{NonAbelianExteriorSquare}. 

 With the result of this function one can compute the groups in the commutative
diagram at the beginning of the paper \cite{EickNickel07}. The kernel of the returned epimorphism is the group $\nabla(G)$. The kernel of the composition of this epimorphism and the above mention
projection onto $G'$ is the group $J(G)$. 
\begin{Verbatim}[commandchars=@|B,fontsize=\small,frame=single,label=Example]
  @gapprompt|gap>B @gapinput|G := DihedralPcpGroup(0);B
  Pcp-group with orders [ 2, 0 ]
  @gapprompt|gap>B @gapinput|G := DirectProduct(G,G);B
  Pcp-group with orders [ 2, 0, 2, 0 ]
  @gapprompt|gap>B @gapinput|alpha := NonAbelianTensorSquareEpimorphism( G );B
  [ g9*g25^-1, g10*g26^-1, g11*g27, g12*g28, g13*g29, g14*g30, g15, g16,
  g17,
    g18, g19, g20, g21, g22, g23, g24 ] -> [ g2^-2*g6, g4^-2*g12, g8,
    g9, g10,
    g11, id, id, id, id, id, id, id, id, id, id ]
  @gapprompt|gap>B @gapinput|gamma := Range( alpha )!.epimorphism;B
  [ g2^-2*g6, g4^-2*g12, g8, g9, g10, g11 ] -> [ g2^-2, g4^-2, id, id,
  id, id ]
  @gapprompt|gap>B @gapinput|JG := Kernel( alpha * gamma );B
  Pcp-group with orders [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
  @gapprompt|gap>B @gapinput|Image( alpha, JG );B
  Pcp-group with orders [ 2, 2, 2, 2 ]
  @gapprompt|gap>B @gapinput|AbelianInvariantsMultiplier( G );B
  [ [ 2, 4 ] ]
\end{Verbatim}
 }

 

\subsection{\textcolor{Chapter }{NonAbelianTensorSquare}}
\logpage{[ 7, 9, 8 ]}\nobreak
\hyperdef{L}{X7C0DF7C97F78C666}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{NonAbelianTensorSquare({\mdseries\slshape G})\index{NonAbelianTensorSquare@\texttt{NonAbelianTensorSquare}}
\label{NonAbelianTensorSquare}
}\hfill{\scriptsize (attribute)}}\\


 computes for a polycyclic group \mbox{\texttt{\mdseries\slshape G}} the non\texttt{\symbol{45}}abelian tensor square $G\otimes G$. 
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
  !gapprompt@gap>| !gapinput@G := AlternatingGroup( IsPcGroup, 4 );|
  <pc group of size 12 with 3 generators>
  !gapprompt@gap>| !gapinput@PcGroupToPcpGroup( G );|
  Pcp-group with orders [ 3, 2, 2 ]
  !gapprompt@gap>| !gapinput@NonAbelianTensorSquare( last );|
  Pcp-group with orders [ 2, 2, 2, 3 ]
  !gapprompt@gap>| !gapinput@PcpGroupToPcGroup( last );|
  <pc group of size 24 with 4 generators>
  !gapprompt@gap>| !gapinput@DirectFactorsOfGroup( last );|
  [ Group([ f1, f2, f3 ]), Group([ f4 ]) ]
  !gapprompt@gap>| !gapinput@List( last, Size );|
  [ 8, 3 ]
  !gapprompt@gap>| !gapinput@IdGroup( last2[1] );|
  [ 8, 4 ]       # the quaternion group of Order 8
  
  !gapprompt@gap>| !gapinput@G := DihedralPcpGroup( 0 );|
  Pcp-group with orders [ 2, 0 ]
  !gapprompt@gap>| !gapinput@ten := NonAbelianTensorSquare( G );|
  Pcp-group with orders [ 0, 2, 2, 2 ]
  !gapprompt@gap>| !gapinput@IsAbelian( ten );|
  true
\end{Verbatim}
 }

 

\subsection{\textcolor{Chapter }{NonAbelianExteriorSquarePlusEmbedding}}
\logpage{[ 7, 9, 9 ]}\nobreak
\hyperdef{L}{X7AE75EC1860FFE7A}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{NonAbelianExteriorSquarePlusEmbedding({\mdseries\slshape G})\index{NonAbelianExteriorSquarePlusEmbedding@\texttt{Non}\-\texttt{Abelian}\-\texttt{Exterior}\-\texttt{Square}\-\texttt{Plus}\-\texttt{Embedding}}
\label{NonAbelianExteriorSquarePlusEmbedding}
}\hfill{\scriptsize (function)}}\\


 returns an embedding from the non\texttt{\symbol{45}}abelian exterior square $G\wedge G$ into an extensions of $G\wedge G$ by $G\times G$. For the significance of the group see the paper \cite{EickNickel07}. The range of the epimorphism is the group $\tau(G)$ in that paper. }

 

