File: orbnorm.gi

package info (click to toggle)
gap-polycyclic 2.17-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 2,796 kB
  • sloc: xml: 3,018; javascript: 155; makefile: 124
file content (629 lines) | stat: -rw-r--r-- 22,527 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
#############################################################################
##
#W  orbnorm.gi                   Polycyc                         Bettina Eick
##
##  The orbit-stabilizer algorithm for subgroups of Z^d.
##

#############################################################################
##
#F Action function LatticeBases( base, mat )
##

BindGlobal( "OnLatticeBases", function( base, mat )
    local imgs;
    imgs := base * mat;
    return NormalFormIntMat( imgs, 2 ).normal;
end );

#############################################################################
##
#F CheckNormalizer( G, S, linG, U )
##
BindGlobal( "CheckNormalizer", function( G, S, linG, U )
    local linS, m, u, R;

    # the trivial case
    if Length( Pcp(G) ) = 0 then return true; fi;

    # first check that S is stabilizing
    linS := InducedByPcp( Pcp(G), Pcp(S), linG );
    for m in linS do
        for u in U do
            if IsBool( PcpSolutionIntMat( U, u*m ) ) then return false; fi;
        od;
    od;

    # now consider the random stabilizer
    R := RandomPcpOrbitStabilizer( U, Pcp(G), linG, OnLatticeBases );
    if ForAny( R.stab, x -> not x in S ) then return false; fi;

    return true;
end );

#############################################################################
##
#F CheckConjugacy( G, g, linG, U, W )
##
BindGlobal( "CheckConjugacy", function( G, g, linG, U, W )
    local m, u;
    if Length( U ) <> Length( W ) then return IsBool( g ); fi;
    if Length(Pcp(G)) = 0 then return U = W; fi;
    m := InducedByPcp( Pcp(G), g, linG );
    for u in U do
        if IsBool( PcpSolutionIntMat( W, u*m ) ) then return false; fi;
    od;
    return true;
end );

#############################################################################
##
#F BasisOfNormalizingSubfield( baseK, baseU )
##
BindGlobal( "BasisOfNormalizingSubfield", function( baseK, baseU )
    local d, e, baseL, i, syst, subs;
    d := Length(baseK);
    e := Length(baseU );
    baseL := IdentityMat( d );
    for i in [1..e] do
        syst := List( baseK, x -> baseU[i] * x );
        Append( syst, baseU );
        subs := TriangulizedNullspaceMat( syst );
        subs := subs{[1..Length(subs)]}{[1..d]};
        baseL := SumIntersectionMat( baseL, subs )[2];
    od;
    return List( baseL, x -> LinearCombination( baseK, x ) );
end );

#############################################################################
##
#F NormalizerHomogeneousAction( G, linG, baseU ) . . . . . . . . . . . N_G(U)
##
## V is a homogenous G-module via linG (and thus linG spans a field).
## U is a subspace of V and baseU is an echelonised basis for U.
##
BindGlobal( "NormalizerHomogeneousAction", function( G, linG, baseU )
    local K, baseK, baseL, L, exp, U, linU;

    # check for trivial cases
    if ForAll(linG, x -> x = x^0) or Length(baseU) = 0 or
       Length(baseU) = Length(baseU[1]) then return G;
    fi;

    # get field
    K := FieldByMatricesNC( linG );
    baseK := BasisVectors( Basis( K ) );

    # determine normalizing subfield and its units
    baseL := BasisOfNormalizingSubfield( baseK, baseU );
    L := FieldByMatrixBasisNC( baseL );
    U := UnitGroup( L );
    linU := GeneratorsOfGroup(U);

    # find G cap L = G cap U as subgroup of G
    exp := IntersectionOfUnitSubgroups( K, linG, linU );
    return Subgroup( G, List( exp, x -> MappedVector( x, Pcp(G) ) ) );
end );

#############################################################################
##
#F  ConjugatingFieldElement( baseK, baseU, baseW )  . . . . . . . . . U^k = W
##
BindGlobal( "ConjugatingFieldElement", function( baseK, baseU, baseW )
    local d, e, baseL, i, syst, subs, k;

