1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
|
#############################################################################
##
#W orbnorm.gi Polycyc Bettina Eick
##
## The orbit-stabilizer algorithm for subgroups of Z^d.
##
#############################################################################
##
#F Action function LatticeBases( base, mat )
##
BindGlobal( "OnLatticeBases", function( base, mat )
local imgs;
imgs := base * mat;
return NormalFormIntMat( imgs, 2 ).normal;
end );
#############################################################################
##
#F CheckNormalizer( G, S, linG, U )
##
BindGlobal( "CheckNormalizer", function( G, S, linG, U )
local linS, m, u, R;
# the trivial case
if Length( Pcp(G) ) = 0 then return true; fi;
# first check that S is stabilizing
linS := InducedByPcp( Pcp(G), Pcp(S), linG );
for m in linS do
for u in U do
if IsBool( PcpSolutionIntMat( U, u*m ) ) then return false; fi;
od;
od;
# now consider the random stabilizer
R := RandomPcpOrbitStabilizer( U, Pcp(G), linG, OnLatticeBases );
if ForAny( R.stab, x -> not x in S ) then return false; fi;
return true;
end );
#############################################################################
##
#F CheckConjugacy( G, g, linG, U, W )
##
BindGlobal( "CheckConjugacy", function( G, g, linG, U, W )
local m, u;
if Length( U ) <> Length( W ) then return IsBool( g ); fi;
if Length(Pcp(G)) = 0 then return U = W; fi;
m := InducedByPcp( Pcp(G), g, linG );
for u in U do
if IsBool( PcpSolutionIntMat( W, u*m ) ) then return false; fi;
od;
return true;
end );
#############################################################################
##
#F BasisOfNormalizingSubfield( baseK, baseU )
##
BindGlobal( "BasisOfNormalizingSubfield", function( baseK, baseU )
local d, e, baseL, i, syst, subs;
d := Length(baseK);
e := Length(baseU );
baseL := IdentityMat( d );
for i in [1..e] do
syst := List( baseK, x -> baseU[i] * x );
Append( syst, baseU );
subs := TriangulizedNullspaceMat( syst );
subs := subs{[1..Length(subs)]}{[1..d]};
baseL := SumIntersectionMat( baseL, subs )[2];
od;
return List( baseL, x -> LinearCombination( baseK, x ) );
end );
#############################################################################
##
#F NormalizerHomogeneousAction( G, linG, baseU ) . . . . . . . . . . . N_G(U)
##
## V is a homogenous G-module via linG (and thus linG spans a field).
## U is a subspace of V and baseU is an echelonised basis for U.
##
BindGlobal( "NormalizerHomogeneousAction", function( G, linG, baseU )
local K, baseK, baseL, L, exp, U, linU;
# check for trivial cases
if ForAll(linG, x -> x = x^0) or Length(baseU) = 0 or
Length(baseU) = Length(baseU[1]) then return G;
fi;
# get field
K := FieldByMatricesNC( linG );
baseK := BasisVectors( Basis( K ) );
# determine normalizing subfield and its units
baseL := BasisOfNormalizingSubfield( baseK, baseU );
L := FieldByMatrixBasisNC( baseL );
U := UnitGroup( L );
linU := GeneratorsOfGroup(U);
# find G cap L = G cap U as subgroup of G
exp := IntersectionOfUnitSubgroups( K, linG, linU );
return Subgroup( G, List( exp, x -> MappedVector( x, Pcp(G) ) ) );
end );
#############################################################################
##
#F ConjugatingFieldElement( baseK, baseU, baseW ) . . . . . . . . . U^k = W
##
BindGlobal( "ConjugatingFieldElement", function( baseK, baseU, baseW )
local d, e, baseL, i, syst, subs, k;
# compute the full space of conjugating elements
d := Length(baseK);
e := Length(baseW );
baseL := IdentityMat( d );
for i in [1..e] do
syst := List( baseK, x -> baseU[i] * x );
Append( syst, baseW );
subs := TriangulizedNullspaceMat( syst );
subs := subs{[1..Length(subs)]}{[1..d]};
baseL := SumIntersectionMat( baseL, subs )[2];
od;
# if baseL is empty, then there is no solution
if Length(baseL) = 0 then return false; fi;
# get one (integral) solution
k := baseL[Length(baseL)];
k := k * Lcm( List( k, DenominatorRat ) );
return LinearCombination( baseK, k );
end );
#############################################################################
##
#F ConjugacyHomogeneousAction( G, linG, baseU, baseW ) . . . . . . . U^g = W?
