1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
|
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE file SYSTEM "bibxmlext.dtd">
<file>
<entry id="Rob82"><book>
<author>
<name><first>D. J.</first><last>Robinson</last></name>
</author>
<title>A Course in the Theory of Groups</title>
<publisher>Springer-Verlag</publisher>
<year>1982</year>
<volume>80</volume>
<series>Graduate Texts in Math.</series>
<address>New York, Heidelberg, Berlin</address>
</book></entry>
<entry id="Seg83"><book>
<author>
<name><first>D.</first><last>Segal</last></name>
</author>
<title>Polycyclic Groups</title>
<publisher>Cambridge University Press</publisher>
<year>1983</year>
<address>Cambridge</address>
</book></entry>
<entry id="Seg90"><article>
<author>
<name><first>D.</first><last>Segal</last></name>
</author>
<title>Decidable properties of polycyclic groups</title>
<journal>Proc. London Math. Soc. (3)</journal>
<year>1990</year>
<volume>61</volume>
<pages>497-528</pages>
<mrnumber>MR1069513</mrnumber>
<mrclass>20F10 (03D40 20F16)</mrclass>
</article></entry>
<entry id="Hir38a"><article>
<author>
<name><first>K. A.</first><last>Hirsch</last></name>
</author>
<title>On Infinite Soluble Groups <C>(I)</C></title>
<journal>Proc. London Math. Soc.</journal>
<year>1938</year>
<volume>44</volume>
<number>2</number>
<pages>53-60</pages>
</article></entry>
<entry id="Hir38b"><article>
<author>
<name><first>K. A.</first><last>Hirsch</last></name>
</author>
<title>On Infinite Soluble Groups <C>(II)</C></title>
<journal>Proc. London Math. Soc.</journal>
<year>1938</year>
<volume>44</volume>
<number>2</number>
<pages>336-414</pages>
</article></entry>
<entry id="Hir46"><article>
<author>
<name><first>K. A.</first><last>Hirsch</last></name>
</author>
<title>On Infinite Soluble Groups <C>(III)</C></title>
<journal>J. London Math. Soc.</journal>
<year>1946</year>
<volume>49</volume>
<number>2</number>
<pages>184-94</pages>
</article></entry>
<entry id="Hir52"><article>
<author>
<name><first>K. A.</first><last>Hirsch</last></name>
</author>
<title>On Infinite Soluble Groups <C>(IV)</C></title>
<journal>J. London Math. Soc.</journal>
<year>1952</year>
<volume>27</volume>
<pages>81-85</pages>
</article></entry>
<entry id="Hir54"><article>
<author>
<name><first>K. A.</first><last>Hirsch</last></name>
</author>
<title>On Infinite Soluble Groups <C>(V)</C></title>
<journal>J. London Math. Soc.</journal>
<year>1954</year>
<volume>29</volume>
<pages>250-251</pages>
</article></entry>
<entry id="BCRS91"><article>
<author>
<name><first>G.</first><last>Baumslag</last></name>
<name><first>F. B.</first><last>Cannonito</last></name>
<name><first>D. J. S.</first><last>Robinson</last></name>
<name><first>D.</first><last>Segal</last></name>
</author>
<title>The algorithmic theory of polycyclic-by-finite groups</title>
<journal>J. Algebra</journal>
<year>1991</year>
<volume>142</volume>
<pages>118--149</pages>
</article></entry>
<entry id="Sims94"><book>
<author>
<name><first>Charles C.</first><last>Sims</last></name>
</author>
<title>Computation with finitely presented groups</title>
<publisher>Cambridge University Press</publisher>
<year>1994</year>
<volume>48</volume>
<series>Encyclopedia of Mathematics and its Applications</series>
<address>Cambridge</address>
<isbn>0-521-43213-8</isbn>
<mrnumber>95f:20053</mrnumber>
<mrclass>20F05 (20-02 68Q40 68Q42)</mrclass>
<mrreviewer>Friedrich Otto</mrreviewer>
</book></entry>
<entry id="LGS90"><article>
<author>
<name><first>C. R.</first><last>Leedham-Green</last></name>
<name><first>L. H.</first><last>Soicher</last></name>
</author>
<title>Collection from the left and other strategies</title>
<journal>J. Symbolic Comput.</journal>
<year>1990</year>
<volume>9</volume>
<number>5-6</number>
<pages>665--675</pages>
<issn>0747-7171</issn>
<mrnumber>92b:20021</mrnumber>
<mrclass>20D10 (68Q25)</mrclass>
<mrreviewer>M. Greendlinger</mrreviewer>
</article></entry>
<entry id="MVL90"><article>
<author>
<name><first>M. R.</first><last>Vaughan-Lee</last></name>
</author>
<title>Collection from the left</title>
<journal>J. Symbolic Comput.</journal>
<year>1990</year>
<volume>9</volume>
<number>5-6</number>
<pages>725--733</pages>
<issn>0747-7171</issn>
<mrnumber>92c:20065</mrnumber>
<mrclass>20F12 (20-04 20D15 20F18)</mrclass>
<mrreviewer>M. Greendlinger</mrreviewer>
</article></entry>
<entry id="B-K00"><article>
<author>
<name><first>James R.</first><last>Beuerle</last></name>
<name><first>Luise-Charlotte</first><last>Kappe</last></name>
</author>
<title>Infinite metacyclic groups and their non-abelian
tensor squares</title>
<journal>Proc. Edinburgh Math. Soc. (2)</journal>
<year>2000</year>
<volume>43</volume>
<number>3</number>