    # compute the full space of conjugating elements
    d := Length(baseK);
    e := Length(baseW );
    baseL := IdentityMat( d );
    for i in [1..e] do
        syst := List( baseK, x -> baseU[i] * x );
        Append( syst, baseW );
        subs := TriangulizedNullspaceMat( syst );
        subs := subs{[1..Length(subs)]}{[1..d]};
        baseL := SumIntersectionMat( baseL, subs )[2];
    od;

    # if baseL is empty, then there is no solution
    if Length(baseL) = 0 then return false; fi;

    # get one (integral) solution
    k := baseL[Length(baseL)];
    k := k * Lcm( List( k, DenominatorRat ) );
    return LinearCombination( baseK, k );
end );

#############################################################################
##
#F ConjugacyHomogeneousAction( G, linG, baseU, baseW ) . . . . . . . U^g = W?
##
## V is a homogenous G-module via linG. U and W are subspaces of V with bases
## baseU and baseW, respectively. The function computes N_G(U) and U^g = W if
## g exists. If no g exists, then false is returned.
##
BindGlobal( "ConjugacyHomogeneousAction", function( G, linG, baseU, baseW )
    local K, baseK, baseL, L, U, a, f, b, C, g, N, k, h;

    # check for trivial cases
    if Length(baseU) <> Length(baseW) then return false; fi;
    if baseU = baseW then
       return rec( norm := NormalizerHomogeneousAction( G, linG, baseU ),
                   conj := One(G) );
    fi;

    # get field - we need the maximal order in this case!
    K := FieldByMatricesNC( linG );
    baseK := BasisVectors( MaximalOrderBasis( K ) );

    # determine conjugating field element
    k := ConjugatingFieldElement( baseK, baseW, baseU );
    if IsBool(k) then return false; fi;
    h := k^-1;

    # determine normalizing subfield
    baseL := BasisOfNormalizingSubfield( baseK, baseU );
    L := FieldByMatrixBasisNC( baseL );

    # get norm and root
    a := Determinant( k );
    f := Length(baseK) / Length(baseL);
    b := RootInt( a, f );
    if b^f <> a then return false; fi;

    # solve norm equation in L and sift
    C := NormCosetsOfNumberField( L, b );
    C := List( C, x -> x * h );
    C := Filtered( C, x -> IsUnitOfNumberField( K, x ) );
    if Length(C) = 0 then return false; fi;

    # add unit group of L
    U := GeneratorsOfGroup(UnitGroup(L));
    C := rec( reprs := C, units := U{[2..Length(U)]} );

    # find an element of G cap Lh in G
    h := IntersectionOfTFUnitsByCosets( K, linG, C );
    if IsBool( h ) then return false; fi;
    g := MappedVector( h.repr, Pcp(G) );
    N := Subgroup( G, List( h.ints, x -> MappedVector( x, Pcp(G) ) ) );

    # that's it
    return rec( norm := N, conj := g );
end );

#############################################################################
##
#F AffineActionAsTensor( linG, nath )
##
BindGlobal( "AffineActionAsTensor", function( linG, nath )
    local actsF, actsS, affG, i, t, j, d, b;

    # action on T / S for T = U + S and action on S
    actsF := List(linG, x -> InducedActionFactorByNHLB(x, nath ));
    actsS := List(linG, x -> InducedActionSubspaceByNHLB(x, nath ));

    # determine affine action on H^1 wrt U
    affG := [];
    for i in [1..Length(linG)] do

        # the linear part is the diagonal action on the tensor
        t := KroneckerProduct( actsF[i], actsS[i] );
        for j in [1..Length(t)] do Add( t[j], 0 ); od;

        # the affine part is determined by the derivation wrt nath.factor
        b := PreimagesBasisOfNHLB( nath );
        d := (actsF[i]^-1 * b) * linG[i] - b;
        d := Flat( List( d, x -> ProjectionByNHLB( x, nath ) ) );
        Add( d, 1 );
        Add( t, d );

        # t is the affine action - store it
        Add( affG, t );
    od;
    return affG;
end );

#############################################################################
##
#F DifferenceVector( base, nath )
##
## Determines the vector (s1, ..., se) with nath.factor[i]+si in base.
##
BindGlobal( "DifferenceVector", function( base, nath )
    local b, k, f, v;
    b := PreimagesBasisOfNHLB( nath );
    k := KernelOfNHLB( nath );
    f := Concatenation( k, base );
    v := List(b, x -> PcpSolutionIntMat(f, x){[1..Length(k)]});
    v := - Flat(v);
    Add( v, 1 );
    return v;
end );