\subsection{\textcolor{Chapter }{NonAbelianTensorSquarePlusEpimorphism}}
\logpage{[ 7, 9, 10 ]}\nobreak
\hyperdef{L}{X7D96C84E87925B0F}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{NonAbelianTensorSquarePlusEpimorphism({\mdseries\slshape G})\index{NonAbelianTensorSquarePlusEpimorphism@\texttt{Non}\-\texttt{Abelian}\-\texttt{Tensor}\-\texttt{Square}\-\texttt{Plus}\-\texttt{Epimorphism}}
\label{NonAbelianTensorSquarePlusEpimorphism}
}\hfill{\scriptsize (function)}}\\


 returns an epimorphisms of $\nu(G)$ onto $\tau(G)$. The group $\nu(G)$ is an extension of the non\texttt{\symbol{45}}abelian tensor square $G\otimes G$ of $G$ by $G\times G$. The group $\tau(G)$ is an extension of the non\texttt{\symbol{45}}abelian exterior square $G\wedge G$ by $G\times G$. For details see \cite{EickNickel07}. }

 

\subsection{\textcolor{Chapter }{NonAbelianTensorSquarePlus}}
\logpage{[ 7, 9, 11 ]}\nobreak
\hyperdef{L}{X8746533787C4E8BC}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{NonAbelianTensorSquarePlus({\mdseries\slshape G})\index{NonAbelianTensorSquarePlus@\texttt{NonAbelianTensorSquarePlus}}
\label{NonAbelianTensorSquarePlus}
}\hfill{\scriptsize (function)}}\\


 returns the group $\nu(G)$ in \cite{EickNickel07}. }

 

\subsection{\textcolor{Chapter }{WhiteheadQuadraticFunctor}}
\logpage{[ 7, 9, 12 ]}\nobreak
\hyperdef{L}{X78F9184078B2761A}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{WhiteheadQuadraticFunctor({\mdseries\slshape G})\index{WhiteheadQuadraticFunctor@\texttt{WhiteheadQuadraticFunctor}}
\label{WhiteheadQuadraticFunctor}
}\hfill{\scriptsize (function)}}\\


 returns Whitehead's universal quadratic functor of $G$, see \cite{EickNickel07} for a description. }

 }

  
\section{\textcolor{Chapter }{Schur covers}}\label{Schur covers}
\logpage{[ 7, 10, 0 ]}
\hyperdef{L}{X7D3023697BA5CE5A}{}
{
  This section contains a function to determine the Schur covers of a finite $p$\texttt{\symbol{45}}group up to isomorphism. 

\subsection{\textcolor{Chapter }{SchurCovers}}
\logpage{[ 7, 10, 1 ]}\nobreak
\hyperdef{L}{X7D90B44E7B96AFF1}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{SchurCovers({\mdseries\slshape G})\index{SchurCovers@\texttt{SchurCovers}}
\label{SchurCovers}
}\hfill{\scriptsize (function)}}\\


 Let \mbox{\texttt{\mdseries\slshape G}} be a finite $p$\texttt{\symbol{45}}group defined as a pcp group. This function returns a
complete and irredundant set of isomorphism types of Schur covers of \mbox{\texttt{\mdseries\slshape G}}. The algorithm implements a method of Nickel's Phd Thesis. }

 }

 }

 
\chapter{\textcolor{Chapter }{Cohomology for pcp\texttt{\symbol{45}}groups}}\label{Cohomology for pcp-groups}
\logpage{[ 8, 0, 0 ]}
\hyperdef{L}{X796AB9787E2A752C}{}
{
  The \textsf{GAP} 4 package \textsf{Polycyclic} provides methods to compute the first and second cohomology group for a
pcp\texttt{\symbol{45}}group $U$ and a finite dimensional ${\ensuremath{\mathbb Z}} U$ or $FU$ module $A$ where $F$ is a finite field. The algorithm for determining the first cohomology group is
outlined in \cite{Eic00}. 

 As a preparation for the cohomology computation, we introduce the cohomology
records. These records provide the technical setup for our cohomology
computations. 
\section{\textcolor{Chapter }{Cohomology records}}\label{Cohomology records}
\logpage{[ 8, 1, 0 ]}
\hyperdef{L}{X875758FA7C6F5CE1}{}
{
  Cohomology records provide the necessary technical setup for the cohomology
computations for polycyclic groups. 

\subsection{\textcolor{Chapter }{CRRecordByMats}}
\logpage{[ 8, 1, 1 ]}\nobreak
\hyperdef{L}{X7C97442C7B78806C}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{CRRecordByMats({\mdseries\slshape U, mats})\index{CRRecordByMats@\texttt{CRRecordByMats}}
\label{CRRecordByMats}
}\hfill{\scriptsize (function)}}\\


 creates an external module. Let \mbox{\texttt{\mdseries\slshape U}} be a pcp group which acts via the list of matrices \mbox{\texttt{\mdseries\slshape mats}} on a vector space of the form ${\ensuremath{\mathbb Z}}^n$ or $\mathbb{F}_p^n$. Then this function creates a record which can be used as input for the
cohomology computations. }

 

\subsection{\textcolor{Chapter }{CRRecordBySubgroup}}
\logpage{[ 8, 1, 2 ]}\nobreak
\hyperdef{L}{X8646DFA1804D2A11}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{CRRecordBySubgroup({\mdseries\slshape U, A})\index{CRRecordBySubgroup@\texttt{CRRecordBySubgroup}}
\label{CRRecordBySubgroup}
}\hfill{\scriptsize (function)}}\\
\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{CRRecordByPcp({\mdseries\slshape U, pcp})\index{CRRecordByPcp@\texttt{CRRecordByPcp}}
\label{CRRecordByPcp}
}\hfill{\scriptsize (function)}}\\


 creates an internal module. Let \mbox{\texttt{\mdseries\slshape U}} be a pcp group and let \mbox{\texttt{\mdseries\slshape A}} be a normal elementary or free abelian normal subgroup of \mbox{\texttt{\mdseries\slshape U}} or let \mbox{\texttt{\mdseries\slshape pcp}} be a pcp of a normal elementary of free abelian subfactor of \mbox{\texttt{\mdseries\slshape U}}. Then this function creates a record which can be used as input for the
cohomology computations. 