##
## V is a homogenous G-module via linG. U and W are subspaces of V with bases
## baseU and baseW, respectively. The function computes N_G(U) and U^g = W if
## g exists. If no g exists, then false is returned.
##
BindGlobal( "ConjugacyHomogeneousAction", function( G, linG, baseU, baseW )
local K, baseK, baseL, L, U, a, f, b, C, g, N, k, h;
# check for trivial cases
if Length(baseU) <> Length(baseW) then return false; fi;
if baseU = baseW then
return rec( norm := NormalizerHomogeneousAction( G, linG, baseU ),
conj := One(G) );
fi;
# get field - we need the maximal order in this case!
K := FieldByMatricesNC( linG );
baseK := BasisVectors( MaximalOrderBasis( K ) );
# determine conjugating field element
k := ConjugatingFieldElement( baseK, baseW, baseU );
if IsBool(k) then return false; fi;
h := k^-1;
# determine normalizing subfield
baseL := BasisOfNormalizingSubfield( baseK, baseU );
L := FieldByMatrixBasisNC( baseL );
# get norm and root
a := Determinant( k );
f := Length(baseK) / Length(baseL);
b := RootInt( a, f );
if b^f <> a then return false; fi;
# solve norm equation in L and sift
C := NormCosetsOfNumberField( L, b );
C := List( C, x -> x * h );
C := Filtered( C, x -> IsUnitOfNumberField( K, x ) );
if Length(C) = 0 then return false; fi;
# add unit group of L
U := GeneratorsOfGroup(UnitGroup(L));
C := rec( reprs := C, units := U{[2..Length(U)]} );
# find an element of G cap Lh in G
h := IntersectionOfTFUnitsByCosets( K, linG, C );
if IsBool( h ) then return false; fi;
g := MappedVector( h.repr, Pcp(G) );
N := Subgroup( G, List( h.ints, x -> MappedVector( x, Pcp(G) ) ) );
# that's it
return rec( norm := N, conj := g );
end );
#############################################################################
##
#F AffineActionAsTensor( linG, nath )
##
BindGlobal( "AffineActionAsTensor", function( linG, nath )
local actsF, actsS, affG, i, t, j, d, b;
# action on T / S for T = U + S and action on S
actsF := List(linG, x -> InducedActionFactorByNHLB(x, nath ));
actsS := List(linG, x -> InducedActionSubspaceByNHLB(x, nath ));
# determine affine action on H^1 wrt U
affG := [];
for i in [1..Length(linG)] do
# the linear part is the diagonal action on the tensor
t := KroneckerProduct( actsF[i], actsS[i] );
for j in [1..Length(t)] do Add( t[j], 0 ); od;
# the affine part is determined by the derivation wrt nath.factor
b := PreimagesBasisOfNHLB( nath );
d := (actsF[i]^-1 * b) * linG[i] - b;
d := Flat( List( d, x -> ProjectionByNHLB( x, nath ) ) );
Add( d, 1 );
Add( t, d );
# t is the affine action - store it
Add( affG, t );
od;
return affG;
end );
#############################################################################
##
#F DifferenceVector( base, nath )