#############################################################################
##
#F NormalizerComplement( G, linG, baseU, baseS ) . . . . . . . . . . . N_G(U)
##
## U and S are free abelian subgroups of V such that U cap S = 0. The group
## acts via linG on the full space V.
##
BindGlobal( "NormalizerComplement", function( G, linG, baseU, baseS )
    local baseT, nathT, affG, e;

    # catch the trivial cases
    if Length(baseS)=0 or Length(baseU)=0 then return G; fi;
    if ForAll( linG, x -> x = x^0 ) then return G; fi;

    baseT := LatticeBasis( Concatenation( baseU, baseS ) );
    nathT := NaturalHomomorphismByLattices( baseT, baseS );

    # compute a stabilizer under the affine action
    affG := AffineActionAsTensor( linG, nathT );
    e := DifferenceVector( baseU, nathT );
    return StabilizerIntegralAction( G, affG, e );
end );

#############################################################################
##
#F ConjugacyComplements( G, linG, baseU, baseW, baseS ) . . . . . . .U^g = W?
##
BindGlobal( "ConjugacyComplements", function( G, linG, baseU, baseW, baseS )
    local baseT, nathT, affG, e, f, os;

    # catch the trivial cases
    if Length(baseU)<>Length(baseW) then return false; fi;
    if baseU = baseW then return
        rec( norm := NormalizerComplement( G, linG, baseU, baseS ),
             conj := One(G) );
    fi;

    baseT := LatticeBasis( Concatenation( baseU, baseS ) );
    nathT := NaturalHomomorphismByLattices( baseT, baseS );

    # compute the stabilizer of (0,..,0,1) under an affine action
    affG := AffineActionAsTensor( linG, nathT );
    e := DifferenceVector( baseU, nathT );
    f := DifferenceVector( baseW, nathT );
    os := OrbitIntegralAction( G, affG, e, f );
    if IsBool(os) then return os; fi;
    return rec( norm := os.stab, conj := os.prei );
end );

#############################################################################
##
#F NormalizerCongruenceAction( G, linG, baseU, ser ) . . . . . . . . . N_G(U)
##
BindGlobal( "NormalizerCongruenceAction", function( G, linG, baseU, ser )
    local V, S, i, d, linS, nath, indG, indS, U, M, I, H, subh, actS, T, F,
          fach, UH, MH, s;

    # catch a trivial case
    if ForAll( linG, x -> x = x^0 ) then return G; fi;
    if Length(baseU) = 0 then return G; fi;

    # set up for induction over the module series
    V := IdentityMat( Length(baseU[1]) );
    S := G;

    # use induction over the module series
    for i in [1..Length(ser)-1] do
        d := Length( ser[i] ) - Length( ser[i+1] );
        Info( InfoIntNorm, 2, " ");
        Info( InfoIntNorm, 2, "  consider layer ", i, " of dim ",d);

        # do a check
        if Length(Pcp(S)) = 0 then return S; fi;

        # induce to the current layer V/ser[i+1];
        Info( InfoIntNorm, 2, "  induce to current layer");
        nath := NaturalHomomorphismByLattices( V, ser[i+1] );
        indG := List( linG, x -> InducedActionFactorByNHLB( x, nath ) );
        indS := InducedByPcp( Pcp(G), Pcp(S), indG );
        U := LatticeBasis( List( baseU, x -> ImageByNHLB( x, nath ) ) );
        M := LatticeBasis( List( ser[i], x -> ImageByNHLB( x, nath ) ) );
        F := IdentityMat(Length(indG[1]));

        # compute intersection
        I := StructuralCopy( LatticeIntersection( U, M ) );
        H := PurifyRationalBase( I );

        # first, use the action on the module M
        subh := NaturalHomomorphismByLattices( M, [] );
        actS := List( indS, x -> InducedActionFactorByNHLB( x, subh ) );
        I := LatticeBasis( List( I, x -> ImageByNHLB( x, subh ) ) );
        Info( InfoIntNorm, 2, "  normalize intersection ");
        T := NormalizerHomogeneousAction( S, actS, I );
        if Length(Pcp(T)) = 0 then return T; fi;