 The returned cohomology record \mbox{\texttt{\mdseries\slshape C}} contains the following entries: 
\begin{description}
\item[{\mbox{\texttt{\mdseries\slshape factor}}}]  a pcp of the acting group. If the module is external, then this is \mbox{\texttt{\mdseries\slshape Pcp(U)}}. If the module is internal, then this is \mbox{\texttt{\mdseries\slshape Pcp(U, A)}} or \mbox{\texttt{\mdseries\slshape Pcp(U, GroupOfPcp(pcp))}}. 
\item[{\mbox{\texttt{\mdseries\slshape mats}}, \mbox{\texttt{\mdseries\slshape invs}} and \mbox{\texttt{\mdseries\slshape one}}}]  the matrix action of \mbox{\texttt{\mdseries\slshape factor}} with acting matrices, their inverses and the identity matrix. 
\item[{\mbox{\texttt{\mdseries\slshape dim}} and \mbox{\texttt{\mdseries\slshape char}}}]  the dimension and characteristic of the matrices. 
\item[{\mbox{\texttt{\mdseries\slshape relators}} and \mbox{\texttt{\mdseries\slshape enumrels}}}]  the right hand sides of the polycyclic relators of \mbox{\texttt{\mdseries\slshape factor}} as generator exponents lists and a description for the corresponding left hand
sides. 
\item[{\mbox{\texttt{\mdseries\slshape central}}}]  is true, if the matrices \mbox{\texttt{\mdseries\slshape mats}} are all trivial. This is used locally for efficiency reasons. 
\end{description}
 And additionally, if $C$ defines an internal module, then it contains: 
\begin{description}
\item[{\mbox{\texttt{\mdseries\slshape group}}}]  the original group \mbox{\texttt{\mdseries\slshape U}}. 
\item[{\mbox{\texttt{\mdseries\slshape normal}}}]  this is either \mbox{\texttt{\mdseries\slshape Pcp(A)}} or the input \mbox{\texttt{\mdseries\slshape pcp}}. 
\item[{\mbox{\texttt{\mdseries\slshape extension}}}]  information on the extension of \mbox{\texttt{\mdseries\slshape A}} by \mbox{\texttt{\mdseries\slshape U/A}}. 
\end{description}
 }

 }

  
\section{\textcolor{Chapter }{Cohomology groups}}\label{Cohomology groups}
\logpage{[ 8, 2, 0 ]}
\hyperdef{L}{X874759D582393441}{}
{
  Let $U$ be a pcp\texttt{\symbol{45}}group and $A$ a free or elementary abelian pcp\texttt{\symbol{45}}group and a $U$\texttt{\symbol{45}}module. By $Z^i(U, A)$ be denote the group of $i$\texttt{\symbol{45}}th cocycles and by $B^i(U, A)$ the $i$\texttt{\symbol{45}}th coboundaries. The factor $Z^i(U,A) / B^i(U,A)$ is the $i$\texttt{\symbol{45}}th cohomology group. Since $A$ is elementary or free abelian, the groups $Z^i(U, A)$ and $B^i(U, A)$ are elementary or free abelian groups as well. 

 The \textsf{Polycyclic} package provides methods to compute first and second cohomology group for a
polycyclic group \mbox{\texttt{\mdseries\slshape U}}. We write all involved groups additively and we use an explicit description
by bases for them. Let $C$ be the cohomology record corresponding to $U$ and $A$. 

 Let $f_1, \ldots, f_n$ be the elements in the entry $factor$ of the cohomology record $C$. Then we use the following embedding of the first cocycle group to describe
1\texttt{\symbol{45}}cocycles and 1\texttt{\symbol{45}}coboundaries: $Z^1(U, A) \to A^n : \delta \mapsto (\delta(f_1), \ldots, \delta(f_n))$ 

 For the second cohomology group we recall that each element of $Z^2(U, A)$ defines an extension $H$ of $A$ by $U$. Thus there is a pc\texttt{\symbol{45}}presentation of $H$ extending the pc\texttt{\symbol{45}}presentation of $U$ given by the record $C$. The extended presentation is defined by tails in $A$; that is, each relator in the record entry $relators$ is extended by an element of $A$. The concatenation of these tails yields a vector in $A^l$ where $l$ is the length of the record entry $relators$ of $C$. We use these tail vectors to describe $Z^2(U, A)$ and $B^2(U, A)$. Note that this description is dependent on the chosen presentation in $C$. However, the factor $Z^2(U, A)/ B^2(U, A)$ is independent of the chosen presentation. 

 The following functions are available to compute explicitly the first and
second cohomology group as described above. 

