1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
|
#############################################################################
##
#W kernels.gi Polycyc Bettina Eick
##
#############################################################################
##
#F InducedByPcp( pcpG, pcpU, actG )
##
BindGlobal( "InducedByPcp", function( pcpG, pcpU, actG )
if IsMultiplicativeElement( pcpU ) then
return MappedVector( ExponentsByPcp( pcpG, pcpU ), actG );
fi;
if AsList(pcpU) = AsList(pcpG) then
return actG;
else
return List(pcpU, x-> MappedVector(ExponentsByPcp(pcpG,x),actG));
fi;
end );
#############################################################################
##
#W KernelOfFiniteMatrixAction( G, mats, f )
##
BindGlobal( "KernelOfFiniteMatrixAction", function( G, mats, f )
local d, I, U, i, actU, stab;
if Length( mats ) = 0 then return G; fi;
d := Length( mats[1] );
I := IdentityMat( d, f );
# loop over basis and stabilize each point
U := G;
for i in [1..d] do
actU := InducedByPcp( Pcp(G), Pcp(U), mats );
stab := PcpOrbitStabilizer( I[i], Pcp(U), actU, OnRight );
U := SubgroupByIgs( G, stab.stab );
od;
# that's it
return U;
end );
#############################################################################
##
#W KernelOfFiniteAction( G, pcp )
##
## If pcp defines an elementary abelian layer, then we compute the kernel
## of the action of G. If pcp is free abelian, then we compute the kernel
## of the action mod 3.
##
BindGlobal( "KernelOfFiniteAction", function( G, pcp )
local rels, p, f, pcpG, actG;
# get the char and the field
rels := RelativeOrdersOfPcp( pcp );
p := rels[1];
if p = 0 then p := 3; fi;
f := GF(p);
# get the action of G on pcp
pcpG := Pcp(G);
actG := LinearActionOnPcp( pcpG, pcp );
actG := InducedByField( actG, f );
# centralize
return KernelOfFiniteMatrixAction( G, actG, f );
end );
#############################################################################
##
#F RelationLatticeMod( gens, f )
##
BindGlobal( "RelationLatticeMod", function( gens, f )
local mats, l, pcgs, free, r, defn, g, e, null, base, i;
# induce to f
mats := InducedByField( gens, f );
l := Length( mats );
# compute independent gens
pcgs := BasePcgsByPcFFEMatrices( mats );
free := FreeGensByBasePcgs( pcgs );
r := Length( free.gens );
if r = 0 then return IdentityMat(l); fi;
# set up relation system
defn := [];
for g in mats do
e := ExponentsByBasePcgs( pcgs, g );
Add( defn, e * free.prei );
od;
# solve it mod relative orders
null := NullspaceMatMod( defn, free.rels );
# determine lattice basis
base := NormalFormIntMat( null, 2 ).normal;
base := Filtered( base, x -> PositionNonZero(x) <= l );
## do a temporary check
#for i in [1..Length(base)] do
# if not MappedVector( base[i], mats ) = mats[1]^0 then
# Error("found non-relation");
# fi;
#od;
return base;
end );
#############################################################################
##
#F IsRelation( mats, rel ) . . . . . . . .check if rel is a relation for mats
##
BindGlobal( "IsRelation", function( mats, rel )
local M1, M2, i;
M1 := mats[1]^0;
M2 := mats[1]^0;
for i in [1..Length(mats)] do
if rel[i] > 0 then
M1 := M1*mats[i]^rel[i];
elif rel[i] < 0 then
M2 := M2*mats[i]^-rel[i];
fi;
od;
return M1 = M2;
end );
#############################################################################
##
#F ApproxRelationLattice( mats, k, p ). . . . . . . . . k step approximation
##
BindGlobal( "ApproxRelationLattice", function( mats, k, p )
local lat, i, new, ind, len;
# set up
lat := IdentityMat( Length(mats) );
# compute new lattices and intersect
for i in [1..k] do
p := NextPrimeInt(p);
new := RelationLatticeMod( mats, GF(p) );
lat := LatticeIntersection( lat, new );
od;
# find short vectors
lat := LLLReducedBasis( lat ).basis;
# did we find any relations?
for i in [1..Length(lat)] do
if not IsRelation( mats, lat[i] ) then lat[i] := false; fi;
od;
return rec( rels := Filtered( lat, x -> not IsBool(x) ), prime := p );
end );
#############################################################################
##
#F VerifyIndependence( mats )
##
BindGlobal( "VerifyIndependence", function( mats )
local base, prim, dixn, done, L, p, i, N, w, d;
if Length( mats ) = 1 and mats[1] <> mats[1]^0 then return true; fi;
Print(" verifying linear independence \n");
base := AlgebraBase( mats );
d := Length( base );
Print(" got ", Length( mats ), " generators and dimension ", d,"\n");
if Length( mats ) >= d then return false; fi;
prim := PrimitiveAlgebraElement( mats, base );
Print(" computing dixon bound \n");
dixn := Length(mats[1]) * LogDixonBound( mats, prim )^2;
Print(" found ", dixn, "\n");
done := false;
# set up
L := IdentityMat( Length(mats) );
p := 1;
while not done do
Print(" next step verification \n");
# compute new lattices and intersect
for i in [1..d] do
p := NextPrimeInt(p);
N := RelationLatticeMod( mats, GF(p) );
L := LatticeIntersection( L, N );
od;
# find short vectors
L := LLLReducedBasis( L ).basis;
w := Minimum( List( L, x -> x * x ) );
Print(" got shortest vector ", w, "\n");
# check dixon bound
if w > dixn then return true; fi;
# check rels
for i in [1..Length(L)] do
if IsRelation( mats, L[i] ) then return false; fi;
od;
od;
end );