        # reset action for the next step
        if Index(S,T) <> 1 then
            indS := InducedByPcp( Pcp(G), Pcp(T), indG );
        fi;
        S := T;

        # next, consider the factor modulo the intersection hull H
        if Length(F) > Length(H) then
            fach := NaturalHomomorphismByLattices( F, H );
            UH := LatticeBasis( List( U, x -> ImageByNHLB( x, fach ) ) );
            MH := LatticeBasis( List( M, x -> ImageByNHLB( x, fach ) ) );
            actS := List( indS, x -> InducedActionFactorByNHLB( x, fach ) );
            Info( InfoIntNorm, 2, "  normalize complement ");
            T := NormalizerComplement( S, actS, UH, MH );
            if Length(Pcp(T)) = 0 then return T; fi;

            # again, reset action for the next step
            if Index(S,T) <> 1 then
                indS := InducedByPcp( Pcp(G), Pcp(T), indG );
            fi;
            S := T;
        fi;

        # finally, add a finite orbit-stabilizer computation
        if H <> I then
            Info( InfoIntNorm, 2, "  add finite stabilizer computation");
            s := PcpOrbitStabilizer( U, Pcp(S), indS, OnLatticeBases );
            S := SubgroupByIgs( S, s.stab );
        fi;
    od;
    Info( InfoIntNorm, 2, " ");
    return S;
end );

#############################################################################
##
#F ConjugacyCongruenceAction( G, linG, baseU, baseW, ser ) . . . . . U^g = W?
##
BindGlobal( "ConjugacyCongruenceAction", function( G, linG, baseU, baseW, ser )
    local V, S, g, i, d, linS, moveW, nath, indS, U, W, M, IU, IW, H, F,
          subh, actS, s, UH, WH, MH, j, fach, indG;

    # catch some trivial cases
    if baseU = baseW then
        return rec( norm := NormalizerCongruenceAction(G, linG, baseU, ser),
                    conj := One(G) );
    fi;
    if Length(baseU)<>Length(baseW) or ForAll( linG, x -> x = x^0 ) then
        return false;
    fi;

    # set up
    V := IdentityMat( Length(baseU[1]) );
    S := G;
    g := One( G );

    # use induction over the module series
    for i in [1..Length(ser)-1] do
        d := Length( ser[i] ) - Length( ser[i+1] );
        Info( InfoIntNorm, 2, " ");
        Info( InfoIntNorm, 2, "  consider layer ", i, " of dim ",d);

        # get action of S on the full space
        moveW := LatticeBasis( baseW * InducedByPcp( Pcp(G), g, linG )^-1 );

        # do a check
        if Length(Pcp(S))=0 and baseU<>moveW then return false; fi;
        if Length(Pcp(S))=0 and baseU=moveW then
            return rec( norm := S, conj := g );
        fi;

        # induce to the current layer V/ser[i+1];
        Info( InfoIntNorm, 2, "  induce to layer ");
        nath := NaturalHomomorphismByLattices( V, ser[i+1] );
        indG := List( linG, x -> InducedActionFactorByNHLB( x, nath ) );
        indS := InducedByPcp( Pcp(G), Pcp(S), indG );
        U := LatticeBasis( List( baseU, x -> ImageByNHLB( x, nath ) ) );
        W := LatticeBasis( List( moveW, x -> ImageByNHLB( x, nath ) ) );
        M := LatticeBasis( List( ser[i], x -> ImageByNHLB( x, nath ) ) );
        F := IdentityMat(Length(indG[1]));

        # get intersections
        IU := LatticeIntersection( U, M );
        IW := LatticeIntersection( W, M );
        H := PurifyRationalBase( IU );

        # first, use action on the module M
        subh := NaturalHomomorphismByLattices( M, [] );
        actS := List( indS, x -> InducedActionFactorByNHLB( x, subh ) );
        IU := LatticeBasis( List( IU, x -> ImageByNHLB( x, subh ) ) );
        IW := LatticeBasis( List( IW, x -> ImageByNHLB( x, subh ) ) );
        Info( InfoIntNorm, 2, "  conjugate intersections ");
        s := ConjugacyHomogeneousAction( S, actS, IU, IW );
        if IsBool(s) then return false; fi;