\subsection{\textcolor{Chapter }{OneCoboundariesCR}}
\logpage{[ 8, 2, 1 ]}\nobreak
\hyperdef{L}{X85EF170387D39D4A}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{OneCoboundariesCR({\mdseries\slshape C})\index{OneCoboundariesCR@\texttt{OneCoboundariesCR}}
\label{OneCoboundariesCR}
}\hfill{\scriptsize (function)}}\\
\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{OneCocyclesCR({\mdseries\slshape C})\index{OneCocyclesCR@\texttt{OneCocyclesCR}}
\label{OneCocyclesCR}
}\hfill{\scriptsize (function)}}\\
\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{TwoCoboundariesCR({\mdseries\slshape C})\index{TwoCoboundariesCR@\texttt{TwoCoboundariesCR}}
\label{TwoCoboundariesCR}
}\hfill{\scriptsize (function)}}\\
\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{TwoCocyclesCR({\mdseries\slshape C})\index{TwoCocyclesCR@\texttt{TwoCocyclesCR}}
\label{TwoCocyclesCR}
}\hfill{\scriptsize (function)}}\\
\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{OneCohomologyCR({\mdseries\slshape C})\index{OneCohomologyCR@\texttt{OneCohomologyCR}}
\label{OneCohomologyCR}
}\hfill{\scriptsize (function)}}\\
\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{TwoCohomologyCR({\mdseries\slshape C})\index{TwoCohomologyCR@\texttt{TwoCohomologyCR}}
\label{TwoCohomologyCR}
}\hfill{\scriptsize (function)}}\\


 The first four functions return bases of the corresponding group. The last two
functions need to describe a factor of additive abelian groups. They return
the following descriptions for these factors. 
\begin{description}
\item[{\mbox{\texttt{\mdseries\slshape gcc}}}]  the basis of the cocycles of \mbox{\texttt{\mdseries\slshape C}}. 
\item[{\mbox{\texttt{\mdseries\slshape gcb}}}]  the basis of the coboundaries of \mbox{\texttt{\mdseries\slshape C}}. 
\item[{\mbox{\texttt{\mdseries\slshape factor}}}]  a description of the factor of cocycles by coboundaries. Usually, it would be
most convenient to use additive mappings here. However, these are not
available in case that \mbox{\texttt{\mdseries\slshape A}} is free abelian and thus we use a description of this additive map as record.
This record contains 
\begin{description}
\item[{\mbox{\texttt{\mdseries\slshape gens}}}]  a base for the image. 
\item[{\mbox{\texttt{\mdseries\slshape rels}}}]  relative orders for the image. 
\item[{\mbox{\texttt{\mdseries\slshape imgs}}}]  the images for the elements in \mbox{\texttt{\mdseries\slshape gcc}}. 
\item[{\mbox{\texttt{\mdseries\slshape prei}}}]  preimages for the elements in \mbox{\texttt{\mdseries\slshape gens}}. 
\item[{\mbox{\texttt{\mdseries\slshape denom}}}]  the kernel of the map; that is, another basis for \mbox{\texttt{\mdseries\slshape gcb}}. 
\end{description}
 
\end{description}
 There is an additional function which can be used to compute the second
cohomology group over an arbitrary finitely generated abelian group. The
finitely generated abelian group should be realized as a factor of a free
abelian group modulo a lattice. The function is called as }

 

\subsection{\textcolor{Chapter }{TwoCohomologyModCR}}
\logpage{[ 8, 2, 2 ]}\nobreak
\hyperdef{L}{X79B48D697A8A84C8}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{TwoCohomologyModCR({\mdseries\slshape C, lat})\index{TwoCohomologyModCR@\texttt{TwoCohomologyModCR}}
\label{TwoCohomologyModCR}
}\hfill{\scriptsize (function)}}\\


 where \mbox{\texttt{\mdseries\slshape C}} is a cohomology record and \mbox{\texttt{\mdseries\slshape lat}} is a basis for a sublattice of a free abelian module. The output format is the
same as for \texttt{TwoCohomologyCR}. }

 }

  
\section{\textcolor{Chapter }{Extended 1\texttt{\symbol{45}}cohomology}}\label{Extended 1-cohomology}
\logpage{[ 8, 3, 0 ]}
\hyperdef{L}{X79610E9178BD0C54}{}
{
  In some cases more information on the first cohomology group is of interest.
In particular, if we have an internal module given and we want to compute the
complements using the first cohomology group, then we need additional
information. This extended version of first cohomology is obtained by the
following functions. 

\subsection{\textcolor{Chapter }{OneCoboundariesEX}}
\logpage{[ 8, 3, 1 ]}\nobreak
\hyperdef{L}{X7E87E3EA81C84621}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{OneCoboundariesEX({\mdseries\slshape C})\index{OneCoboundariesEX@\texttt{OneCoboundariesEX}}
\label{OneCoboundariesEX}
}\hfill{\scriptsize (function)}}\\


 returns a record consisting of the entries 
\begin{description}
\item[{\mbox{\texttt{\mdseries\slshape basis}}}]  a basis for $B^1(U, A) \leq A^n$. 
\item[{\mbox{\texttt{\mdseries\slshape transf}}}]  There is a derivation mapping from $A$ to $B^1(U,A)$. This mapping is described here as transformation from $A$ to \mbox{\texttt{\mdseries\slshape basis}}. 
\item[{\mbox{\texttt{\mdseries\slshape fixpts}}}]  the fixpoints of $A$. This is also the kernel of the derivation mapping. 
\end{description}
 }

 

