1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
|
#############################################################################
##
#W dixon.gi Bettina Eick
##
## Determine Dixon's Bound for torsion free semisimple matrix groups.
##
#############################################################################
##
#F PadicValue( rat, p )
##
BindGlobal( "PadicValue", function( rat, p )
local a1, a2;
a1 := AbsInt( NumeratorRat(rat) );
a2 := DenominatorRat(rat);
a1 := Length( Filtered( FactorsInt(a1), x -> x = p ) );
a2 := Length( Filtered( FactorsInt(a2), x -> x = p ) );
return a1 - a2;
end );
#############################################################################
##
#F LogAbsValueBound( rat )
##
BindGlobal( "LogAbsValueBound", function( rat )
local a1, a2, a;
a1 := LogInt( AbsInt( NumeratorRat(rat) ), 2 );
a2 := LogInt( DenominatorRat(rat), 2 );
a := Maximum( AbsInt( a1 - a2 + 1 ), AbsInt( a1 - a2 - 1) );
return QuoInt( a * 3, 4 );
end );
#############################################################################
##
#F ConsideredPrimes( rats )
##
BindGlobal( "ConsideredPrimes", function( rats )
local pr, r, a1, a2, tmp;
pr := [];
for r in rats do
a1 := AbsInt( NumeratorRat(r) );
a2 := DenominatorRat(r);
if a1 <> 1 then
tmp := FactorsInt( a1: RhoTrials := 1000000 );
pr := Union( pr, tmp );
fi;
if a2 <> 1 then
tmp := FactorsInt( a2: RhoTrials := 1000000 );
pr := Union( pr, tmp );
fi;
od;
return pr;
end );
#############################################################################
##
#F CoefficientsByBase( base, vec )
##
BindGlobal( "CoefficientsByBase", function( base, vec )
local sol;
sol := MemberBySemiEchelonBase( vec, base.vectors );
if IsBool( sol ) then return fail; fi;
return sol * base.coeffs;
end );
#############################################################################
##
#F FullDixonBound( gens, prim )
##
BindGlobal( "FullDixonBound", function( gens, prim )
local c, f, j, n, d, minp, sub, max, cof, deg, base, cofs, dofs,
g, pr, t1, p, s, i, a, b, t2, t;
# set up
c := prim.elem;
f := prim.poly;
n := Length( gens );
d := Degree(f);
cof := CoefficientsOfUnivariatePolynomial( f );
if cof[1] <> 1 or cof[d+1] <> 1 then return fail; fi;
# get prim-basis
# Print("compute prim-base \n");
base := List([0..d-1], x -> Flat(c^x));
base := SemiEchelonMatTransformation( base );
# get coeffs of gens in prim-base
Print("compute coefficients \n");
cofs := [];
dofs := [];
for g in gens do
Add( cofs, CoefficientsByBase( base, Flat( g ) ) );
Add( dofs, CoefficientsByBase( base, Flat( g^-1 ) ) );
od;
Print("compute relevant primes \n");
pr := ConsideredPrimes( Flat( Concatenation( cofs, dofs ) ) );
# first consider p-adic case
Print("p-adic valuations \n");
t1 := 0;
for p in pr do
s := 0;
for i in [1..n] do
a := AbsInt( Minimum( List( cofs[i], x -> PadicValue(x,p) ) ) );
b := AbsInt( Minimum( List( dofs[i], x -> PadicValue(x,p) ) ) );
s := s + Maximum( a, b );
od;
t1 := Maximum( t1, s );
od;
t1 := d * t1;
Print("non-archimedian: ", t1,"\n");
# then the log-value
Print("logarithmic valuations \n");
t := Maximum( List( cof, x -> LogAbsValueBound( 1+AbsInt(x) ) ) );
t2 := 0;
for i in [1..n] do
if gens[i] = c then
t2 := t2 + t;
else
a := LogAbsValueBound( Sum( AbsInt( cofs[i] ) ) );
b := LogAbsValueBound( Sum( AbsInt( dofs[i] ) ) );
t2 := t2 + (d-1) * t + Maximum( a, b );
fi;
od;
t2 := QuoInt( 3 * 7 * d^2 * t2, 2 * LogInt(d,2) );
Print("archimedian: ", t2,"\n");
t := Maximum( t1, t2 );
return QuoInt( t^n + 1, t );
end );
#############################################################################
##
#F LogDixonBound( gens, prim )
##
BindGlobal( "LogDixonBound", function( gens, prim )
local c, f, d, base, cofs, dofs, g, t, s, i, a, b;
# set up
c := prim.elem;
f := CoefficientsOfUnivariatePolynomial( prim.poly );
d := Length( f ) - 1;
if f[1] <> 1 or f[d+1] <> 1 then return fail; fi;
# get prim-basis
# Print("compute prim-base \n");
base := List([0..d-1], x -> Flat(c^x));
base := SemiEchelonMatTransformation( base );
# get coeffs of gens in prim-base
# Print("compute coefficients \n");
cofs := [];
dofs := [];
for g in gens do
Add( cofs, CoefficientsByBase( base, Flat( g ) ) );
Add( dofs, CoefficientsByBase( base, Flat( g^-1 ) ) );
od;
# get log-value
# Print("logarithmic valuation \n");
t := Maximum( List( f, x -> LogAbsValueBound( 1+AbsInt(x) ) ) );
s := 0;
for i in [1..Length(gens)] do
if gens[i] = c then
s := s + t;
else
a := LogAbsValueBound( Sum( AbsInt( cofs[i] ) ) );
b := LogAbsValueBound( Sum( AbsInt( dofs[i] ) ) );
s := s + (d-1) * t + Maximum( a, b );
fi;
od;
# now determine final value
t := 7 * d^2 * s / QuoInt( 2 * LogInt(d,2), 3 );
return QuoInt( t^Length(gens) + 1, t );
end );
|