        # reset action for next step
        g := g * s.conj;
        W := LatticeBasis( W * InducedByPcp( Pcp(G), s.conj, indG )^-1 );
        if Index(S,s.norm)<>1 then
            indS := InducedByPcp(Pcp(G),Pcp(s.norm),indG);
        fi;
        S := s.norm;

        # next, consider factor modulo the intersection hull H
        if Length(F) > Length(H) then
            fach := NaturalHomomorphismByLattices( F, H );
            UH := LatticeBasis( List( U, x -> ImageByNHLB( x, fach ) ) );
            WH := LatticeBasis( List( W, x -> ImageByNHLB( x, fach ) ) );
            MH := LatticeBasis( List( M, x -> ImageByNHLB( x, fach ) ) );
            actS := List( indS, x -> InducedActionFactorByNHLB( x, fach ) );
            Info( InfoIntNorm, 2, "  conjugate complements ");
            s := ConjugacyComplements( S, actS, UH, WH, MH );
            if IsBool(s) then return false; fi;

            # again, reset action
            g := g * s.conj;
            W := LatticeBasis( W * InducedByPcp( Pcp(G), s.conj, indG )^-1 );
            if Index(S,s.norm)<>1 then
                indS := InducedByPcp(Pcp(G),Pcp(s.norm),indG);
            fi;
            S := s.norm;
        fi;

        # finally, add a finite orbit-stabilizer computation
        if H <> IU then
            Info( InfoIntNorm, 2, "  add finite stabilizer computation");
            s := PcpOrbitStabilizer( U, Pcp(S), indS, OnLatticeBases );
            j := Position( s.orbit, W );
            if IsBool(j) then return false; fi;
            g := g * TransversalElement( j, s, One(G) );
            S := SubgroupByIgs( S, s.stab );
        fi;

    od;
    Info( InfoIntNorm, 2, " ");
    return rec( norm := S, conj := g );
end );

#############################################################################
##
#F NormalizerIntegralAction( G, linG, U ) . . . . . . . . . . . . . . .N_G(U)
##
BindGlobal( "NormalizerIntegralAction", function( G, linG, U )
    local gensU, d, e, F, t, I, S, linS, K, linK, ser, T, orbf, N;

    # catch a trivial case
    if ForAll( linG, x -> x = x^0 ) then return G; fi;

    # do a check
    gensU := LatticeBasis( U );
    if gensU <> U then Error("function needs lattice basis as input"); fi;

    # get generators and check for trivial case
    if Length( U ) = 0 then return G; fi;
    d := Length( U[1] );
    e := Length( U );

    # compute modulo 3 first
    Info( InfoIntNorm, 1, "reducing by orbit-stabilizer mod 3");
    F := GF(3);
    t := InducedByField( linG, F );
    I := VectorspaceBasis( U * One(F) );
    S := PcpOrbitStabilizer( I, Pcp(G), t, OnSubspacesByCanonicalBasis );
    S := SubgroupByIgs( G, S.stab );
    linS := InducedByPcp( Pcp(G), Pcp(S), linG );

    # use congruence kernel
    Info( InfoIntNorm, 1, "determining 3-congruence subgroup");
    K := KernelOfFiniteMatrixAction( S, linS, F );
    linK := InducedByPcp( Pcp(G), Pcp(K), linG );

    # compute homogeneous series
    Info( InfoIntNorm, 1, "computing module series");
    ser := HomogeneousSeriesOfRationalModule( linG, linK, d );
    ser := List( ser, x -> PurifyRationalBase(x) );

    # get N_K(U)
    Info( InfoIntNorm, 1, "adding stabilizer for congruence subgroup");
    T := NormalizerCongruenceAction( K, linK, U, ser );

    # set up orbit stabilizer function for K
    orbf := function( K, actK, a, b )
            local o;
            o := ConjugacyCongruenceAction( K, actK, a, b, ser );
            if IsBool(o) then return o; fi;
            return o.conj;
            end;