\subsection{\textcolor{Chapter }{OneCocyclesEX}}
\logpage{[ 8, 3, 2 ]}\nobreak
\hyperdef{L}{X8111D2087C16CC0C}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{OneCocyclesEX({\mdseries\slshape C})\index{OneCocyclesEX@\texttt{OneCocyclesEX}}
\label{OneCocyclesEX}
}\hfill{\scriptsize (function)}}\\


 returns a record consisting of the entries 
\begin{description}
\item[{\mbox{\texttt{\mdseries\slshape basis}}}]  a basis for $Z^1(U, A) \leq A^n$. 
\item[{\mbox{\texttt{\mdseries\slshape transl}}}]  a special solution. This is only of interest in case that $C$ is an internal module and in this case it gives the translation vector in $A^n$ used to obtain complements corresponding to the elements in $basis$. If $C$ is not an internal module, then this vector is always the zero vector. 
\end{description}
 }

 

\subsection{\textcolor{Chapter }{OneCohomologyEX}}
\logpage{[ 8, 3, 3 ]}\nobreak
\hyperdef{L}{X84718DDE792FB212}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{OneCohomologyEX({\mdseries\slshape C})\index{OneCohomologyEX@\texttt{OneCohomologyEX}}
\label{OneCohomologyEX}
}\hfill{\scriptsize (function)}}\\


 returns the combined information on the first cohomology group. }

 }

  
\section{\textcolor{Chapter }{Extensions and Complements}}\label{Extensions and Complements}
\logpage{[ 8, 4, 0 ]}
\hyperdef{L}{X853E51787A24AE00}{}
{
  The natural applications of first and second cohomology group is the
determination of extensions and complements. Let $C$ be a cohomology record. 

\subsection{\textcolor{Chapter }{ ComplementCR}}
\logpage{[ 8, 4, 1 ]}\nobreak
\hyperdef{L}{X7DA9162085058006}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{ ComplementCR({\mdseries\slshape C, c})\index{ ComplementCR@\texttt{ ComplementCR}}
\label{ ComplementCR}
}\hfill{\scriptsize (function)}}\\


 returns the complement corresponding to the 1\texttt{\symbol{45}}cocycle \mbox{\texttt{\mdseries\slshape c}}. In the case that \mbox{\texttt{\mdseries\slshape C}} is an external module, we construct the split extension of $U$ with $A$ first and then determine the complement. In the case that \mbox{\texttt{\mdseries\slshape C}} is an internal module, the vector \mbox{\texttt{\mdseries\slshape c}} must be an element of the affine space corresponding to the complements as
described by \texttt{OneCocyclesEX}. }

 

\subsection{\textcolor{Chapter }{ ComplementsCR}}
\logpage{[ 8, 4, 2 ]}\nobreak
\hyperdef{L}{X7F8984D386A813D6}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{ ComplementsCR({\mdseries\slshape C})\index{ ComplementsCR@\texttt{ ComplementsCR}}
\label{ ComplementsCR}
}\hfill{\scriptsize (function)}}\\


 returns all complements using the correspondence to $Z^1(U,A)$. Further, this function returns fail, if $Z^1(U,A)$ is infinite. }

 

\subsection{\textcolor{Chapter }{ ComplementClassesCR}}
\logpage{[ 8, 4, 3 ]}\nobreak
\hyperdef{L}{X7FAB3EB0803197FA}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{ ComplementClassesCR({\mdseries\slshape C})\index{ ComplementClassesCR@\texttt{ ComplementClassesCR}}
\label{ ComplementClassesCR}
}\hfill{\scriptsize (function)}}\\


 returns complement classes using the correspondence to $H^1(U,A)$. Further, this function returns fail, if $H^1(U,A)$ is infinite. }

 

\subsection{\textcolor{Chapter }{ ComplementClassesEfaPcps}}
\logpage{[ 8, 4, 4 ]}\nobreak
\hyperdef{L}{X8759DC59799DD508}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{ ComplementClassesEfaPcps({\mdseries\slshape U, N, pcps})\index{ ComplementClassesEfaPcps@\texttt{ ComplementClassesEfaPcps}}
\label{ ComplementClassesEfaPcps}
}\hfill{\scriptsize (function)}}\\


 Let $N$ be a normal subgroup of $U$. This function returns the complement classes to $N$ in $U$. The classes are computed by iteration over the $U$\texttt{\symbol{45}}invariant efa series of $N$ described by \mbox{\texttt{\mdseries\slshape pcps}}. If at some stage in this iteration infinitely many complements are
discovered, then the function returns fail. (Even though there might be only
finitely many conjugacy classes of complements to $N$ in $U$.) }

 

\subsection{\textcolor{Chapter }{ ComplementClasses}}
\logpage{[ 8, 4, 5 ]}\nobreak
\hyperdef{L}{X7B0EC76D81A056AB}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{ ComplementClasses({\mdseries\slshape [V, ]U, N})\index{ ComplementClasses@\texttt{ ComplementClasses}}
\label{ ComplementClasses}
}\hfill{\scriptsize (function)}}\\


 Let $N$ and $U$ be normal subgroups of $V$ with $N \leq U \leq V$. This function attempts to compute the $V$\texttt{\symbol{45}}conjugacy classes of complements to $N$ in $U$. The algorithm proceeds by iteration over a $V$\texttt{\symbol{45}}invariant efa series of $N$. If at some stage in this iteration infinitely many complements are
discovered, then the algorithm returns fail. }

 