#############################################################################
##
#W KernelOfCongruenceMatrixActionGAP( G, mats ) . . G acts as ss cong subgrp
##
## Warning: G must be integral!
##
BindGlobal( "KernelOfCongruenceMatrixActionGAP", function( G, mats )
local p, U, pcp, K, gens, acts, rell, tmps;
# set up
p := 1;
U := DerivedSubgroup(G);
pcp := Pcp( G );
# now loop
repeat
K := U;
gens := Pcp( G, K );
acts := InducedByPcp( pcp, gens, mats );
rell := ApproxRelationLattice( acts, Length(acts[1]), p );
tmps := List( rell.rels, x -> MappedVector( x, gens ) );
tmps := AddToIgs( DenominatorOfPcp( gens ), tmps );
U := SubgroupByIgs( G, tmps );
p := rell.prime;
until Index( G, U ) = 1 or Index( U, K ) = 1;
# verify if desired
if Index( G, U ) > 1 and VERIFY@ then
gens := Pcp( G, U );
acts := InducedByPcp( pcp, gens, mats );
if not VerifyIndependence( acts ) then
Error(" generators are not linearly independent");
fi;
fi;
# that's it
return U;
end );
#############################################################################
##
#F KernelOfCongruenceMatrixActionALNUTH( G, mats ) . G acts as ss cong subgrp
##
BindGlobal( "KernelOfCongruenceMatrixActionALNUTH", function( G, mats )
local H, base, prim, fact, full, f, s, h, imats, F, rels, gens;
# the trivial case
if ForAll( mats, x -> x^0 = x ) then return G; fi;
# split into irreducibles
base := AlgebraBase( mats );
prim := PrimitiveAlgebraElement( base, List( base, Flat ) );
fact := Factors( prim.poly );
# catch the trivial case first - for increased efficiency
if Length(fact) = 1 then
F := FieldByMatricesNC( mats );
SetPrimitiveElement( F, prim.elem );
SetDefiningPolynomial( F, prim.poly );
rels := RelationLatticeOfTFUnits( F, mats );
return Subgroup( G, List( rels, x -> MappedVector( x, Pcp(G) ) ) );
fi;
# loop over subspaces
full := mats[1]^0;
gens := AsList( Pcp(G) );
H := G;
for f in fact do
# induce matrices if necessary
if Index( G, H ) > 1 then
mats := List( rels, x -> MappedVector( x, mats ) );
G := H;
fi;
# get subspace
s := NullspaceRatMat( Value( f, prim.elem ) );
h := NaturalHomomorphismBySemiEchelonBases( full, s );
# induce to factor
imats := List( mats, x -> InducedActionSubspaceByNHSEB( x, h ) );
if ForAny( imats, x -> x <> x^0 ) then
F := FieldByMatricesNC( mats );
SetPrimitiveElement( F, prim.elem );
SetDefiningPolynomial( F, prim.poly );
# compute kernel
rels := RelationLatticeOfTFUnits( F, imats );
# set up for iteration
gens := List( rels, x -> MappedVector( x, gens ) );
H := Subgroup( G, gens );
fi;
od;
# that's it
return H;
end );
#############################################################################
##
#F KernelOfCongruenceMatrixAction( G, mats ) . . . . . . . . header function
##
BindGlobal( "KernelOfCongruenceMatrixAction", function( G, mats )
if ForAll( mats, x -> x = x^0 ) then return G; fi;
if USE_ALNUTH@ then
return KernelOfCongruenceMatrixActionALNUTH( G, mats );
else
return KernelOfCongruenceMatrixActionGAP( G, mats );
fi;
end );
#############################################################################
##
#F KernelOfCongruenceAction( G, pcp ) . . . . . . . .G acts as ss cong subgrp
##
BindGlobal( "KernelOfCongruenceAction", function( G, pcp )
local mats;
mats := LinearActionOnPcp( Pcp(G), pcp );
return KernelOfCongruenceMatrixAction( G, mats );
end );
#############################################################################
##
#F MemberByCongruenceMatrixAction( G, mats, m ) . . G acts as irr cong subgrp
##
## So far, this works only if G is an integral group.
##
BindGlobal( "MemberByCongruenceMatrixAction", function( G, mats, m )
local F, r, e;
# get field
F := FieldByMatricesNC( mats );
# check whether m is a unit in F
if not IsUnitOfNumberField( F, m ) then return false; fi;
# check if m is in G
r := RelationLatticeOfUnits( F, Concatenation( [m], mats ) )[1];
if PositionNonZero( r ) > 1 or AbsInt( r[1] ) <> 1 then return false; fi;
# now translate to G
e := -r{[2..Length(r)]} * r[1];
return MappedVector( e, Pcp(G) );
end );
|