##
## Determines the vector (s1, ..., se) with nath.factor[i]+si in base.
##
BindGlobal( "DifferenceVector", function( base, nath )
local b, k, f, v;
b := PreimagesBasisOfNHLB( nath );
k := KernelOfNHLB( nath );
f := Concatenation( k, base );
v := List(b, x -> PcpSolutionIntMat(f, x){[1..Length(k)]});
v := - Flat(v);
Add( v, 1 );
return v;
end );
#############################################################################
##
#F NormalizerComplement( G, linG, baseU, baseS ) . . . . . . . . . . . N_G(U)
##
## U and S are free abelian subgroups of V such that U cap S = 0. The group
## acts via linG on the full space V.
##
BindGlobal( "NormalizerComplement", function( G, linG, baseU, baseS )
local baseT, nathT, affG, e;
# catch the trivial cases
if Length(baseS)=0 or Length(baseU)=0 then return G; fi;
if ForAll( linG, x -> x = x^0 ) then return G; fi;
baseT := LatticeBasis( Concatenation( baseU, baseS ) );
nathT := NaturalHomomorphismByLattices( baseT, baseS );
# compute a stabilizer under the affine action
affG := AffineActionAsTensor( linG, nathT );
e := DifferenceVector( baseU, nathT );
return StabilizerIntegralAction( G, affG, e );
end );
#############################################################################
##
#F ConjugacyComplements( G, linG, baseU, baseW, baseS ) . . . . . . .U^g = W?
##
BindGlobal( "ConjugacyComplements", function( G, linG, baseU, baseW, baseS )
local baseT, nathT, affG, e, f, os;
# catch the trivial cases
if Length(baseU)<>Length(baseW) then return false; fi;
if baseU = baseW then return
rec( norm := NormalizerComplement( G, linG, baseU, baseS ),
conj := One(G) );
fi;
baseT := LatticeBasis( Concatenation( baseU, baseS ) );
nathT := NaturalHomomorphismByLattices( baseT, baseS );
# compute the stabilizer of (0,..,0,1) under an affine action
affG := AffineActionAsTensor( linG, nathT );
e := DifferenceVector( baseU, nathT );
f := DifferenceVector( baseW, nathT );
os := OrbitIntegralAction( G, affG, e, f );
if IsBool(os) then return os; fi;
return rec( norm := os.stab, conj := os.prei );
end );
#############################################################################
##
#F NormalizerCongruenceAction( G, linG, baseU, ser ) . . . . . . . . . N_G(U)
##
BindGlobal( "NormalizerCongruenceAction", function( G, linG, baseU, ser )
local V, S, i, d, linS, nath, indG, indS, U, M, I, H, subh, actS, T, F,
fach, UH, MH, s;
# catch a trivial case
if ForAll( linG, x -> x = x^0 ) then return G; fi;
if Length(baseU) = 0 then return G; fi;
# set up for induction over the module series
V := IdentityMat( Length(baseU[1]) );
S := G;
# use induction over the module series
for i in [1..Length(ser)-1] do
d := Length( ser[i] ) - Length( ser[i+1] );
Info( InfoIntNorm, 2, " ");
Info( InfoIntNorm, 2, " consider layer ", i, " of dim ",d);
# do a check
if Length(Pcp(S)) = 0 then return S; fi;
# induce to the current layer V/ser[i+1];
Info( InfoIntNorm, 2, " induce to current layer");
nath := NaturalHomomorphismByLattices( V, ser[i+1] );
indG := List( linG, x -> InducedActionFactorByNHLB( x, nath ) );
indS := InducedByPcp( Pcp(G), Pcp(S), indG );
U := LatticeBasis( List( baseU, x -> ImageByNHLB( x, nath ) ) );
M := LatticeBasis( List( ser[i], x -> ImageByNHLB( x, nath ) ) );
F := IdentityMat(Length(indG[1]));
# compute intersection
I := StructuralCopy( LatticeIntersection( U, M ) );
H := PurifyRationalBase( I );
# first, use the action on the module M
subh := NaturalHomomorphismByLattices( M, [] );