\subsection{\textcolor{Chapter }{ExtensionCR}}
\logpage{[ 8, 4, 6 ]}\nobreak
\hyperdef{L}{X85F3B55C78CF840B}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{ExtensionCR({\mdseries\slshape C, c})\index{ExtensionCR@\texttt{ExtensionCR}}
\label{ExtensionCR}
}\hfill{\scriptsize (function)}}\\


 returns the extension corresponding to the 2\texttt{\symbol{45}}cocycle $c$. }

 

\subsection{\textcolor{Chapter }{ExtensionsCR}}
\logpage{[ 8, 4, 7 ]}\nobreak
\hyperdef{L}{X81DC85907E0948FD}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{ExtensionsCR({\mdseries\slshape C})\index{ExtensionsCR@\texttt{ExtensionsCR}}
\label{ExtensionsCR}
}\hfill{\scriptsize (function)}}\\


 returns all extensions using the correspondence to $Z^2(U,A)$. Further, this function returns fail, if $Z^2(U,A)$ is infinite. }

 

\subsection{\textcolor{Chapter }{ExtensionClassesCR}}
\logpage{[ 8, 4, 8 ]}\nobreak
\hyperdef{L}{X7AE16E3687E14B24}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{ExtensionClassesCR({\mdseries\slshape C})\index{ExtensionClassesCR@\texttt{ExtensionClassesCR}}
\label{ExtensionClassesCR}
}\hfill{\scriptsize (function)}}\\


 returns extension classes using the correspondence to $H^2(U,A)$. Further, this function returns fail, if $H^2(U,A)$ is infinite. }

 

\subsection{\textcolor{Chapter }{SplitExtensionPcpGroup}}
\logpage{[ 8, 4, 9 ]}\nobreak
\hyperdef{L}{X7986997B78AD3292}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{SplitExtensionPcpGroup({\mdseries\slshape U, mats})\index{SplitExtensionPcpGroup@\texttt{SplitExtensionPcpGroup}}
\label{SplitExtensionPcpGroup}
}\hfill{\scriptsize (function)}}\\


 returns the split extension of \mbox{\texttt{\mdseries\slshape U}} by the $U$\texttt{\symbol{45}}module described by \mbox{\texttt{\mdseries\slshape mats}}. }

 }

  
\section{\textcolor{Chapter }{Constructing pcp groups as extensions}}\label{Constructing pcp groups as extensions}
\logpage{[ 8, 5, 0 ]}
\hyperdef{L}{X823771527DBD857D}{}
{
  This section contains an example application of the second cohomology group to
the construction of pcp groups as extensions. The following constructs
extensions of the group of upper unitriangular matrices with its natural
lattice. 
\begin{Verbatim}[commandchars=@|A,fontsize=\small,frame=single,label=Example]
  # get the group and its matrix action
  @gapprompt|gap>A @gapinput|G := UnitriangularPcpGroup(3,0);A
  Pcp-group with orders [ 0, 0, 0 ]
  @gapprompt|gap>A @gapinput|mats := G!.mats;A
  [ [ [ 1, 1, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ],
    [ [ 1, 0, 0 ], [ 0, 1, 1 ], [ 0, 0, 1 ] ],
    [ [ 1, 0, 1 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ] ]
  
  # set up the cohomology record
  @gapprompt|gap>A @gapinput|C := CRRecordByMats(G,mats);;A
  
  # compute the second cohomology group
  @gapprompt|gap>A @gapinput|cc := TwoCohomologyCR(C);;A
  
  # the abelian invariants of H^2(G,M)
  @gapprompt|gap>A @gapinput|cc.factor.rels;A
  [ 2, 0, 0 ]
  
  # construct an extension which corresponds to a cocycle that has
  # infinite image in H^2(G,M)
  @gapprompt|gap>A @gapinput|c := cc.factor.prei[2];A
  [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, -1, 1 ]
  
  @gapprompt|gap>A @gapinput|H := ExtensionCR( C, c);A
  Pcp-group with orders [ 0, 0, 0, 0, 0, 0 ]
  
  # check that the extension does not split - get the normal subgroup
  @gapprompt|gap>A @gapinput|N := H!.module;A
  Pcp-group with orders [ 0, 0, 0 ]
  
  # create the interal module
  @gapprompt|gap>A @gapinput|C := CRRecordBySubgroup(H,N);;A
  
  # use the complements routine
  @gapprompt|gap>A @gapinput|ComplementClassesCR(C);A
  [  ]
\end{Verbatim}
 }

 }

 
\chapter{\textcolor{Chapter }{Matrix Representations}}\label{Matrix Representations}
\logpage{[ 9, 0, 0 ]}
\hyperdef{L}{X858D1BB07A8FBF87}{}
{
  This chapter describes functions which compute with matrix representations for
pcp\texttt{\symbol{45}}groups. So far the routines in this package are only
able to compute matrix representations for torsion\texttt{\symbol{45}}free
nilpotent groups. 
\section{\textcolor{Chapter }{Unitriangular matrix groups}}\label{Unitriangular matrix groups}
\logpage{[ 9, 1, 0 ]}
\hyperdef{L}{X7D0ED06C7E6A457D}{}
{
  