    # add remaining stabilizer
    Info( InfoIntNorm, 1, "constructing block orbit-stabilizer");
    N := ExtendOrbitStabilizer( U, K, linK, S, linS, orbf, OnLatticeBases );
    N := AddIgsToIgs( N.stab, Igs(T) );
    N := SubgroupByIgs( G, N );

    # do a temporary check
    if CHECK_INTNORM@ then
        Info( InfoIntNorm, 1, "checking results");
        if not CheckNormalizer(G, N, linG, U) then
            Error("wrong norm in integral action");
        fi;
    fi;

    # now return
    return N;
end );

#############################################################################
##
#F ConjugacyIntegralAction( G, linG, U, W ) . . . . . . . . . . . . .U^g = W?
##
## returns N_G(U) and g in G with U^g = W if g exists.
## returns false otherwise.
##
BindGlobal( "ConjugacyIntegralAction", function( G, linG, U, W )
    local F, t, I, J, os, j, g, L, S, linS, K, linK, ser, orbf, h, T;

    # do a check
    if U <> LatticeBasis(U) or W <> LatticeBasis(W) then
        Error("function needs lattice bases as input");
    fi;

    # catch some trivial cases
    if U = W then
        return rec( norm := NormalizerIntegralAction(G, linG, U),
                    prei := One( G ) );
    fi;
    if Length(U)<>Length(W) or ForAll( linG, x -> x = x^0 ) then
        return false;
    fi;

    # compute modulo 3 first
    Info( InfoIntNorm, 1, "reducing by orbit-stabilizer mod 3");
    F := GF(3);
    t := InducedByField( linG, F );
    I := VectorspaceBasis( U * One(F) );
    J := VectorspaceBasis( W * One(F) );
    os := PcpOrbitStabilizer( I, Pcp(G), t, OnSubspacesByCanonicalBasis );
    j := Position( os.orbit, J );
    if IsBool(j) then return false; fi;
    g := TransversalElement( j, os, One(G) );
    L := LatticeBasis( W * InducedByPcp( Pcp(G), g, linG )^-1 );
    S := SubgroupByIgs( G, os.stab );
    linS := InducedByPcp( Pcp(G), Pcp(S), linG );

    # use congruence kernel
    Info( InfoIntNorm, 1, "determining 3-congruence subgroup");
    K := KernelOfFiniteMatrixAction( S, linS, F );
    linK := InducedByPcp( Pcp(G), Pcp(K), linG );

    # compute homogeneous series
    Info( InfoIntNorm, 1, "computing module series");
    ser := HomogeneousSeriesOfRationalModule( linG, linK, Length(U[1]) );
    ser := List( ser, x -> PurifyRationalBase(x) );

    # set up orbit stabilizer function for K
    orbf := function( K, linK, a, b )
            local o;
            o := ConjugacyCongruenceAction( K, linK, a, b, ser );
            if IsBool(o) then return o; fi;
            return o.conj;
            end;

    # determine block orbit and stabilizer
    Info( InfoIntNorm, 1, "constructing block orbit-stabilizer");
    os := ExtendOrbitStabilizer( U, K, linK, S, linS, orbf, OnRight );

    # get orbit element and preimage
    j := FindPosition( os.orbit, L, K, linK, orbf );
    if IsBool(j) then return false; fi;
    h := TransversalElement( j, os, One(G) );
    L := LatticeBasis( L * InducedByPcp( Pcp(G), h, linG )^-1 );
    g := orbf( K, linK, U, L ) * h * g;

    # get Stab_K(e) and thus Stab_G(e)
    Info( InfoIntNorm, 1, "adding stabilizer for congruence subgroup");
    T := NormalizerCongruenceAction( K, linK, U, ser );
    t := AddIgsToIgs( os.stab, Igs(T) );
    T := SubgroupByIgs( T, t );

    # do a temporary check
    if CHECK_INTNORM@ then
        Info( InfoIntNorm, 1, "checking results");
        if not CheckNormalizer( G, T, linG, U) then
            Error("wrong norm in integral action");
        elif not CheckConjugacy(G, g, linG, U, W) then
            Error("wrong conjugate in integral action");
        fi;
    fi;

    # now return
    return rec( stab := T, prei := g );
end );