actS := List( indS, x -> InducedActionFactorByNHLB( x, subh ) );
I := LatticeBasis( List( I, x -> ImageByNHLB( x, subh ) ) );
Info( InfoIntNorm, 2, " normalize intersection ");
T := NormalizerHomogeneousAction( S, actS, I );
if Length(Pcp(T)) = 0 then return T; fi;
# reset action for the next step
if Index(S,T) <> 1 then
indS := InducedByPcp( Pcp(G), Pcp(T), indG );
fi;
S := T;
# next, consider the factor modulo the intersection hull H
if Length(F) > Length(H) then
fach := NaturalHomomorphismByLattices( F, H );
UH := LatticeBasis( List( U, x -> ImageByNHLB( x, fach ) ) );
MH := LatticeBasis( List( M, x -> ImageByNHLB( x, fach ) ) );
actS := List( indS, x -> InducedActionFactorByNHLB( x, fach ) );
Info( InfoIntNorm, 2, " normalize complement ");
T := NormalizerComplement( S, actS, UH, MH );
if Length(Pcp(T)) = 0 then return T; fi;
# again, reset action for the next step
if Index(S,T) <> 1 then
indS := InducedByPcp( Pcp(G), Pcp(T), indG );
fi;
S := T;
fi;
# finally, add a finite orbit-stabilizer computation
if H <> I then
Info( InfoIntNorm, 2, " add finite stabilizer computation");
s := PcpOrbitStabilizer( U, Pcp(S), indS, OnLatticeBases );
S := SubgroupByIgs( S, s.stab );
fi;
od;
Info( InfoIntNorm, 2, " ");
return S;
end );
#############################################################################
##
#F ConjugacyCongruenceAction( G, linG, baseU, baseW, ser ) . . . . . U^g = W?
##
BindGlobal( "ConjugacyCongruenceAction", function( G, linG, baseU, baseW, ser )
local V, S, g, i, d, linS, moveW, nath, indS, U, W, M, IU, IW, H, F,
subh, actS, s, UH, WH, MH, j, fach, indG;
# catch some trivial cases
if baseU = baseW then
return rec( norm := NormalizerCongruenceAction(G, linG, baseU, ser),
conj := One(G) );
fi;
if Length(baseU)<>Length(baseW) or ForAll( linG, x -> x = x^0 ) then
return false;
fi;
# set up
V := IdentityMat( Length(baseU[1]) );
S := G;
g := One( G );
# use induction over the module series
for i in [1..Length(ser)-1] do
d := Length( ser[i] ) - Length( ser[i+1] );
Info( InfoIntNorm, 2, " ");
Info( InfoIntNorm, 2, " consider layer ", i, " of dim ",d);
# get action of S on the full space
moveW := LatticeBasis( baseW * InducedByPcp( Pcp(G), g, linG )^-1 );
# do a check
if Length(Pcp(S))=0 and baseU<>moveW then return false; fi;
if Length(Pcp(S))=0 and baseU=moveW then
return rec( norm := S, conj := g );
fi;
# induce to the current layer V/ser[i+1];
Info( InfoIntNorm, 2, " induce to layer ");
nath := NaturalHomomorphismByLattices( V, ser[i+1] );
indG := List( linG, x -> InducedActionFactorByNHLB( x, nath ) );
indS := InducedByPcp( Pcp(G), Pcp(S), indG );
U := LatticeBasis( List( baseU, x -> ImageByNHLB( x, nath ) ) );
W := LatticeBasis( List( moveW, x -> ImageByNHLB( x, nath ) ) );
M := LatticeBasis( List( ser[i], x -> ImageByNHLB( x, nath ) ) );
F := IdentityMat(Length(indG[1]));
# get intersections
IU := LatticeIntersection( U, M );
IW := LatticeIntersection( W, M );
H := PurifyRationalBase( IU );
# first, use action on the module M
subh := NaturalHomomorphismByLattices( M, [] );
actS := List( indS, x -> InducedActionFactorByNHLB( x, subh ) );
IU := LatticeBasis( List( IU, x -> ImageByNHLB( x, subh ) ) );
IW := LatticeBasis( List( IW, x -> ImageByNHLB( x, subh ) ) );
Info( InfoIntNorm, 2, " conjugate intersections ");
s := ConjugacyHomogeneousAction( S, actS, IU, IW );
if IsBool(s) then return false; fi;
# reset action for next step
g := g * s.conj;