\subsection{\textcolor{Chapter }{UnitriangularMatrixRepresentation}}
\logpage{[ 9, 1, 1 ]}\nobreak
\hyperdef{L}{X7E6F320F865E309C}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{UnitriangularMatrixRepresentation({\mdseries\slshape G})\index{UnitriangularMatrixRepresentation@\texttt{UnitriangularMatrixRepresentation}}
\label{UnitriangularMatrixRepresentation}
}\hfill{\scriptsize (operation)}}\\


 computes a faithful representation of a torsion\texttt{\symbol{45}}free
nilpotent group \mbox{\texttt{\mdseries\slshape G}} as unipotent lower triangular matrices over the integers. The
pc\texttt{\symbol{45}}presentation for \mbox{\texttt{\mdseries\slshape G}} must not contain any power relations. The algorithm is described in \cite{dGN02}. }

 

\subsection{\textcolor{Chapter }{IsMatrixRepresentation}}
\logpage{[ 9, 1, 2 ]}\nobreak
\hyperdef{L}{X7F5E7F5F7DDB2E2C}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{IsMatrixRepresentation({\mdseries\slshape G, matrices})\index{IsMatrixRepresentation@\texttt{IsMatrixRepresentation}}
\label{IsMatrixRepresentation}
}\hfill{\scriptsize (function)}}\\


 checks if the map defined by mapping the $i$\texttt{\symbol{45}}th generator of the pcp\texttt{\symbol{45}}group \mbox{\texttt{\mdseries\slshape G}} to the $i$\texttt{\symbol{45}}th matrix of \mbox{\texttt{\mdseries\slshape matrices}} defines a homomorphism. }

 }

  
\section{\textcolor{Chapter }{Upper unitriangular matrix groups}}\label{Upper unitriangular matrix groups}
\logpage{[ 9, 2, 0 ]}
\hyperdef{L}{X79A8A51B84E4BF8C}{}
{
  We call a matrix upper unitriangular if it is an upper triangular matrix with
ones on the main diagonal. The weight of an upper unitriangular matrix is the
number of diagonals above the main diagonal that contain zeroes only. 

 The subgroup of all upper unitriangular matrices of $GL(n,{\ensuremath{\mathbb Z}})$ is torsion\texttt{\symbol{45}}free nilpotent. The $k$\texttt{\symbol{45}}th term of its lower central series is the set of all
matrices of weight $k-1$. The ${\ensuremath{\mathbb Z}}$\texttt{\symbol{45}}rank of the $k$\texttt{\symbol{45}}th term of the lower central series modulo the $(k+1)$\texttt{\symbol{45}}th term is $n-k$. 

\subsection{\textcolor{Chapter }{IsomorphismUpperUnitriMatGroupPcpGroup}}
\logpage{[ 9, 2, 1 ]}\nobreak
\hyperdef{L}{X8434972E7DDB68C1}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{IsomorphismUpperUnitriMatGroupPcpGroup({\mdseries\slshape G})\index{IsomorphismUpperUnitriMatGroupPcpGroup@\texttt{Isomorphism}\-\texttt{Upper}\-\texttt{Unitri}\-\texttt{Mat}\-\texttt{Group}\-\texttt{Pcp}\-\texttt{Group}}
\label{IsomorphismUpperUnitriMatGroupPcpGroup}
}\hfill{\scriptsize (function)}}\\


 takes a group \mbox{\texttt{\mdseries\slshape G}} generated by upper unitriangular matrices over the integers and computes a
polycyclic presentation for the group. The function returns an isomorphism
from the matrix group to the pcp group. Note that a group generated by upper
unitriangular matrices is necessarily torsion\texttt{\symbol{45}}free
nilpotent. }

 

\subsection{\textcolor{Chapter }{SiftUpperUnitriMatGroup}}
\logpage{[ 9, 2, 2 ]}\nobreak
\hyperdef{L}{X843C9D427FFA2487}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{SiftUpperUnitriMatGroup({\mdseries\slshape G})\index{SiftUpperUnitriMatGroup@\texttt{SiftUpperUnitriMatGroup}}
\label{SiftUpperUnitriMatGroup}
}\hfill{\scriptsize (function)}}\\


 takes a group \mbox{\texttt{\mdseries\slshape G}} generated by upper unitriangular matrices over the integers and returns a
recursive data structure \mbox{\texttt{\mdseries\slshape L}} with the following properties: \mbox{\texttt{\mdseries\slshape L}} contains a polycyclic generating sequence for \mbox{\texttt{\mdseries\slshape G}}, using \mbox{\texttt{\mdseries\slshape L}} one can decide if a given upper unitriangular matrix is contained in \mbox{\texttt{\mdseries\slshape G}}, a given element of \mbox{\texttt{\mdseries\slshape G}} can be written as a word in the polycyclic generating sequence. \mbox{\texttt{\mdseries\slshape L}} is a representation of a chain of subgroups of \mbox{\texttt{\mdseries\slshape G}} refining the lower centrals series of \mbox{\texttt{\mdseries\slshape G}}.. It contains for each subgroup in the chain a minimal generating set. }

 

\subsection{\textcolor{Chapter }{RanksLevels}}
\logpage{[ 9, 2, 3 ]}\nobreak
\hyperdef{L}{X7CF8B8F981931846}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{RanksLevels({\mdseries\slshape L})\index{RanksLevels@\texttt{RanksLevels}}
\label{RanksLevels}
}\hfill{\scriptsize (function)}}\\


 takes the data structure returned by \texttt{SiftUpperUnitriMat} and prints the ${\ensuremath{\mathbb Z}}$\texttt{\symbol{45}}rank of each the subgroup in \mbox{\texttt{\mdseries\slshape L}}. }