<pages>651--662</pages>
<issn>0013-0915</issn>
<mrnumber>2003d:20037</mrnumber>
<mrclass>20F05</mrclass>
<mrreviewer>Graham J. Ellis</mrreviewer>
</article></entry>
<entry id="WWM97"><mastersthesis>
<author>
<name><first>Wolfgang W.</first><last>Merkwitz</last></name>
</author>
<title><C>Symbolische Multiplikation in nilpotenten Gruppen
mit Deep Thought</C></title>
<school>RWTH Aachen</school>
<year>1997</year>
<type>Diplomarbeit</type>
</mastersthesis></entry>
<entry id="LGS98"><article>
<author>
<name><first>C. R.</first><last>Leedham-Green</last></name>
<name><first>Leonard H.</first><last>Soicher</last></name>
</author>
<title>Symbolic collection using <C>D</C>eep <C>T</C>hought</title>
<journal>LMS J. Comput. Math.</journal>
<year>1998</year>
<volume>1</volume>
<pages>9--24 (electronic)</pages>
<issn>1461-1570</issn>
<mrnumber>99f:20002</mrnumber>
<mrclass>20-04 (20F18)</mrclass>
<mrreviewer>Martyn R. Dixon</mrreviewer>
</article></entry>
<entry id="Eic00"><inproceedings>
<author>
<name><first>Bettina</first><last>Eick</last></name>
</author>
<title>Computing with infinite polycyclic groups</title>
<booktitle><C>Groups and Computation <C>III</C></C></booktitle>
<year>2000</year>
<series>Amer. Math. Soc. DIMACS Series</series>
<organization>(DIMACS, 1999)</organization>
</inproceedings></entry>
<entry id="EOs01"><article>
<author>
<name><first>Bettina</first><last>Eick</last></name>
<name><first>Gretchen</first><last>Ostheimer</last></name>
</author>
<title>On the orbit stabilizer problem for integral matrix
actions of polycyclic groups</title>
<journal>Accepted by Math. Comp</journal>
<year>2002</year>
</article></entry>
<entry id="Eic01"><article>
<author>
<name><first>Bettina</first><last>Eick</last></name>
</author>
<title>On the <C>Fitting</C> subgroup of a polycyclic-by-finite group
and its applications</title>
<journal>J. Algebra</journal>
<year>2001</year>
<volume>242</volume>
<pages>176--187</pages>
</article></entry>
<entry id="Eic01b"><misc>
<author>
<name><first>Bettina</first><last>Eick</last></name>
</author>
<title>Computations with polycyclic groups</title>
<howpublished>Habilitationsschrift, Kassel</howpublished>
<year>2001</year>
</misc></entry>
<entry id="Eic02"><article>
<author>
<name><first>Bettina</first><last>Eick</last></name>
</author>
<title>Orbit-stabilizer problems and computing normalizers for
polycyclic groups</title>
<journal>J. Symbolic Comput.</journal>
<year>2002</year>
<volume>34</volume>
<pages>1--19</pages>
</article></entry>
<entry id="Lo99"><misc>
<author>
<name><first>Eddie H.</first><last>Lo</last></name>
</author>
<title>Enumerating finite index subgroups of polycyclic groups</title>
<howpublished>Unpublished report</howpublished>
<year>1998</year>
</misc></entry>
<entry id="LOs99"><article>
<author>
<name><first>Eddie H.</first><last>Lo</last></name>
<name><first>Gretchen</first><last>Ostheimer</last></name>
</author>
<title>A practical algorithm for finding matrix
representations for polycyclic groups</title>
<journal>J. Symbolic Comput.</journal>
<year>1999</year>
<volume>28</volume>
<pages>339--360</pages>
</article></entry>
<entry id="Lo98"><article>
<author>
<name><first>E. H.</first><last>Lo</last></name>
</author>
<title>Finding intersection and normalizer in
finitely generated nilpotent groups</title>
<journal>J. Symbolic Comput.</journal>
<year>1998</year>
<volume>25</volume>
<pages>45--59</pages>
</article></entry>
<entry id="Ost99"><article>
<author>
<name><first>G.</first><last>Ostheimer</last></name>
</author>
<title>Practical algorithms for polycyclic matrix groups</title>
<journal>J. Symbolic Comput.</journal>
<year>1999</year>
<volume>28</volume>
<pages>361--379</pages>
</article></entry>
<entry id="dGN02"><article>
<author>
<name><first>Willem A.</first><last>de Graaf</last></name>
<name><first>Werner</first><last>Nickel</last></name>
</author>
<title>Constructing faithful representations of
finitely-generated torsion-free nilpotent groups</title>
<journal>J. Symbolic Comput.</journal>
<year>2002</year>
<volume>33</volume>
<number>1</number>
<pages>31--41</pages>
<issn>0747-7171</issn>
<mrnumber>MR1876310</mrnumber>
<mrclass>20C15 (20F18)</mrclass>
</article></entry>
<entry id="EickNickel07"><article>
<author>
<name><first>Bettina</first><last>Eick</last></name>
<name><first>Werner</first><last>Nickel</last></name>
</author>
<title>Computing the Schur multiplicator and the non-abelian
tensor square of a polycyclic group</title>
<journal>J. Algebra</journal>
<year>2008</year>
<volume>320</volume>
<number>2</number>
<pages>927–-944</pages>
<mrnumber>MR2422322</mrnumber>
<mrclass>20J05 (20-04 20E22 20F05)</mrclass>
</article></entry>
</file>
|