W := LatticeBasis( W * InducedByPcp( Pcp(G), s.conj, indG )^-1 );
if Index(S,s.norm)<>1 then
indS := InducedByPcp(Pcp(G),Pcp(s.norm),indG);
fi;
S := s.norm;
# next, consider factor modulo the intersection hull H
if Length(F) > Length(H) then
fach := NaturalHomomorphismByLattices( F, H );
UH := LatticeBasis( List( U, x -> ImageByNHLB( x, fach ) ) );
WH := LatticeBasis( List( W, x -> ImageByNHLB( x, fach ) ) );
MH := LatticeBasis( List( M, x -> ImageByNHLB( x, fach ) ) );
actS := List( indS, x -> InducedActionFactorByNHLB( x, fach ) );
Info( InfoIntNorm, 2, " conjugate complements ");
s := ConjugacyComplements( S, actS, UH, WH, MH );
if IsBool(s) then return false; fi;
# again, reset action
g := g * s.conj;
W := LatticeBasis( W * InducedByPcp( Pcp(G), s.conj, indG )^-1 );
if Index(S,s.norm)<>1 then
indS := InducedByPcp(Pcp(G),Pcp(s.norm),indG);
fi;
S := s.norm;
fi;
# finally, add a finite orbit-stabilizer computation
if H <> IU then
Info( InfoIntNorm, 2, " add finite stabilizer computation");
s := PcpOrbitStabilizer( U, Pcp(S), indS, OnLatticeBases );
j := Position( s.orbit, W );
if IsBool(j) then return false; fi;
g := g * TransversalElement( j, s, One(G) );
S := SubgroupByIgs( S, s.stab );
fi;
od;
Info( InfoIntNorm, 2, " ");
return rec( norm := S, conj := g );
end );
#############################################################################
##
#F NormalizerIntegralAction( G, linG, U ) . . . . . . . . . . . . . . .N_G(U)
##
BindGlobal( "NormalizerIntegralAction", function( G, linG, U )
local gensU, d, e, F, t, I, S, linS, K, linK, ser, T, orbf, N;
# catch a trivial case
if ForAll( linG, x -> x = x^0 ) then return G; fi;
# do a check
gensU := LatticeBasis( U );
if gensU <> U then Error("function needs lattice basis as input"); fi;
# get generators and check for trivial case
if Length( U ) = 0 then return G; fi;
d := Length( U[1] );
e := Length( U );
# compute modulo 3 first
Info( InfoIntNorm, 1, "reducing by orbit-stabilizer mod 3");
F := GF(3);
t := InducedByField( linG, F );
I := VectorspaceBasis( U * One(F) );
S := PcpOrbitStabilizer( I, Pcp(G), t, OnSubspacesByCanonicalBasis );
S := SubgroupByIgs( G, S.stab );
linS := InducedByPcp( Pcp(G), Pcp(S), linG );
# use congruence kernel
Info( InfoIntNorm, 1, "determining 3-congruence subgroup");
K := KernelOfFiniteMatrixAction( S, linS, F );
linK := InducedByPcp( Pcp(G), Pcp(K), linG );
# compute homogeneous series
Info( InfoIntNorm, 1, "computing module series");
ser := HomogeneousSeriesOfRationalModule( linG, linK, d );
ser := List( ser, x -> PurifyRationalBase(x) );
# get N_K(U)
Info( InfoIntNorm, 1, "adding stabilizer for congruence subgroup");
T := NormalizerCongruenceAction( K, linK, U, ser );
# set up orbit stabilizer function for K
orbf := function( K, actK, a, b )
local o;
o := ConjugacyCongruenceAction( K, actK, a, b, ser );
if IsBool(o) then return o; fi;
return o.conj;
end;
# add remaining stabilizer
Info( InfoIntNorm, 1, "constructing block orbit-stabilizer");
N := ExtendOrbitStabilizer( U, K, linK, S, linS, orbf, OnLatticeBases );
N := AddIgsToIgs( N.stab, Igs(T) );
N := SubgroupByIgs( G, N );
# do a temporary check
if CHECK_INTNORM@ then
Info( InfoIntNorm, 1, "checking results");
if not CheckNormalizer(G, N, linG, U) then
Error("wrong norm in integral action");
fi;
fi;
# now return
return N;
end );
#############################################################################
##
#F ConjugacyIntegralAction( G, linG, U, W ) . . . . . . . . . . . . .U^g = W?