 

\subsection{\textcolor{Chapter }{MakeNewLevel}}
\logpage{[ 9, 2, 4 ]}\nobreak
\hyperdef{L}{X81F3760186734EA7}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{MakeNewLevel({\mdseries\slshape m})\index{MakeNewLevel@\texttt{MakeNewLevel}}
\label{MakeNewLevel}
}\hfill{\scriptsize (function)}}\\


 creates one level of the data structure returned by \texttt{SiftUpperUnitriMat} and initialises it with weight \mbox{\texttt{\mdseries\slshape m}}. }

 

\subsection{\textcolor{Chapter }{SiftUpperUnitriMat}}
\logpage{[ 9, 2, 5 ]}\nobreak
\hyperdef{L}{X851A216C85B74574}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{SiftUpperUnitriMat({\mdseries\slshape gens, level, M})\index{SiftUpperUnitriMat@\texttt{SiftUpperUnitriMat}}
\label{SiftUpperUnitriMat}
}\hfill{\scriptsize (function)}}\\


 takes the generators \mbox{\texttt{\mdseries\slshape gens}} of an upper unitriangular group, the data structure returned \mbox{\texttt{\mdseries\slshape level}} by \texttt{SiftUpperUnitriMat} and another upper unitriangular matrix \mbox{\texttt{\mdseries\slshape M}}. It sift \mbox{\texttt{\mdseries\slshape M}} through \mbox{\texttt{\mdseries\slshape level}} and adds \mbox{\texttt{\mdseries\slshape M}} at the appropriate place if \mbox{\texttt{\mdseries\slshape M}} is not contained in the subgroup represented by \mbox{\texttt{\mdseries\slshape level}}. 

 The function \texttt{SiftUpperUnitriMatGroup} illustrates the use of \texttt{SiftUpperUnitriMat}. 
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
  InstallGlobalFunction( "SiftUpperUnitriMatGroup", function( G )
      local   firstlevel,  g;
  
      firstlevel := MakeNewLevel( 0 );
      for g in GeneratorsOfGroup(G) do
          SiftUpperUnitriMat( GeneratorsOfGroup(G), firstlevel, g );
      od;
      return firstlevel;
  end );
\end{Verbatim}
 }

 

\subsection{\textcolor{Chapter }{DecomposeUpperUnitriMat}}
\logpage{[ 9, 2, 6 ]}\nobreak
\hyperdef{L}{X86D711217C639C2C}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{DecomposeUpperUnitriMat({\mdseries\slshape level, M})\index{DecomposeUpperUnitriMat@\texttt{DecomposeUpperUnitriMat}}
\label{DecomposeUpperUnitriMat}
}\hfill{\scriptsize (function)}}\\


 takes the data structure \mbox{\texttt{\mdseries\slshape level}} returned by \texttt{SiftUpperUnitriMatGroup} and a upper unitriangular matrix \mbox{\texttt{\mdseries\slshape M}} and decomposes \mbox{\texttt{\mdseries\slshape M}} into a word in the polycyclic generating sequence of \mbox{\texttt{\mdseries\slshape level}}. }

 }

 }

 

\appendix


\chapter{\textcolor{Chapter }{Obsolete Functions and Name Changes}}\label{app:Obsolete}
\logpage{[ "A", 0, 0 ]}
\hyperdef{L}{X874ECE907CAF380D}{}
{
  Over time, the interface of \textsf{Polycyclic} has changed. This was done to get the names of \textsf{Polycyclic} functions to agree with the general naming conventions used throughout GAP.
Also, some \textsf{Polycyclic} operations duplicated functionality that was already available in the core of
GAP under a different name. In these cases, whenever possible we now install
the \textsf{Polycyclic} code as methods for the existing GAP operations instead of introducing new
operations. 

 For backward compatibility, we still provide the old, obsolete names as
aliases. However, please consider switching to the new names as soon as
possible. The old names may be completely removed at some point in the future. 

 The following function names were changed. 

 \index{SchurCovering@\texttt{SchurCovering}} \index{SchurMultPcpGroup@\texttt{SchurMultPcpGroup}} \begin{center}
\begin{tabular}{l|l}\emph{OLD}&
\emph{NOW USE}\\
\hline
\texttt{SchurCovering}&
\texttt{SchurCover} (\ref{SchurCover})\\
\texttt{SchurMultPcpGroup}&
\texttt{AbelianInvariantsMultiplier} (\ref{AbelianInvariantsMultiplier})\\
\end{tabular}\\[2mm]
\end{center}

 }

\def\bibname{References\logpage{[ "Bib", 0, 0 ]}
\hyperdef{L}{X7A6F98FD85F02BFE}{}
}

\bibliographystyle{alpha}
\bibliography{polycyclicbib.xml}

\addcontentsline{toc}{chapter}{References}

\def\indexname{Index\logpage{[ "Ind", 0, 0 ]}
\hyperdef{L}{X83A0356F839C696F}{}
}

\cleardoublepage
\phantomsection
\addcontentsline{toc}{chapter}{Index}


\printindex

\immediate\write\pagenrlog{["Ind", 0, 0], \arabic{page},}
\newpage
\immediate\write\pagenrlog{["End"], \arabic{page}];}
\immediate\closeout\pagenrlog
\end{document}