##
## returns N_G(U) and g in G with U^g = W if g exists.
## returns false otherwise.
##
BindGlobal( "ConjugacyIntegralAction", function( G, linG, U, W )
local F, t, I, J, os, j, g, L, S, linS, K, linK, ser, orbf, h, T;
# do a check
if U <> LatticeBasis(U) or W <> LatticeBasis(W) then
Error("function needs lattice bases as input");
fi;
# catch some trivial cases
if U = W then
return rec( norm := NormalizerIntegralAction(G, linG, U),
prei := One( G ) );
fi;
if Length(U)<>Length(W) or ForAll( linG, x -> x = x^0 ) then
return false;
fi;
# compute modulo 3 first
Info( InfoIntNorm, 1, "reducing by orbit-stabilizer mod 3");
F := GF(3);
t := InducedByField( linG, F );
I := VectorspaceBasis( U * One(F) );
J := VectorspaceBasis( W * One(F) );
os := PcpOrbitStabilizer( I, Pcp(G), t, OnSubspacesByCanonicalBasis );
j := Position( os.orbit, J );
if IsBool(j) then return false; fi;
g := TransversalElement( j, os, One(G) );
L := LatticeBasis( W * InducedByPcp( Pcp(G), g, linG )^-1 );
S := SubgroupByIgs( G, os.stab );
linS := InducedByPcp( Pcp(G), Pcp(S), linG );
# use congruence kernel
Info( InfoIntNorm, 1, "determining 3-congruence subgroup");
K := KernelOfFiniteMatrixAction( S, linS, F );
linK := InducedByPcp( Pcp(G), Pcp(K), linG );
# compute homogeneous series
Info( InfoIntNorm, 1, "computing module series");
ser := HomogeneousSeriesOfRationalModule( linG, linK, Length(U[1]) );
ser := List( ser, x -> PurifyRationalBase(x) );
# set up orbit stabilizer function for K
orbf := function( K, linK, a, b )
local o;
o := ConjugacyCongruenceAction( K, linK, a, b, ser );
if IsBool(o) then return o; fi;
return o.conj;
end;
# determine block orbit and stabilizer
Info( InfoIntNorm, 1, "constructing block orbit-stabilizer");
os := ExtendOrbitStabilizer( U, K, linK, S, linS, orbf, OnRight );
# get orbit element and preimage
j := FindPosition( os.orbit, L, K, linK, orbf );
if IsBool(j) then return false; fi;
h := TransversalElement( j, os, One(G) );
L := LatticeBasis( L * InducedByPcp( Pcp(G), h, linG )^-1 );
g := orbf( K, linK, U, L ) * h * g;
# get Stab_K(e) and thus Stab_G(e)
Info( InfoIntNorm, 1, "adding stabilizer for congruence subgroup");
T := NormalizerCongruenceAction( K, linK, U, ser );
t := AddIgsToIgs( os.stab, Igs(T) );
T := SubgroupByIgs( T, t );
# do a temporary check
if CHECK_INTNORM@ then
Info( InfoIntNorm, 1, "checking results");
if not CheckNormalizer( G, T, linG, U) then
Error("wrong norm in integral action");
elif not CheckConjugacy(G, g, linG, U, W) then
Error("wrong conjugate in integral action");
fi;
fi;
# now return
return rec( stab := T, prei := g );
end );
|